分形算法与应用

分形算法与应用
分形算法与应用

《分形算法与应用》教学大纲

1 课程的基本描述

课程名称:分形算法与应用Algorithm and Application of Fractal 课程编号:5301A36

课程性质:专业课适用专业:计算机专业

教材选用:孙博文编著,《分形算法与程序设计》,科学出版社,2004.11

总学时:32学时理论学时:32学时

实验学时:0学时课程设计:无

学分:2学分开课学期:第七学期

前导课程:算法分析

后续课程:毕业设计

2 教学定位

2.1 能力培养目标

通过本课程的学习,培养学生的认知和理解能力、逻辑思维能力,以及算法设计与分析能力,程序设计和实现能力。一方面使学生掌握非规则图形的计算机绘制的基本方法,以便实现对不规则对象的算法设计。另一方面,学习本课程的过程也是进行复杂程序设计的训练过程。

2.2 课程的主要特点

本课程是一门重要的专业课,有理论性、设计性与实践性的特点。介绍分形的基本概念及算法设计的基本方法。它是介于计算机软件、程序设计和数学三门课程之间的核心课程。不仅为后续专业课提供了必要的知识基础,也为计算机、软件工程的专业人员提供了必要的技能训练。

2.3 教学定位

通过本课程的学习,使学生达到知识和技能两方面的目标:

1.知识方面:从算法设计及其实现这两个层次的相互关系的角度,系统地学习和掌握非规则图形的算法设计方法,了解并掌握分析、比较和选择不同非规则结构的设计方案,不同运算实现的原则和方法。

2.技能方面:系统地学习和掌握在不同非规则对象实现的不同算法及其设计思想,从中体会并掌握结构选择和算法设计的思维方式及技巧,使分析问题和解决问题的能力得到提高。

3 知识点与学时分配

3.1掌握分形的基本概念

分形简介

分形

分维

分形的测量

共2学时

3.2分形图生成算法之一

分形图的递归算法

Cantor三分集、Koch曲线、Sierpinski垫片、

Peano曲线、分形树等的递归算法。

共2学时

3.3分形图生成算法之二

文法构图算法

LS文法、单一规则的LS文法生成、多规则的LS文法生成、

随机LS文法生成。

共2学时

3.4分形图生成算法之三

迭代函数系统

相似变换与仿射变换、拼贴与IFS码的确定、

IFS植物形态模拟、复平面上的IFS算法

共4学时

3.5分形图生成算法之四

逃逸时间算法

逃逸时间算法的基本思想(理解,核心)、

算法步骤、程序设计(理解,核心)、

Julia集的逃逸时间算法、

Mandelbrot集的逃逸时间算法。

共4学时

3.6分形图细节算法

分形显微镜

逃逸时间算法的放缩原理(理解,核心)、

Mandelbrot集的局部放大、

Julia集的局部放大。

共2学时

3.7分形建模

分形演化算法

元胞自动机(理解)

分形演化的DLA模型

共4学时

3.8分形动画

分形动画实例

摇曳的递归分形树(运用)

生长出来的Sierpinski垫片

摇摆的Sierpinski垫片

连续变化的Julia集

共2学时

3.9分形实体造型

立体分形及自然景物模拟

三维空间中的分形(了解,可选)

分形自然景物模拟算法。

共6学时

3.10 其它学时

机动+习题课(学时:2学时),考试(学时:2学时)

共4学时

4 讲授提示及方法

4.1掌握分形的基本概念

重点:分形、分维等基本概念。

难点:分维概念的建立。

讲授提示与方法:强调分形与整形的对比。

4.2分形图的递归算法

重点:递归算法的基本概念,分形图的递归算法设计。

难点:分形图的递归算法设计。

讲授提示与方法:强调递归算法的实际应用意义,以实例启发学生理解递归算法的重要性。

4.3 文法构图算法

重点:L系统算法的基本原理。

难点:L系统算法设计。

讲授提示与方法:强调L系统算法重要性,用实例说明分形图形对L系统规则的依赖性。

4.4迭代函数系统算法

重点:迭代函数系统算法的基本原理及其意义。

难点:迭代函数系统的算法设计。

讲授提示与方法:强调迭代函数系统算法重要性,用实例说明分形图形对IFS码的依赖性。

4.5逃逸时间算法

重点:逃逸时间算法的基本原理及其意义。

难点:逃逸时间算法设计。

讲授提示与方法:强调逃逸时间算法重要性,用实例说明分形图形对初始值的依赖性。

4.6分形显微镜

重点:分形图的局部放大原理。

难点:分形图的局部放大算法设计。

讲授提示与方法:强调分形图的局部放大算法重要性,通过实际放大说明分形图的复杂性。

4.7分形演化算法

重点:分形建模原理及其重要意义。

难点:分形建模算法设计。

讲授提示与方法:元胞自动机模型,DLA模型,并通过实例讲解分形的演化过程。

4.8分形动画

重点:分形动画实现。

难点:双缓存技术避免动画抖动。

讲授提示与方法:强调分形动画的实际意义,用实例说明分形动画的效果。

4.9三维空间中的分形

重点:分形实体设计。

难点:分形实体算法设计。

讲授提示与方法:OpenGL函数库的使用,分形实体造型实例。

4.10分形自然景物模拟算法

重点:模拟自然景物的基本分形算法及其意义。

难点:随机中点位移法,分形插值算法。

讲授提示与方法:用分形算法生成山、云等自然景物(介绍)。

5 习题与实验设计

5.1 习题设计

由于本课程主要讲授的是分形理论和算法,因此本课程的习题主要以编写算法为主。通过学习各知识单元的典型算法,本着循序渐进的原则,由浅入深,由单一到综合,使学生能够逐步灵活运用所学的各种方法和技巧,分析和解决实际问题。

1、通过基本算法的学习,能够灵活运用设计简单算法。如:递归和迭代解决实际算法

设计问题。

2、通过经典的算法的学习,了解它们应用的环境,模拟环境编写出完整的程序。

3、对所学算法分析和比较,说明解决同一问题可以用哪些方法。

通过学生完成作业的情况,了解学生的知识理解和掌握情况,以及学生的算法设计的思维方式,针对存在的问题作进一步的讲解和启发,使学生对所学知识能够达到融会贯通。

5.2 实验设计

本课程为选修课,课内不安排实验课。

6 考核与成绩记载

6.1 考核的方式及成绩的评定。

考核成绩的构成:平时成绩50%、期末成绩50%

1.平时成绩的构成:平时作业40%、上课出勤10%

(1)平时作业完成的获得基础分20分,然后按良好、优秀分别加10、20分。每缺

一次作业,扣去5分,5次以上作业未完成者,没有作业成绩。

(2)上课三分之一旷课者,不允许参加期末考试。

2.期末考试为开卷考试。

6.2 考题的设计

开卷考试,分形算法设计。

经典的分形算法 (1)

经典的分形算法 小宇宙2012-08-11 17:46:33 小宇宙 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德布罗(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 真正令大众了解分形是从计算机的普及肇始,而一开始,分形图的计算机绘制也只是停留在二维平面,但这也足以使人们心驰神往。近来,一个分形体爱好者丹尼尔?怀特(英国一钢琴教师)提出一个大胆的方法,创造出令人称奇的3D分形影像,并将它们命名为芒德球(mandelbulb)。

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

分形维数算法

分形维数算法. 分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,

如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近 似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维 D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的[26]。点 集和多枝权的三维图形,下面介绍一些常用的测定方法(1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系

-D(2-21) N~λ上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: 1-D(2-22)L=Nλ~λ 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈[27]。。这说明挪威的海岸线更曲折一些1.3. )小岛法(2面积如果粗糙曲线都是封闭的,例如海洋中的许多小岛,就可以利用周长-关系求分维,因此这个方法又被称为小岛法。则与λ的而面积A对于规则图形的周长与测量单位尺寸λ的一次方成正比, 二次方成正比。通常我们可以把它们写成一个简单的比例关系:1/2 (2-23) AP∝对于二维空间内的不规则分形的周长和面积的关系显然更复杂一些,提出,应该用分形周长曲线来代替原来的光滑周长,从而给出了下Mandelbrot 述关系式:21/??D??1/1/D2)(2-24)]?(?)]?[a?AP[(?)][??a(1?D)/DA(?00的P)式),使1(周长光滑时D=1,上式转化成为(2.23这里的分维D大于??的数1变化减缓,a是和岛的形状有关的常数,为小于是测量尺寸,一般取0/D)(1-D??减小而增大。作随测

分形图形与分形的产生

分形图形 分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。分形的基本特征是具有标度不变性。其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。 说到分形(fractal),先来看看分形的定义。分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。而一直到八十年代,对于分形的研究才真正被大家所关注。 分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。它是数学的一个分支。我之前说过很多次,数学就是美。而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。而更由于它美的直观性,被很多艺术家索青睐。分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。而在生物界,分形的例子也比比皆是。 近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。它以其独特的手段来解决整体与部分的关系问题,利用空间结构的对称性和自相似性,采用各种模拟真实图形的模型,使整个生成的景物呈现出细节的无穷回归的性质,丰富多彩,具有奇妙的艺术魅力。分形对像没有放大极限,无论如何放大,总会看到更详细的结构。借助于分形的计算机生成,从少量的数据生成复杂的自然景物图形,使我们在仿真模拟方面前进了一大步。在分形的诸多研究课题中,分形的计算机生成问题具有明显的挑战性,它使传统数学中无法表达的形态(如山脉、花草等)得以表达,还能生成一个根本“不存在”的图形世界。分形在制造以假乱真的景物方面的进展和潜在的前途,使得无论怎样估计它的影响也不过分。可以肯定,分形图案在自然界真实物体模拟、仿真形体生成、计算机动画、艺术装饰纹理、图案设计和创意制作等具有广泛的应用价值。 分形图形简介一、关于分形与混沌 关于分形的起源,要非常准确的找出来是非常困难的。研究动态系统、非线形数学、函数分析的科学家,已数不胜数。尽管分形的早期线索已非常古老,但这一学科却还很年轻。比如关于动态系统和细胞自动机的大部分工作可以追溯到冯-诺依曼;但是,直到Mandelbrot 才如此清楚地将自然现象和人工现象中的混沌及分形同自相似性联系在一起。大家如果对此感兴趣,可进一步查阅有关资料。下面我们看一看分形的概念。 什么是分形呢?考虑到此文的意图,我们无意给出它严格的定义,就我们的目的而言,一个分形就是一个图象,但这个图象有一个特性,就是无穷自相似性。什么又是自相似呢?在自然和人工现象中,自相似性指的是整体的结构被反映在其中的每一部分中。比如海岸线,常举的例子,你看它10公里的图象(曲线),和一寸的景象(曲线)是相似的,这就是自相似性。 与分形有着千差万屡的关系的,就是混沌。混沌一词来源与希腊词汇,原意即“张开咀”,但是在社会意义上,它又老爱和无序联系在一起。解释分形和混沌的联系,要注意到分形是

分形维数算法

分形维数算法

分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法[26]。 (1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系 N~λ-D(2-21) 上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: L=Nλ~λ1-D(2-22) 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈1.3。这说明挪威的海岸线更曲折一些[27]。

分形插值算法和MATLAB实验

一,分形插值算法 ——分形图的递归算法1,分形的定义 分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。其定义有如下两种描述: 定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数 r D ,则称该集合为分形集,简称分形。 定义 2组成部分以某种方式与整体相似的形体叫分形。 对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。 根据自相似性的程度,分形可分为有规分形和无规分形。有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。本文主要研究有规分形。

2. 分形图的递归算法 2.1 三分康托集 1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。 其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。三分康托集的 Hausdorff 维数是0.6309。 图2.2 三分康托集的构造过程

分形算法与应用

《分形算法与应用》教学大纲 1 课程的基本描述 课程名称:分形算法与应用Algorithm and Application of Fractal 课程编号:5301A36 课程性质:专业课适用专业:计算机专业 教材选用:孙博文编著,《分形算法与程序设计》,科学出版社,2004.11 总学时:32学时理论学时:32学时 实验学时:0学时课程设计:无 学分:2学分开课学期:第七学期 前导课程:算法分析 后续课程:毕业设计 2 教学定位 2.1 能力培养目标 通过本课程的学习,培养学生的认知和理解能力、逻辑思维能力,以及算法设计与分析能力,程序设计和实现能力。一方面使学生掌握非规则图形的计算机绘制的基本方法,以便实现对不规则对象的算法设计。另一方面,学习本课程的过程也是进行复杂程序设计的训练过程。 2.2 课程的主要特点 本课程是一门重要的专业课,有理论性、设计性与实践性的特点。介绍分形的基本概念及算法设计的基本方法。它是介于计算机软件、程序设计和数学三门课程之间的核心课程。不仅为后续专业课提供了必要的知识基础,也为计算机、软件工程的专业人员提供了必要的技能训练。

2.3 教学定位 通过本课程的学习,使学生达到知识和技能两方面的目标: 1.知识方面:从算法设计及其实现这两个层次的相互关系的角度,系统地学习和掌握非规则图形的算法设计方法,了解并掌握分析、比较和选择不同非规则结构的设计方案,不同运算实现的原则和方法。 2.技能方面:系统地学习和掌握在不同非规则对象实现的不同算法及其设计思想,从中体会并掌握结构选择和算法设计的思维方式及技巧,使分析问题和解决问题的能力得到提高。 3 知识点与学时分配 3.1掌握分形的基本概念 分形简介 分形 分维 分形的测量 共2学时 3.2分形图生成算法之一 分形图的递归算法 Cantor三分集、Koch曲线、Sierpinski垫片、 Peano曲线、分形树等的递归算法。 共2学时 3.3分形图生成算法之二 文法构图算法 LS文法、单一规则的LS文法生成、多规则的LS文法生成、 随机LS文法生成。 共2学时 3.4分形图生成算法之三 迭代函数系统

《高频电子线路》课程设计指导书.doc

《高频电子线路》课程设计指导书 一、课程设计基本信息 核心课程名称(中文)高频电子线路核心课程名称(英文)High-frequency Electronic Circuits 课程设计名称高频电子线路课程设计 课程设计编号课程设计类型实物制作 相关辅助课程电路分析、电子线路(线性部分) 教材及实验指导书教材《电子线路(非线性部分)》,谢嘉奎,高等教育出版 课程设计时间:第五学期18 周 面向专业电子信息科学与技术 二、课程设计的目的 《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。通过设计,加深对调幅的理解,学会电路的调整;进一步培养学生的动手能力 三、主要仪器设备 序号实验项目名称仪器设备名称仪器设备编号 1调幅收音机设计高频信号发生器、数字示波器、稳压电源 四、课程设计的内容与要求 1、内容:根据所学知识,设计一超外差调幅收音机电路,选择合适的元器件,进行安装和调试电路;应能接收正常广播,且接收的广播节目不少于3套° 序 号 名称目的方式场所要求

1调幅收音机设计加深对调幅的理解,学会 电路的调整;进一步培养 学生的动手能力 实物制作 通信学 院 2、要求 1设计电路图; 2供电电压:直流3V 3 接收频段:535kHz ~ 1605kHz; 4输出功率:P o> 1W。 5为满足偷出功率要求,采用两级放大电路; 6采用互补推挽功率放大器作为输出级。 五、考核与报告 考核内容:1实际操作:包括电路设计、安装、焊接及调试 2设计报告:包括原理、电路图、元器件的选择 成绩评定:实际操作和设计报告各占50%o 六、主要参考文献 1、《电子线路(非线性部分)》,谢嘉奎,高等教育出版社 2、《实用电子电路手册》,孙肖子,高等教育出版社 3、《电子技术技能训练》,张大彪,电子工业出版社七、课程设计报告 1、报告内容 目的、原理、电路图、安装注意事项、调试过程及结果。 2、版面格式 (1)A4纸打印,上、下、左、右边距为2. 5cm,段落间距0,行间距1. 5倍; (2)标题使用四号黑体、居中,正文使用小四号宋体; 一级标题:小四号黑体(如:1、2、3……);

分形之Julia集及其算法实现

成绩:课程名称:智能信息处理概论 分形之Julia集及其算法实现 摘要:本文从自然界的几何现象引出分形的概念,再从其定义、几何特征和分形维的计算这三个方面来加以介绍。以Julia集和Mandelbort集为例来具体描述分形。本文主要从Julia集的特点和算法实现来描述分形以及其实现的方法。 关键词:分形、分数维、Julia集、Mandelbort集、算法实现 引言 大自然是个很伟大的造物者,它留给我们一大笔美丽景观:蜿蜒曲折的海岸线、起伏不定的山脉,变幻无常的浮云,粗糙不堪的断面,袅袅上升的烟柱,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星……那么,我们又能从这些美妙的自然现象中得到什么有趣的结论呢? 正文 分形概述 分形的英文单词为fractal,是由美籍法国数学家曼德勃罗(Benoit Mandelbrot)创造出来的。其取自拉丁文词frangere(破碎、产生无规则碎片)之头,撷英文之尾所合成,本意是不规则的、破碎的、分数的。他曾说:分形就是通过将光滑的形状弄成多个小块,反复的碎弄。1975年,曼德勃罗出版了他的法文专著《分形对象:形、机遇与维数》,标志着分形理论正式诞生。【1】 两种定义 其一:具有自相似性结构的叫做分形; 其二:数学定义:豪斯道夫维Df>=拓扑维Dt。 若一有界集合,包含N个不相重叠的子集,当其放大或缩小r倍后,仍与原集合叠合,则称为自相似集合。自相似集合是分形集。具有相似性的系统叫做分形。 当放大或缩小的倍数r不是一个常数,而必须是r(r1,r2,….)的各种不同放大倍数去放大或缩小各子集,才能与原集合重合时,称为自仿射集合。具有自仿射性的系统叫做分形。【2】 特征 1.自相似性:局部与整体的相似,是局部到整体在各个方向上的等比例变换的结果; 2.自仿射性:是自相似性的一种拓展,是局部到整体在不同方向上的不等比例变换的结果; 3.精细结构:即使对该分形图放大无穷多倍,还是能看到与整体相似的结构,表现出无休止的重复; 4.分形集无法用传统几何语言来描述,它不是某些简单方程的解集,也不是满足某些条件的点的轨 迹; 5.分形集一般可以用简单的方法定义和产生,如递归、迭代;分形其实是由一些简单的图形,经过 递归或者迭代产生的复杂、精细的结构; 6.无确定的标度且具有分数维数。【3】

分形几何的数学基础

课程名称(中文):分形几何的数学基础 课程名称(英文):Mathematical foundation of Fractal geometry 一)课程目的和任务: 分形几何的概念是由B.Mandelbrot 1975年首先提出的,数十年来它已迅速发展成为一门新兴的数学分支,它的应用几乎涉及到自然科学的各个领域。本课程为分形几何研究方向研究生的专业必修课程。主要内容包括:抽象空间,拓扑空间及度量空间中的测度理论基础、分形的(Hausdorff,packing及box-counting)维数理论及其计算技巧、分形的局部结构、分形的射影及分形的乘积等。其目的是使学生基本理解并掌握分形几何学基本概貌和基本研究方法及技巧,从而使他们能够阅读并理解本专业的文献资料。 二)预备知识:测度论,概率论 三)教材及参考书目: 教材:分形几何――数学基础及其应用肯尼思.法尔科内著东北大学出版社 参考书目:1)Rogers C.A. Hausdorff measures, Cambridge University Press, Cambridge, 1970. 2)文志英,分形几何的数学基础,上海科技教育出版社,上海,2000. 3)周作领,瞿成勤,朱智伟,自相似集的结构---Hausdorff测度与上凸密度(第二版),科学出版社,2010。 四)讲授大纲(中英文) 第一章数学基础 1)集合论基础 2)函数和极限 3)测度和质量分布 4)有关概率论的注记 第二章豪斯道夫测度和维数 1)豪斯道夫测度 2)豪斯道夫维数 3)豪斯道夫维数的计算――简单的例子 4)豪斯道夫维数的等价定义 5)维数的更精细定义 第三章维数的其它定义 1)计盒维数 2)计盒维数的性质与问题 3)修改的计盒维数 4)填充测度与维数 5)维数的一些其它定义 第四章计算维数的技巧 1)基本方法 2)有限测度子集 3)位势理论方法 4)傅立叶变换法 第五章分形的局部结构

分形图程序

(1)Koch曲线程序koch.m function koch(a1,b1,a2,b2,n) %koch(0,0,9,0,3) %a1,b1,a2,b2为初始线段两端点坐标,n为迭代次数 a1=0;b1=0;a2=9;b2=0;n=3; %第i-1次迭代时由各条线段产生的新四条线段的五点横、纵坐标存储在数组A、B中 [A,B]=sub_koch1(a1,b1,a2,b2); for i=1:n for j=1:length(A)/5; w=sub_koch2(A(1+5*(j-1):5*j),B(1+5*(j-1):5*j)); for k=1:4 [AA(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5),BB(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5)]=sub_koch1(w(k,1),w(k,2),w(k,3),w(k,4)); end end A=AA; B=BB; end plot(A,B) hold on axis equal %由以(ax,ay),(bx,by)为端点的线段生成新的中间三点坐标并把这五点横、纵坐标依次分别存%储在数组A,B中 function [A,B]=sub_koch1(ax,ay,bx,by) cx=ax+(bx-ax)/3; cy=ay+(by-ay)/3; ex=bx-(bx-ax)/3;

ey=by-(by-ay)/3; L=sqrt((ex-cx).^2+(ey-cy).^2); alpha=atan((ey-cy)./(ex-cx)); if (ex-cx)<0 alpha=alpha+pi; end dx=cx+cos(alpha+pi/3)*L; dy=cy+sin(alpha+pi/3)*L; A=[ax,cx,dx,ex,bx]; B=[ay,cy,dy,ey,by]; %把由函数sub_koch1生成的五点横、纵坐标A,B顺次划分为四组,分别对应四条折线段中 %每条线段两端点的坐标,并依次分别存储在4*4阶矩阵k中,k中第i(i=1,2,3,4)行数字代表第%i条线段两端点的坐标 function w=sub_koch2(A,B) a11=A(1);b11=B(1); a12=A(2);b12=B(2); a21=A(2);b21=B(2); a22=A(3);b22=B(3); a31=A(3);b31=B(3); a32=A(4);b32=B(4); a41=A(4);b41=B(4); a42=A(5);b42=B(5); w=[a11,b11,a12,b12;a21,b21,a22,b22;a31,b31,a32,b32;a41,b41,a42,b42];

分形几何与斐波那契数列的对比

摘 要 分形是美籍法国应用数学家蒙德布罗特所提出的,它和英文中的 fracture(断裂)和fraction (分数)有一定联系,体现出蒙德布罗特创立这 个新的几何思想。分形几何作为一门新兴的交义学科,正在被越来越多的人 所认识和学习。据美国科学家情报所调查,八十年代,全世界有1257种重要 学术刊物所发表的论文中,有37.5%与分形有关。美国著名的物理学家Wheeler 说:“可以相信,明天谁不熟悉分形,谁就不能被认为是科学上的文化人”】16【。 传统的欧式几何主要研究对象是规则图形和光滑曲线,对自然景物的描述却 显得无能为力。而分形几何的创立,就是用来描述那些欧式几何无法描述的 几何现象和事物的,被誉为“大自然本身的几何学”,使自然景物的描绘得以 实现,这也是分形几何得到高度重视的原因之一。 斐波那契数列产生于一个关于兔子繁殖后代的问题:某人有一对兔子饲 养在围墙中,如果它们每个月生一对兔子,且新生的兔子在第二个月后也是 每个月生一对兔子,问一年后围墙中共有多少对兔子?斐波那契数列从问世 到现在,不断显示出它在数学理论和应用上的重要作用。如今,斐波那契数 列渗透到了数学的各个分支中。同时,在自然界和现实生活中斐波那契数列 也得到了广泛的应用。如一些花草长出的枝条会出现斐波那契数列现象,大 多数植物的花的花瓣数都恰是斐波那契数列等等。 斐波那契数列又被称为是黄金分割数列,而黄金分割本身就是一种分形 的例子。二者都可以解决一些传统数学所不能解决的问题,所不同的是分形 几何是通过几何的角度来解决问题,而斐波那契数列则是通过代数的角度来 解决实际问题。 作为一门新兴的对现实生活有重要影响的两个定义,研究两者的对比关 系,探讨如何更好地运用这两个定义来解决现实中的一些实际问题,具有重要 意义。 关键字:斐波那契数列;分形几何;应用;对比 ABSTRACT Fractal is first put forward by French-American applied mathematician Mandelbrot. It relates to the words “fracture” and “fraction”, reflecting Mandelbrot’s opinion on creating the new definition. As a rising interdiscipline subject, Fractal is being understood and learned by more and more people. According to the survey of

分形理论在图像处理中的应用研究

软件导刊?2006?12月号TheResearchofALosslessCompressionMethodofHalftoneImage WangHui,OuyangYuan,YuXinbing (TheResearchInstituteforMathandRemoteSensingofGeologic,ChinaUniversityofGeosciences,Wuhan430074)Abstract:Thispaperproposesalosslessdatacompressionmethodforbi_levelimages,particularlyprintingimages.Inthismethod,whichiscalledDispersedReferenceCompression(DRC),thecodingschemeischangedaccordingtothecharacteristicoftheimagestobecompressedbyEvolvableHardware.ComputationsimulationsexperimentdemonstratethatDRCprovidescompressionrationsthatareupto30%betterthanthecurrentinternationalstandardforbi_levelimagecompression,andwhichisalsoprovedthismethodiseffective. Keywords:bi_levelimage;dispersedreferencecompression;evolvablehardware;compressionratio N930,2001. [6]ISO/IECJTC1/SC29/WG1N692,Nov.1997. [7]陈国良,王煦法,庄镇泉.遗传算法及其应用[M].北京:人民邮电出版社.1996.[8]潘正君,康立山,陈毓屏.演化计算[M].北京:清华大学出版社&广西科学技术出版社,2000.(责任编辑:杜能钢) 分形理论在图像处理中的应用研究 李增华,于炳飞 (中国地质大学资源学院,湖北武汉430074) 摘要:分形理论是现代非线性科学中的一个重要分支,是科学研究中一种重要的数学工具和手段。介绍了 分形理论的基本概念,给出了分形理论的重要参数分形维数的常见定义和计算方法。重点介绍了分形理论在图像处理领域的应用情况。最后,展望了分形理论的应用前景及其发展方向。 关键词:分形理论;分形维数;图像处理;应用 中图分类号:TP302.04文献标识码:A文章编号:1672-7800(2006)12-0021-03 0前言 自从Mandlebrot于上世纪60年代提出分形理论,其作为一种新的概念和方法,就被广泛应用于图像压缩、图像生成、纹理分割以及其它生物物理和社会科学中,并取得了很好的效果。本文将介绍分形理论及其在图像处理中的应用,以此抛砖引玉,促进图像处理及其它学科中分形现象的研究。1分形理论1.1分形的提出1967年BenoitB.Mandelbrot在其论文《英国的海岸线有多长:统计自相似性与分数维数》中首次创造性地阐述了分形 理论。Mandelbrot在研究英国海岸线的复 杂边界时发现,不同比例的地图上会测出 不同的海岸线长度,这正是欧几里德几何 无法解释的。在研究中,他将测量长度与 放大比例(尺度)分别取对数,所对应的二 维坐标点存在一种线性关系,此线性关系 可用一个定量参数一称分维数来描述。由 此,Mandelbrot进一步将其发展成分形几何理论,并指出作为分形应具有3个要素:形状、机遇与维数。分形几何理论可以产生许多分形集 图形和曲线,如Mandelbrot集、Cantor集、Koch曲线、Sierpinski地毯等,还可描述复杂对象的几何特性。与欧氏几何比较,分形几何主要有以下特点:①描述对象虽然很复杂、不规则,但不同尺度上有规则性或相似性;②欧氏几何具有标度,理想分形具有无限的几何标度,而无特征长度;③欧氏几何描述特征以整数维,而具有分形的复杂曲线,其分维数是大于1的非整 软件技术研究 21

分形几何与分形艺术

分形几何与分形艺术 Revised as of 23 November 2020

分形几何与分形艺术 作者: 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特()于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

数学实验之分形图的绘制

钦州学院数学与计算机科学学院 数学实验报告 专业 : 数学与应用数学班级姓名:学号: 实验完成日期 :2010 年 11 月 1 日,第 10 周,星期一 成绩等级(五级分制)评阅教师评阅日期年月日数学实验报告填写要求:思路清晰,中间结果和最终结果真实;字迹工整,报告完整。[实验题目及内容] 实验题目:分形图形的绘制 实验内容:利用二叉树的画法对生成元带参数进行迭代绘制分形图。 [问题描述](用自己组织的相关数学语言重述现实问题;注意对约定的条件作说明) 分形图是由一个简单的枝杈不断向周围延伸增加枝干而成,由简单元素生成整体,其中包含有旋转、带参数深层迭代等步骤,对生成元的张开角度和线段长度也有所控制才能绘制出多彩的图形,所以就要设计几个能控制生成图的角度的圆,随时改动分形图的伸张。 [模型建立或思路分析](建立合理,可解释的数学模型,通过公式、表格或图形直观明确地描述模型的结构;无法通过建立模型解决的,给出解题的思路及办法。) 整个分形图就由几个简单的枝杈进行带参数深层迭代而成,所以先做一个作为整棵树的树主干,做线段AB,以一个B端点作为旋转中心,做两个能控制角度旋转的圆,以圆上所选的角度做适当旋转将线段AB及端点A向上旋转得到两条线段,将得到的线段进行缩放到原来的三分之二,三条线段就组成一个树杈,再继续做另外两个圆选好角度将由线段AB旋转得到的两条线段再向上旋转得到另两条线段,将得到的线段进行缩放到原来的一半。新建参数n=1,对AB两点和参数n进行深度迭代,使得旋转得到的线段的起始点对应

线段AB的起始点,改变n值,即可得到一棵参天大树,即分形图完成。 [实验结果](通过数学表达式、列表或图形图像的方式显示实验结果。) [结果分析及结论](对实验结果进行定量分析、合理性分析或误差分析;对所讨论的问题重新认识或提出相关类似问题的拓延;给出自己的意见和合理建议。) 得出的分形图伸张程度和倾斜程度都可以由原先做出的角度控制,改变圆上的角度的大小就可以改变树的弯曲倾斜程度,改变三层基层线段的粗细和颜色可以让分形图更形象,分形图的迭代情况有参数n控制,改变n值增加迭代次数,让树的枝丫伸展使得分形图更多彩。也可以改变生成元的构成,可以在基层增加枝干,进行深层迭代后得出不同形象的分形图。 [求解方法或解题步骤](针对所建模型或解题思路,给出具体的求解方法或解题步骤。对通过编程解决的问题,画出流程图,给出细节部分的算法,给出相关软件的代码;其他方法解决的,给出详细的解题步骤。)

分形算法及C++实现

分形算法及C++实现 分形简介 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 例如,首先画一个等边三角形,把边长为原来三角形边长的三分之一的小等边三角形选放在原来三角形的三条边上,由此得到一个六角星;再将这个六角星的每个角上的小等边三角形按上述同样方法变成一个小六角星……如此一直进行下去,就得到了雪花的形状。 2.分形中的迭代函数系统 相似变换是指在各个方向上变换的比率必须相同的一种比例变换;仿射变换是指在不同的方向上变换的比率可以不同的一种比例变换。 仿射变换的数学表达式为:

其中,a,b,c,d,e,f是仿射变换系数。 对于比较复杂的图形,可能需要多个不同的仿射变换来实现,而且,每个仿射变换被调用的概率不一定相同,所以引进一个参数概率p。a,b,c,d,e,f,p 就构成了一个IFS码。 3.分形中计算机模拟算法 递归算法。 字符串替换算法。 迭代函数系统算法。 逃逸时间算法。 4.使用迭代函数系统算法对一棵树的C++实现程序 fractal.h文件: #ifndef _FRACTAL_H #define _FRACTAL_H #include #include class CFractal { private: float m[7][7]; float a; float b; float c;

分形几何与分形艺术

我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就

相关文档
最新文档