排列组合(学生)
六年级奥数-排列组合(学生版)

第十九讲排列组合一、排列问题二、排列数三、组合问题四、组合数的重要性质五、插板法六、使用插板法一般有如下三种类型:1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。
5.根据不同题目灵活运用计数方法进行计数。
例1:小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。
例2:用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?例3:用1、2、3、4、5这五个数字,不许重复,位数不限,能写出多少个3的倍数?例4:某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?例5:两对三胞胎喜相逢,他们围坐在桌子旁,要求每个人都不与自己的同胞兄妹相邻,(同一位置上坐不同的人算不同的坐法),那么共有多少种不同的坐法?例6:一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?例7:一个六位数能被11整除,它的各位数字非零且互不相同的.将这个六位数的6个数字重新排列,最少还能排出多少个能被11整除的六位数?例8:已知在由甲、乙、丙、丁、戊共5名同学进行的手工制作比赛中,决出了第一至第五名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从这个回答分析,5人的名次排列共有多少种不同的情况?例9:4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法:⑴甲不在中间也不在两端;⑵甲、乙两人必须排在两端;⑶男、女生分别排在一起;⑷男女相间.例10:一台晚会上有6个演唱节目和4个舞蹈节目.求:⑴当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?⑵当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序?A1.用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数?2.用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数?3.用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?4.五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目。
高二数学-排列组合-学生

例7、用5种不同的颜色给如下的四个区域涂色,每部分涂一种颜色,相邻部分涂不同的颜色,求共有多少种涂法?
变式练习:如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着
色方法共有种。
(以数字作答)
【备选例题】
例1、有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?
例2、第20届世界杯足球赛于2014年夏季在巴西举办,五大洲共有32支球队有幸参加,他们先分成8个小组循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三、四名,问这次世界杯总共将进行多少场比赛?
注:在做排列组合的相关问题时,需要灵活运用加法原理和乘法原理,在分析问题时,一般首先要确定能否一步完成,否则可以采取分步(即乘法原理)。
另外还要注意解题时先选择后排序的基本原则的,这也是排列组合问题的一般原则。
另外解题时要多尝试用不同的方法解决问题,提高解题的准确率。
【巩固练习一】
1
2
3
4
5。
北师大版高中数学选修2-3第2讲:排列组合(学生版)

北师大版高中数学排列组合__________________________________________________________________________________ __________________________________________________________________________________1.理解排列组合的概念.2.能利用计数原理推导排列公式、组合公式.3.熟练掌握排列、组合的性质.4.能解决简单的实际问题.1.排列与组合的概念:(1)排列:_____________________________________________________________________叫做从n个不同元素中取出m个元素的一个排列.注意:○1如无特别说明,取出的m个元素都是不重复的.○2排列的定义中包括两个基本内容,一是“取出元素”,二是“按照一定的顺序排列”.○3从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列.○4在定义中规定m≤n,如果m=n,称作全排列.○5在定义中“一定顺序”就是说与位置有关.○6如何判断一个具体问题是不是排列问题,就要看从n个不同元素中取出m个元素后,再安排这m个元素时是有顺序还是无顺序,有顺序就是排列,无顺序就不是排列.(2)组合:___________________________________________________________________叫做从n 个不同元素中取出m个不同元素的一个组合.注意:○1如果两个组合中的元素完全相同,不管它们的顺序如何,都是相同的组合,组合的定义中包含两个基本内容:一是“取出元素”;二是“并成一组”,“并成一组”即表示与顺序无关.○2当两个组合中的元素不完全相同(即使只有一个元素不同),就是不同的组合.○3组合与排列问题的共同点,都要“从n个不同元素中,任取m(m≤n)个不同元素”;不同点:前者是“不管顺序并成一组”,而后者要“按照一定顺序排成一列”.○4根据定义区分排列问题、组合问题.2.排列数与组合数:(1)排列数的定义:_______________________________________________________________叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(2)组合数的定义:______________________________________________________________叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.3.排列数公式与组合数公式:(1)排列数公式:_________________________________(2)全排列、阶乘、排列数公式的阶乘表示.○1全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. ○2阶乘:自然数1到n 的连乘积,叫做n 的阶乘,用n !表示,即!.n nA n = ○3由此排列数公式(1)(2)(1)m n A n n n n m =---+(1)(2)(1)()21()21n n n n m n m n m ⋅-⋅-⋅⋅-+⋅-⋅⋅⋅=-⋅⋅⋅!.()!n n m =- 所以!.()!m n n A n m =- (3)组合数公式:________________________________(4)组合数的两个性质:性质1:.m n m n nC C -= 性质2:11.m mm n n n C C C -+=+类型一.排列的定义例1:判断下列问题是不是排列,为什么?(1)从甲、乙、丙三名同学中选出两名参加一项活动,其中一名同学参加上午的活动,另一名同学参加下午的活动.(2)从甲、乙、丙三名同学中选出两名同学参加一项活动.练习1:判断下列问题是不是排列,为什么?(1)从2、3、4这三个数字中取出两个,一个为幂底数,一个为幂指数.(2)集合M ={1,2,…,9}中,任取相异的两个元素作为a ,b ,可以得到多少个焦点在x 轴上的椭圆方程22221x y a b +=和多少个焦点在x 轴上的双曲线方程2222 1.x y a b-=类型二.组合的定义例2:判断下列问题是组合问题还是排列问题.(1)设集合A ={a ,b ,c ,d ,e },则集合A 的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?练习1:判断下列问题是组合问题还是排列问题.(1)3人去干5种不同的工作,每人干一种,有多少种分工方法?(2)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?类型三.排列数与组合数例3:计算下列各式.(1)57;A (2)212;A (3)77.A练习1:乘积m (m +1)(m +2)…(m +20)可表示为( )A.2m AB.21m AC.2020m A +D.2120m A + 例4:计算98100C练习2:计算972959898982C C C ++类型四.排列问题例5:3个女生和5个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?练习1:3个女生和5个男生排成一排.(1)如果两端都不能排女生,可有多少种不同的排法?(2)如果两端不能都排女生,可有多少种不同的排法?类型五.组合问题例6:高中一年级8个班协商组成年级篮球队,共需10名队员,每个班至少要出1名,不同的组队方式有多少种?练习1:有、甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这,三项任务,不同的选法共有多少种?类型六.排列与组合综合问题例7:某校乒乓球队有男运动员10人和女运动员9人,选出男女运动员各3名参加三场混合双打比赛(每名运动员只限参加一场比赛),共有多少种不同参赛方法?练习1:在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有()A.36个B.24个C.18个D.6个1.89×90×91×…×100可表示为()A.10100AB.11100AC.12100AD.13100A 2.已知123934,n n A A --=则n 等于( )A.5B.6C.7D.83.将6名学生排成两排,每排3人,则不同的排法种数有( )A.36B.120C.720D.1404.6名同学排成一排,其中甲、乙两人排在一起的不同排法有( )A.720种B.360种C.240种D.120种5.若266,x C C =则x 的值是( )A.2B.4C.4或2D.0 6.1171010r r C C +-+可能的值的个数为( )A.1个B.2个C.3个D.无数个7.某校一年级有5个班,二年级有7个班,三年级有4个班,分年级举行班与班之间的篮球单循环赛,共需进行比赛的场数是( )A.222574C C C ++B.222574C C C C.222574A A A ++ D.216C 8.有3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法有( )A.90种B.180种C.270种D.540种_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.某乒乓球队共有男女队员18人,现从中选出男、女队员各1人组成一对双打组合,由于在男队员中有2人主攻单打项目,不参与双打组合,这样一共有64种组合方式,则乒乓球队中男队员的人数为( )A.10人B.8人C.6人D.12人2.将4个不同的小球随意放入3个不同的盒子,使每个盒子都不空的放法种数是( )A.1334A AB.2343C AC.3242C AD.132442C C C 3.有3名男生和5名女生照相,如果男生不排在是左边且不相邻,则不同的排法种数为( )A.3538A AB.5354A AC.5355A AD.5356A A 4.8位同学,每位相互赠照片一张,则总共要赠________张照片.5.5名学生和5名老师站一排,其中学生不相邻的站法有________种.6.由0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于百位数字的数共有________个.7.有10个三好学生的名额,分配给高三年级6个班,每班至少一个名额,共有________种不同的分配方案.8.从10名学生中选出5人参加一个会议,其中甲、乙两人有且仅有1人参加,则选法种数为________.能力提升1.(2015四川卷)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )A.144个B.120个C.96个D.72个 2.(2014四川卷)方程22ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A.60条B.62条C.71条D.80条3.(2014辽宁卷)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .244.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )A.56个B.57个C.58个D.60个5.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种.(用数字作答)6.(2014北京卷)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有__________种.7.(2015上海卷)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为_________(结果用数值表示).8.从数字0,1,3,5,7中取出不同的三个数作系数,可以组成多少个不同的一元二次方程ax 2+bx +c =0?其中有实根的方程有多少个?。
排列组合学生版

排列组合一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数1.(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?2. 把6名实习生分配到7个车间实习共有多少种不同方法?3.8名同学争夺3项冠军,获得冠军的可能性有( )A 、38B 、83C 、38AD 、38C3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为4.某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有2.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 188C. 216D. 963. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.4.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为5.4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?6..四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种7.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有( )8.7名身高互不相等的学生,分别按下列要求排列,各有多少种不同的排法?(1)7人站成一排,要求较高的3个学生站在一起;(2)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减;(3)任取6名学生,排成二排三列,使每一列的前排学生比后排学生矮.9.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(1)教师必须坐在中间;(2)教师不能坐在两端,但要坐在一起;(3)教师不能坐在两端,且不能相邻.三.不相邻问题插空策略1.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为3.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是4.书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有种不同的插法(具体数字作答)5. 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是6.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
六年级奥数专题 排列组合综合(学生版)

排列组合综合,掌握几种基本的排列组合相关问题的方法:特殊位置特殊元素优先分析法、捆绑法、插空法、隔板法我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法 ,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.加法原理无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理.加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法 ,…,第k类方法中有mk种不同的做法,则完成这件事共有N= m1 + m2 +…+mk 种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.特殊位置特殊元素优先分析法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
捆绑法在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
隔板法隔板法就是在n个元素间插入(b-1)个板,即把n个元素分成b组的方法。
【题目】①有5个人排成一排照相,有多少种排法?②5个人排成两排照相,前排2人,后排3人,共有多少种排法?③5个人排成一排照相,如果某人必须站在中间,有多少种排法?④5个人排成一排照相,某人必须站在两头,共有多少种排法【试题来源】(1)(迎春杯决赛)(2)(兴趣杯少年数学邀请赛决赛)【题目】(1)如右图(1)是中国象棋盘,如果双方准备各放一个棋子,要求它们不在同一行,也不在同一列,那么总共有多少种不同的放置方法?(2)在右图(2)中放四个棋子“兵”,使得每一列有一个“兵”,每一行至多有一个“兵”.有多少种不同的放法?【试题来源】【题目】大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?【试题来源】【题目】把13拆成三个数的和,请问有几种拆法?【试题来源】【题目】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数?【试题来源】【题目】用1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满足要求的三位数.【试题来源】【题目】数3可以用4种方法表示为1个或几个正整数的和,如3,1+2,2+1,1+1+1。
计数原理[1].02排列组合(A级).学生版
![计数原理[1].02排列组合(A级).学生版](https://img.taocdn.com/s3/m/f5f10c1bee06eff9aef80766.png)
一、 排列与组合1. 排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.2. 组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()!m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤.组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)3. 排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法. 二、 排列组合一些常用方法 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到知识内容排列组合分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置; ③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有: ①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面. ⑦对于一些排列数与组合数的问题,需要构造模型.【例1】 给出下列问题(1)从a b c d ,,,四名学生中选出2名,完成一件工作有多少种不同的选法? (2)从a b c d ,,,四名学生中选2名学生分别完成2件不同的工作,有多少种不同的选法?(3)a b c d ,,,四支足球队之间进行单循环赛,共需多少场? (4)a b c d ,,,四支足球队争夺比赛的冠亚军,有多少种不同结果? (5)某人射击8枪,命中4枪,且命中4枪均为2枪连中,有多少种不同结果? (4)某人射击8枪,命中4枪,且命中4枪均为3枪连中,有多少种不同结果?1. 简单问题直接法【例2】 从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男女医生都有,则不同的组队方案共有( ) A .70B .80C .100D .140【例3】 课外活动小组共13人,其中男生8人,女生5人,并且男女各指派一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法? (1)只选一名女生; (2)两名队长当选; (3)至少有一名队长当选; (4)至多有两名女生当选;例题精讲【例4】从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是()A.12 B.24 C.36 D.48【例5】有四个不同的盒子,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒子内有2个球,有多少种放法?(4)恰有两个盒子不放球,有多少种放法?2.至少问题间接法【例6】某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有___________种。
五年级奥数.计数综合.排列组合(ABC级).学生版

分列组合常识构造一、分列问题在现实生涯中经常会碰到如许的问题,就是要把一些事物排在一路,构成一列,盘算有若干种排法,就是分列问题.在排的进程中,不但与介入分列的事物有关,并且与各事物地点的先后次序有关.一般地,从个不合的元素中掏出()个元素,按照必定的次序排成一列,叫做从个不合元素中掏出个元素的一个分列.依据分列的界说,两个分列雷同,指的是两个分列的元素完整雷同,并且元素的分列次序也雷同.假如两个分列中,元素不完整雷同,它们是不合的分列;假如两个分列中,固然元素完整雷同,但元素的分列次序不合,它们也是不合的分列.分列的根本问题是盘算分列的总个数.从个不合的元素中掏出()个元素的所有分列的个数,叫做从个不合的元素的分列中掏出个元素的分列数,我们把它记做.依据分列的界说,做一个元素的分列由个步调完成:步调:从个不合的元素中任取一个元素排在第一位,有种办法;步调:从剩下的()个元素中任取一个元素排在第二位,有()种办法;……步调:从剩下的个元素中任取一个元素排在第个地位,有(种)办法;由乘法道理,从个不合元素中掏出个元素的分列数是,即,这里,,且等号右边从开端,后面每个因数比前一个因数小,共有个因数相乘.二、分列数一般地,对于的情形,分列数公式变成.暗示从个不合元素中取个元素排成一列所构成分列的分列数.这种个分列全体掏出的分列,叫做个不合元素的全分列.式子右边是从开端,后面每一个因数比前一个因数小,一向乘到的乘积,记为,读做的阶乘,则还可以写为:,个中.在分列问题中,有时刻会请求某些物体或元素必须相邻;求某些物体必须相邻的办法数量,可以将这些物体当作一个整体绑缚在一路进行盘算.三、组合问题日常生涯中有许多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同窗中选出几人介入某项运动等等.这种“分组”问题,就是我们将要评论辩论的组合问题,这里,我们将侧重研讨有若干种分组办法的问题.一般地,从个不合元素中掏出个()元素构成一组不计较组内各元素的次序,叫做从个不合元素中掏出个元素的一个组合.从分列和组合的界说可以知道,分列与元素的次序有关,而组合与次序无关.假如两个组合中的元素完整雷同,那么不管元素的次序若何,都是雷同的组合,只有当两个组合中的元素不完整雷同时,才是不合的组合.从个不合元素中掏出个元素()的所有组合的个数,叫做从个不合元素中掏出个不合元素的组合数.记作.一般地,求从个不合元素中掏出的个元素的分列数可分成以下两步:第一步:从个不合元素中掏出个元素构成一组,共有种办法;第二步:将每一个组合中的个元素进行全分列,共有种排法.依据乘法道理,得到.是以,组合数.这个公式就是组合数公式.四、组合数的主要性质一般地,组合数有下面的主要性质:()这个公式的直不雅意义是:暗示从个元素中掏出个元素构成一组的所有分组办法.暗示从个元素中掏出()个元素构成一组的所有分组办法.显然,从个元素中选出个元素的分组办法恰是从个元素中选个元素剩下的()个元素的分组办法.例如,从人中选人开会的办法和从人中选出人不去开会的办法是一样多的,即.划定,.五、插板法一般用来解决求分化必定命量的无不同物体的办法的总数,应用插板法一般有三个请求:①所要分化的物体一般是雷同的:②所要分化的物体必须全体分完:③介入分物体的组至少都分到1个物体,不克不及有没分到物体的组消失.在有些标题中,已知前提与上面的三个请求其实不必定完整相符,对此应该对已知前提进行恰当的变形,使得它与一般的请求相符,再实用插板法.六、应用插板法一般有如下三种类型:⑴小我分个器械,请求每小我至少有一个.这个时刻我们只须要把所有的器械排成一排,在个中的个闲暇中放上个插板,所以分法的数量为.⑵小我分个器械,请求每小我至少有个.这个时刻,我们先发给每小我个,还剩下个器械,这个时刻,我们把剩下的器械按照类型⑴来处理就可以了.所以分法的数量为.⑶小我分个器械,许可有人没有分到.这个时刻,我们无妨先借来个器械,每小我多发1个,如许就和类型⑴一样了,不过这时刻物品总数变成了个,是以分法的数量为.例题精讲【例 1】4个男生2个女生6人站成一排合影留念,有若干种排法?假如请求2个女生紧挨着排在正中央有若干种不合的排法?【巩固】4男2女6小我站成一排合影留念,请求2个女的紧挨着有若干种不合的排法?【例 2】将A.B.C.D.E.F.G七位同窗在操场排成一列,个中学生B与C必须相邻.请问共有若干种不合的分列办法?【巩固】6名小同伙站成一排,若两人必须相邻,一共有若干种不合的站法?若两人不克不及相邻,一共有若干种不合的站法?【例 3】书架上有4本不合的漫画书,5本不合的童话书,3本不合的故事书,全体竖起排成一排,假如同类型的书不要离开,一共有若干种排法?假如只请求童话书和漫画书不要离开有若干种排法?【巩固】四年级三班举办六一儿童节联欢运动.全部运动由2个跳舞.2个演唱和3个小品构成.请问:假如请求同类型的节目持续表演,那么共有若干种不合的出场次序?【例 4】8人围圆桌会餐,甲.乙两人必须相邻,而乙.丙两人不得相邻,有几种坐法?【巩固】a,b,c,d,e五小我排成一排,a与b不相邻,共有若干种不合的排法?【例 5】一台晚会上有个演唱节目和个跳舞节目.求:⑴当个跳舞节目要排在一路时,有若干不合的安插节目标次序?⑵当请求每个跳舞节目之间至少安插个演唱节目时,一共有若干不合的安插节目标次序?【巩固】由个不合的独唱节目和个不合的合唱节目构成一台晚会,请求随意率性两个合唱节目不相邻,开端和最后一个节目必须是合唱,则这台晚会节目标编排办法共有若干种?【例 6】有10粒糖,分三天吃完,天天至少吃一粒,共有若干种不合的吃法?【巩固】小红有10块糖,天天至少吃1块,7天吃完,她共有若干种不合的吃法?【巩固】有12块糖,小光要6天吃完,天天至少要吃一块,问共有种吃法.【例 7】10只无差此外橘子放到3个不合的盘子里,许可有的盘子空着.请问一共有若干种不合的放法?【巩固】将个雷同的苹果放到个不合的盘子里,许可有盘子空着.一共有种不合的放法.【例 8】把20个苹果分给3个小同伙,每人起码分3个,可以有若干种不合的分法?【巩固】三所黉舍组织一次联欢晚会,共表演14个节目,假如每校至少表演3个节目,那么这三所黉舍表演节目数的不合情形共有若干种?【例 9】(1)小明有10块糖,天天至少吃1块,8天吃完,共有若干种不合吃法?(2)小明有10块糖,天天至少吃1块,8天或8天之内吃完,共有若干种吃法?【巩固】有10粒糖,天天至少吃一粒,吃完为止,共有若干种不合的吃法?【例 10】马路上有编号为,,,…,的十只路灯,为勤俭用电又能看清路面,可以把个中的三只灯关失落,但又不克不及同时关失落相邻的两只,在两头的灯也不克不及关失落的情形下,求知足前提的关灯办法有若干种?【巩固】黉舍新建筑的一条道路上有盏路灯,为了节俭用电而又不影响正常的照明,可以熄灭个中盏灯,但两头的灯不克不及熄灭,也不克不及熄灭相邻的盏灯,那么熄灯的办法共有若干种?【例 11】在四位数中,列位数字之和是4的四位数有若干?【巩固】大于2000小于3000的四位数中数字和等于9的数共有若干个?【例 12】所有三位数中,与456相加产生进位的数有若干个?【巩固】从1到2004这2004个正整数中,共有几个数与四位数8866相加时,至少产生一次进位?教室检测【随练1】某小组有12个同窗,个中男少先队员有3人,女少先队员有人,全组同窗站成一排,请求女少先队员都排一路,而男少先队员不排在一路,如许的排法有若干种?【随练2】把7支完整雷同的铅笔分给甲.乙.丙3小我,每人至少1支,问有若干种办法?【随练3】在三位数中,至少消失一个6的偶数有若干个?家庭功课【作业1】将三盆同样的红花和四盆同样的黄花摆放成一排,请求三盆红花互不相邻,共有种不合的放法.【作业2】黉舍合唱团要从个班中填补名同窗,每个班至少名,共有若干种抽调办法?【作业3】能被3整除且至少有一个数字是6的四位数有个.【作业4】黉舍乒乓球队一共有4名男生和3名女生.某次比赛后他们站成一排拍照,请问:(1)假如请求男生不克不及相邻,一共有若干不合的站法?(2)假如请求女生都站在一路,一共有若干种不合的站法?【作业5】由0,1,2,3,4,5构成的没有反复数字的六位数中,百位不是2的奇数有个.【作业6】泊车站划出一排个泊车地位,今有辆不合的车须要停放,若请求残剩的个空车位连在一路,一共有若干种不合的泊车计划?教授教养反馈学生对本次课的评价○特殊知足○知足○一般家长看法及建议家长签字:。
2017.03.25 排列组合(学生版)

排 列 与 组 合【排列、组合问题的求解方法与技巧】(1)特殊元素优先安排。
(2) 正难则反,等价条件 (3)排列、组合混合问题先选后排。
(4)相邻问题捆绑处理。
(5)不相邻问题插空处理。
(6)定序问题排除法处理。
(7)分排问题直排处理。
(8)“小集团”排列问题先整体后局部。
(9) 合理分类与准确分步【例1排列问题】六个人按下列要求站成一排,分别有多少种不同的站法? ① 不站在两端; ②甲、乙必须相邻;② 、乙不相邻; ④甲、乙之间恰有两人; ⑤甲不站在左端,乙不站在右端; ⑥甲、乙、丙三人顺序已定。
【对应训练1】(1)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐数为___(2)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有______【例2组合问题】 (1)某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为_____(2)在30瓶饮料中,有3瓶已过了保质期。
从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为________(结果用最简分数表示)。
【对应训练2】(1)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有_____(2)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有________种。
【例3排列、组合的综合应用】(2015·四川卷)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有______个【对应训练3】从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为_____【例4】有5盆各不相同的菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花的不同摆放种数是_____【对应训练4】(1)在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有______种(2)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是_______【例5】7位身高均不等的同学排成一排照相,要求中间最高,依次往两端身高逐渐降低,共有________种排法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 高考冲刺复习之排列组合
基础练习
1.有3张参观券,要在5人中确定3人去参观,不同方法的种数是_____
2.要从5件不同的礼物中选出3件分送3位同学,不同的方法种数是____
3. 5名乘客在汽车上,之后有6个站点,那么5名乘客下车有几种不同的种数_______
4.有10名学生,他们相互之间都要握手,至少发生几次握手_________
5.一班火车有7个站点,总共要设几张票?如果当中新增三个站,那么要多设置几张票? 高考题型一:分堆抽人问题
1.1998年特大洪涝灾害,某某医院积极响应国家号召,派出医疗队进行救援,从6名男医生,5名女医生,10名护士中挑选出2名男医生,1名女医生,4名护士,总共有几种分法?
2.A 组中有5个人,B 组中有4个人,C 组中有6个人,从三组中各抽2名,总共6个人,分别派往5个不同的工作岗位,共有几种分法?
高考题型二:复杂的排队问题
1.捆绑法:
有7个人排队,A 、B 、C 三个人他们三人必须相邻,共有几种排法?
2.插空法
有7个人排队,A 、B 、C 三个人他们三人必须互不相邻,共有几种排法?
3.优先法
有7个人排队,A 、B 、C 三个人他们三人必须是A 排在B 前面,B 排在C 前面,是否相邻却无所谓,共有几种排法?
4.容斥法
6个人排队,甲不排头,乙不排尾有_________种排法。
高考题型三:解方程问题
1.若810n
n C C =,n=____________ 2..若方程8328
28-=x x C C 的解集为___________ {}9,4
3.有一群人进行握手,每个人都要和别人握一次,发生了45次握手,共有几人?
4. 245x x C -=
5. 33322210
1+-+-+=+x x x x x P C C
高考题型三:扑克牌问题
从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P (A ⋃B )=____(结果用最简分数表示)
解析:考查互斥事件概率公式 P (A ⋃B )=
1137525226+=。