高中数学第四章定积分4.1定积分的概念定积分的概念教案

合集下载

定积分的概念教案

定积分的概念教案

定积分的概念教案一、教学目标:1.了解定积分的定义和计算方法;2.掌握定积分的性质和应用;3.培养学生的数学计算能力和逻辑思维能力。

二、教学内容:1.定积分的定义;2.定积分的计算方法;3.定积分的性质和应用。

三、教学重点:1.定积分的定义;2.定积分的计算方法。

四、教学难点:1.定积分的性质和应用;2.定积分与原函数的关系。

五、教学过程:Step 1 引入教师与学生展开对话,探讨学生对积分的了解:教师:同学们,你们对积分有什么了解?学生:积分就是求和。

教师:不错,积分的确是求和,但是定积分具体是什么呢?我们一起来探讨一下。

Step 2 定积分的定义教师向学生介绍定积分的定义:教师:定积分是微积分的一个重要概念,表示函数曲线与x轴之间的面积。

我们用符号∫来表示定积分,函数f(x)的定积分表示为∫f(x)dx,在积分号下面写上被积函数,dx表示自变量。

Step 3 定积分的计算方法教师通过示例向学生演示定积分的计算方法:教师:我们以函数f(x)=x^2为例,计算f(x)在区间[1,3]上的定积分。

教师在黑板上写下∫(1→3)x^2dx,并进行具体的计算步骤解释。

Step 4 定积分的性质和应用教师向学生介绍定积分的性质和应用,并通过例题进行讲解:教师:定积分具有线性性质、区间可加性和变量替换的性质,同时也可以用于计算面积、体积、质量等。

我们来看一个例题,计算函数f(x)=x在区间[-2,2]上的定积分,并解释其实际意义。

Step 5 定积分与原函数的关系教师引导学生思考定积分与原函数的关系:Step 6 总结与归纳教师与学生总结本节课的内容,并归纳出定积分的概念和性质:教师:同学们,通过本节课的学习,我们初步了解了定积分的定义、计算方法和性质。

下节课我们将进一步学习定积分的应用。

大家要做好预习哦!六、教学反思本节课通过引入、定义、示例演算等方式,使学生初步了解了定积分的概念和计算方法。

通过例题讲解,学生对定积分的应用有了基本的认识。

高中数学定积分的概念教案

高中数学定积分的概念教案

高中数学定积分的概念教案一、教学目标:1.了解定积分的概念及其在数学中的重要性;2.掌握定积分的基本性质和计算方法;3.能够运用定积分求解实际问题。

二、教学重点及难点:1.定积分的概念和基本性质;2.定积分的计算方法;3.定积分在实际问题中的应用。

三、教学内容:1.定积分的概念a.通过求和的思想引入定积分的概念;b.定义定积分的符号表示及含义;c.定积分的几何意义和物理意义。

2.定积分的性质a.定积分的线性性质;b.定积分的可加性质;c.定积分的保号性质。

3.定积分的计算方法a.定积分的基本性质;b.定积分的换元法;c.定积分的分部积分法。

4.定积分在实际问题中的应用a.通过实际问题引入定积分的应用;b.运用定积分求解速度、面积、体积等实际问题。

四、教学过程:1.引入定积分的概念(10分钟)a.通过求和的思想引入定积分的概念;b.讲解定积分的符号表示及其含义。

2.定积分的性质(15分钟)a.讲解定积分的线性性质、可加性质和保号性质;b.举例说明定积分性质的运用。

3.定积分的计算方法(20分钟)a.讲解定积分的基本性质和计算方法;b.通过实例演示定积分的换元法和分部积分法。

4.定积分在实际问题中的应用(15分钟)a.通过实际问题引入定积分的应用;b.运用定积分求解速度、面积、体积等实际问题。

五、教学方法:1.讲授相结合:简洁明了地讲解定积分的概念和性质,结合实例演示计算方法;2.激发思考:通过引入实际问题,激发学生的思考和探究欲望;3.启发式教学:提出问题引导学生独立思考,培养学生的解决问题能力。

六、教学资源:1.教材:教材中相关知识点、例题及练习题;2.多媒体教学:投影仪、电脑等多媒体设备。

七、教学评估:1.课堂练习:课堂上针对性地布置练习,检验学生对定积分的理解和掌握程度;2.作业布置:课后布置练习题,巩固学生对定积分的掌握。

八、课堂小结:通过本节课的学习,相信同学们已经初步了解了定积分的概念、性质和计算方法,并能够运用定积分解决实际问题。

高中数学定积分的概念教案新人教版选修

高中数学定积分的概念教案新人教版选修

高中数学定积分的概念教案新人教版选修一、教学目标1. 理解定积分的概念,掌握定积分的基本性质和计算方法。

2. 能够运用定积分解决实际问题,提高学生的数学应用能力。

3. 培养学生的逻辑思维能力,提高学生的数学素养。

二、教学内容1. 定积分的概念介绍定积分的定义、性质和计算方法,引导学生理解定积分的本质。

2. 定积分的计算讲解定积分的计算法则,包括牛顿-莱布尼茨公式、换元积分法、分部积分法等,让学生掌握定积分的计算技巧。

3. 定积分在实际问题中的应用通过实际问题,引导学生运用定积分解决面积、体积、弧长等问题,提高学生的数学应用能力。

三、教学重点与难点1. 定积分的概念与性质2. 定积分的计算方法3. 定积分在实际问题中的应用四、教学方法1. 采用讲授法,讲解定积分的概念、性质和计算方法。

2. 利用例题,引导学生掌握定积分的计算技巧。

3. 结合实际问题,培养学生运用定积分解决实际问题的能力。

4. 组织讨论,让学生在探讨中深化对定积分概念的理解。

五、教学过程1. 引入:通过复习初中数学中的积分概念,引导学生思考如何将积分概念推广到无限区间。

2. 讲解:讲解定积分的定义、性质和计算方法,让学生理解定积分的本质。

3. 练习:布置定积分的计算练习题,让学生巩固所学知识。

4. 应用:结合实际问题,讲解定积分在面积、体积、弧长等方面的应用,让学生体会定积分的实用价值。

6. 作业:布置课后作业,巩固所学知识。

六、定积分的性质与计算法则1. 性质:定积分具有线性性质,即$\int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx = \int_{a}^{b} (f(x) + g(x)) \, dx$。

定积分与积分区间有关,即$\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx$。

定积分与积分函数的单调性有关,即若$f(x)$ 在$[a, b]$ 上单调递增,则$\int_{a}^{b} f(x) \, dx$ 可以表示为$F(b) F(a)$,其中$F(x)$ 是$f(x)$ 的一个原函数。

定积分的概念教案

定积分的概念教案

定积分的概念教案课题:定积分的概念研究目标及重、难点:一、教学目标:1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景。

2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分。

3.理解掌握定积分的几何意义。

二、教学重点:定积分的概念、用定义求简单的定积分、定积分的几何意义。

教学难点:定积分的概念、定积分的几何意义。

教学流程:一、复:1.回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤:分割→近似代替(以直代曲)→求和→取极限(逼近)2.对这四个步骤再以分析、理解、归纳,找出共同点。

二、新课探析:1.定积分的概念:设函数f(x)在区间[a,b]上连续,用分点一般地将区间[a,b]等分成n个小区间,每个小区间长度为Δx,取一点ξi(i=1,2.n)在每个小区间[x(i-1),xi]上任取一点ξi,作和式:Sn=∑f(ξi)Δx,当上述和式Sn无限趋近于常数S,即S=limSn(n→∞)时,上述常数S称为函数f(x)在区间[a,b]上的定积分。

记为:S=∫baf(x)dx,其中∫为积分号,b为积分上限,a为积分下限,f(x)为被积函数,x为积分变量,[a,b]为积分区间,∫f(x)dx为被积式。

说明:1)定积分不是Sn。

2)用定义求定积分的一般方法是:①分割:n等分区间[a,b];②近似代替:取点ξi∈[xi-1,xi];③求和:∑f(ξi)Δx;④取极限:∫f(x)dx=lim∑f(ξi)Δx(n→∞)。

3)曲边图形面积:S=∫f(x)dx。

2.定积分的几何意义:从几何上看,如果在区间[a,b]上函数f(x)连续且恒有f(x)≥0,则定积分∫f(x)dx表示由直线x=a,x=b(a≠b),y=0和y=f(x)所围成的曲边梯形的面积,如图中的阴影部分。

另外,定积分还可以表示变速运动路程S=∫bta2v(t)dt和变力做功W=∫btaF(r)dr的大小。

定积分的概念教案

定积分的概念教案

定积分的概念教学目标 能用定积分的定义求简单的定积分;理解掌握定积分的几何意义;重点 定积分的概念、定积分法求简单的定积分、定积分的几何意义难点 定积分的概念、定积分的几何意义复习: 1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤 2.对这四个步骤再以分析、理解、归纳,找出共同点. 新课讲授1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()nnn i i i i b aS f x f nξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()baS f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。

说明:(1)定积分()ba f x dx ⎰是一个常数,即n S 无限趋近的常数S(n →+∞时)称为()ba f x dx ⎰,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b a f n ξ=-∑; ④取极限:()1()lim n b i a n i b af x dx f n ξ→∞=-=∑⎰ (3)曲边图形面积:()ba S f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()ba W F r dr =⎰ 2.定积分的几何意义如果在区间[,]a b 上函数连 续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积。

定积分概念教案

定积分概念教案

教案图4.1图AB的很慢,有的根本听不懂,基于这些特点,结合教学内容,我以板书教学为主,多媒体教学为辅,把概念较强的课本知识直观化、形象化,引导学生探索性学习。

六、教学方法:根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲解为主,同时充分调动学生学习的主动性和思考问题的积极性。

七、教学手段:传统教学与多媒体资源相结合。

八、教学时数:1课时。

九、教学过程:1、由两个实际例子引出定积分的概念.定积分是积分学的另一个重要的基本概念,和导数概念一样,它也是在解决各种实际问题中逐渐形成并发展起来的,现已成为解决许多实际问题的有力工具.本节将首先从实际问题出发引出定积分的概念,并介绍定积分的几何意义.例1 求曲边梯形的面积.初等数学可以计算多边形、圆形和扇形等规则图形的面积,但对于较复杂的曲线所围成的图形(图4.1)的面积计算则无能为力.如图所示,我们总可以用若干互相垂直的直线将图形分割成如阴影部分所示的基本图形,它是由两条平行线段,一条与之垂直的线段,以及一条曲线弧所围成,这样的图形称为曲边梯形.特别地,当平行线之一缩为一点时,称为曲边三角形.那么,为什么要研究曲边梯形呢?因为求任何曲线围成的几何图形的面积,都可归结为求若干个曲边梯形的面积的代数和. 现把问题归结如下:求由直线0,,===y b x a x 和连续曲线)(x f y =(()0)f x ≥所围成的曲边梯形AabB (图4.2)的面积S .如果曲边梯形的高不变,即C y =(常数),则根据矩形面积公式 面积=底⨯高)n .2)n , 作积分和∑==∆ni i i x 12ξ)12n +. n λ→∞⇔概念?。

1. 定积分概念(上课)

1. 定积分概念(上课)
第四章 定积分
§1 定积分的概念
1.1 定积分的背景——面积和路程问题
1.借助于几何直观图了解定积分的基本思想. 2.掌握定积分的概念,能用定积分定义求简单的 定积分.(重点) 3.理解掌握定积分的几何意义. (难点)
1.了解定积分的实际背景. 2.理解“以直代曲”“无限分割”的思想,初步掌握 求曲边梯形面积的“三步曲”——“分割、求和、近
用其中一点的速度代替这段时间内的平均值,其
速度误差就越小.
比如,将滑行时间5s平均分成10份.
用类似的方法得到汽车在5s内滑行距离的过剩估
计值s2:
s2 [v(0) v(0.5) v(1) v(4) v(4.5)] 0.5 48.125( m )
: 汽车在5s内滑行距离的不足估计值 s2
通过下面的演示我们如何做到使误差小于0.01.
输入数
字,点
击确定.
练一练:
求曲线y=x3与直线x=1,y=0所围成的平面图 形的面积的估计值,并写出估计误差.(把区间 [0,1] 5等分来估计)
解析 把区间 [0,1] 5等分,以每一个小区间
左右端点的函数值作为小矩形的高,得到不足
估计值
s1 和过剩估计值 S1 ,如下:
b b
n n
定积分的概念 一般地,设函数 f ( x) 在区间 [a, b] 上连续,用分点 a x0 x1 x2 xi 1 xi xn b 将区间 [a, b] 等分成 n 个小区间,每个小区间长度为 x ba ( x ) ,在每个小区间 xi 1 , xi 上取一点 n i i 1, 2,, n ,作和式:
ba Sn f (i )x f (i ) n i 1 i 1 如果 x 无限接近于 0(亦即 n ) 时, 上述和式 S n

高中数学第四章定积分4.1定积分的概念4.1.2定积分省公开课一等奖新优质课获奖课件

高中数学第四章定积分4.1定积分的概念4.1.2定积分省公开课一等奖新优质课获奖课件

题型三
题型二
利用定积分的意义求积分

【例 2】 利用定积分的意义,求下列定积分:
(1)
3
-3
9- 2 d;
(2)
3
0
(2 + 1)d.
分析:先画出几何图形,再求该几何图形的面积,即为所求的定积
分.
解:(1)在平面直角坐标系中,y=
9- 2
表示的几何图形为以原点为圆心,以 3 为半径的上半圆,如图 ①所示.
∑ ()Δ;
i=1
(3)取极限:当 n→+∞时,S→A,且 s→A,则


()d = .
12/30
题型一
题型二
题型三
【变式训练 1】 利用定积分的定义,计算
2
1
(3 + 2)d.
解:令 f(x)=3x+2.
(1)分割:
在区间[1,2]上等间隔地插入 n-1 个分点,把区间[1,2]等分成 n 个
小区间
-1
,

1

( = 1,2, …,n),每个小区间的长度为 Δx= .
10/30
题型一
题型二
题型三
(2)近似代替、求和:
取 ξi=

(


= 1,2, …,n),则 S= ∑
=1
i
n
Δ =
n
2
∑ 2
i=1
+1
1

1 12 + 22 + … + 2
( + 1)(2 + 1)
题型一
题型二
题型三
题型三 利用定积分的性质求定积分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲边梯形的面积
一、教学目标:理解求曲边图形面积的过程:分割、以直代曲、逼近,感受在其过程中渗透的思想方法。

二、教学重难点:
重点:掌握过程步骤:分割、以直代曲、求和、逼近(取极限) 难点:对过程中所包含的基本的微积分 “以直代曲”的思想的理解
三、教学方法:探析归纳,讲练结合 四、教学过程 1、创设情景
我们学过如何求正方形、长方形、三角形等的面积,这些图形都是由直线段围成的。

那么,如何求曲线围成的平面图形的面积呢?这就是定积分要解决的问题。

定积分在科学研究和实际生活中都有非常广泛的应用。

本节我们将学习定积分的基本概念以及定积分的简单应用,初步体会定积分的思想及其应用价值。

一个概念:如果函数()y f x =在某一区间I 上的图像是一条连续不断的曲线,那么就把函数()y f x =称为区间I 上的连续函数.(不加说明,下面研究的都是连续函数) 2、新课探析
问题:如图,阴影部分类似于一个梯形,但有一边是曲线
()y f x =的一段,我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形称为曲边梯形.如何计算这个曲边梯形的面
积?
例题:求图中阴影部分是由抛物线2
y x =,直线1=x 以及x 轴所围成的平面图形的面积S 。

思考:(1)曲边梯形与“直边图形”的区别?(2)能否将求这个曲边梯形面积S 的问题转化
为求“直边图形”面积的问题?
分析:曲边梯形与“直边图形”的主要区别:曲边梯形有一边是曲线段,“直边图形”的所有边都是直线段.“以直代曲”的思想的应用.
0.1
把区间[]0,1分成许多个小区间,进而把区边梯形拆为一些小曲边梯形,对每个小曲边梯形“以直代取”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值.分割越细,面积的近似值就越精确。

当分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积S .也即:用划归为计算矩形面积和逼近的思想方法求出曲边梯形的面积. 解: (1).分割
在区间[]0,1上等间隔地插入1n -个点,将区间[]0,1等分成n
间:10,n ⎡⎤⎢⎥⎣⎦,12,n n ⎡⎤⎢⎥⎣⎦,…,1,1n n -⎡⎤

⎥⎣⎦
记第i 个区间为1,(1,2,,)i i i n n n -⎡⎤
=⎢
⎥⎣
⎦L ,其长度为11
i i x n n n
-∆=-=
分别过上述1n -个分点作x 轴的垂线,从而得到n 个小曲边梯形,他们的面积分别记作:
1S ∆,2S ∆,…,n S ∆显然,1
n
i
i S S ==∆∑
(2)近似代替
记()2
f x x =,如图所示,当n 很大,即x ∆很小时,在区间1,i i n n -⎡⎤

⎥⎣
⎦上,可以认为函数()2f x x =的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点
1
i n
-处的函数值1i f n -⎛⎫
⎪⎝⎭
,从图形上看,就是用平行于x 轴的直线段近似的代替小曲边梯形的曲边(如图).这样,在区间1,i i n n -⎡⎤
⎢⎥⎣⎦
上,用小矩形的面积i S '∆近似的代替i S ∆,即在局部范围内“以直代取”,则有
211i i i i S S f x x n n --⎛⎫⎛⎫'∆≈∆=∆=∆ ⎪ ⎪⎝⎭⎝⎭g g 2
11
(1,2,,)i i n n n
-⎛⎫== ⎪⎝⎭g L ①
(3)求和:由①,上图中阴影部分的面积n S 为
2
111111
n
n
n
n i i i i i i S S f x n n n ===--⎛⎫⎛⎫'∆=∆=∆= ⎪ ⎪⎝⎭⎝
⎭∑∑∑g g
=22
111110n n n n n n
-⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭g g L g =()22231121n n ⎡⎤+++-⎣⎦L =()()312116n n n n --=1111132n n ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭,从而得到S 的近似值 1111132n S S n n ⎛⎫⎛⎫
≈=-- ⎪⎪⎝⎭⎝⎭
(4)取极限:分别将区间[]0,1等分8,16,20,…等份(如图),可以看到,当n 趋向于无穷大时,即x ∆趋向于0时,1111132n S n n ⎛⎫⎛⎫
=
-- ⎪⎪⎝⎭⎝⎭
趋向于S ,从而有 1
11
1111lim lim lim 11323n
n n n n i i S S f n n n n →∞→∞→∞=-⎛⎫⎛⎫⎛⎫===--= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑g 从数值上的变化趋势:
3.求曲边梯形面积的四个步骤:第一步:分割.在区间[],a b 中任意插入1n -各分点,将它们等分成n 个小区间[]1,i i x x -()1,2,,i n =L ,区间[]1,i i x x -的长度1i i i x x x -∆=-,第二步:近似代替,“以直代取”。

用矩形的面积近似代替小曲边梯形的面积,求出每个小曲边梯形面积的近似值.第三步:求和.第四步:取极限。

说明:1.归纳以上步骤,其流程图表示为:分割→以直代曲→求和→逼近
2.最后所得曲边形的面积不是近似值,而是真实值 练习:课本P76练习题:设S 表示由曲线x y =
,x =1,以及x 轴所围成平面图形的面积。

四、课堂小结:求曲边梯形的思想和步骤:分割→以直代曲→求和→逼近 (“以直代曲”的思想) 五、教学后记。

相关文档
最新文档