4-2 材料的热学性能

合集下载

配位氢化物储氢材料 Mg( BH4 ) 2 的研究进展

配位氢化物储氢材料 Mg( BH4 ) 2 的研究进展

第29卷 第4期Vo l 29 No 4材 料 科 学 与 工 程 学 报Journal of M aterials Science &Engineering 总第132期Aug.2011文章编号:1673-2812(2011)04-0639-08配位氢化物储氢材料Mg(BH 4)2的研究进展陈君儿,熊智涛,吴国涛,褚海亮,陈 萍(中国科学院大连化学物理研究所,复合氢化物材料化学研究组,辽宁大连 116023)摘 要 M g (BH 4)2是一种新型配位氢化物储氢材料,因具有较高的质量储氢密度(14.8w t.%)和体积储氢密度(112g/L)而备受关注。

本文系统概述了近年来有关Mg (BH 4)2的诸多研究成果,主要包括Mg (BH 4)2合成,晶体结构解析及其储氢性能的表征研究。

在这些研究基础上,对该材料在储氢应用中可能涉及的动力学及热力学问题进行分析,同时预测该体系未来的研究方向和发展趋势。

关键词 储氢;硼氢化镁;热分解;晶体结构中图分类号:T K91 文献标识码:AReview on Hydrogen Storage in Mg(BH 4)2CHEN Jun -er,XIONG Zh-i tao,WU Guo -tao,CHU Ha-i liang,CHEN Ping(Dalian Institute of C hemical Physics,Chinese Academy of Science,Dalian 116023,C hina)Abstract M agnesium borohy dride M g (BH 4)2,having gravim etric and vo lum etric hydrog en densities of 14.9w t.%and 112g /L,respectively,is considered as one of the mo st promising materials fo r hydrogen storag e.Ex tensive inv estig ations have been paid on this com plex hy dride in the past few y ears.We summ ar ized resear ch prog resses on the sy nthesis,crystal structure and hydrog en storage perfo rmance of M g(BH 4)2in thispaper.Pending issues,such as kinetic barrier and reversibility o f hy drog en storage in M g (BH 4)2,w ere discussed,and further development of this sto rage m aterial w as sugg ested.Key words hydro gen stor ag e;m ag nesium bo rohydride;ther mal decomposition;cry stal structure收稿日期:2010-09-16;修订日期:2010-11-02基金项目:百人计划资助项目(KGC X2-YW -806)和中国科学院知识创新工程资助项目(KJCX2-YW -H 21)作者简介:陈君儿(1986-),女,浙江舟山人,硕士研究生,研究方向:储氢材料制备及其性能研究。

《材料物理性能》课后习题答案

《材料物理性能》课后习题答案

《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。

则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。

0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1 / 101-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。

解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。

我对材料科学四要素的认识

我对材料科学四要素的认识

我对材料科学四要素的认识武晓博材料科学是上世纪五十年代提出的,以研究和揭示固体材料性质规律为主的一门科学,与能源、信息并列为现代科学技术的三大支柱。

随着高技术的兴起,又把新材料与信息技术、生物技术并列作为新技术革命的重要标志。

如今,材料已成为国民经济建设、国防建设和人民群众生活的重要组成部分。

一般所说的材料,包括传统材料和各种新型材料。

材料科学的任务,就是研究材料的性质、使用性能、结构与成分、合成与加工这四者间的关系,因而将其称为材料科学的四个基本要素。

1、材料的性质。

材料的性质是功能特性和效用的描述符,是材料对电、磁、光、热、机械载荷的反应,包括力学性质、物理性质以及化学性质。

(1)力学性质。

包括强度、硬度、刚度、塑性、韧性等。

强度:材料抵抗外应力的能力;硬度:材料在表面上的小体积内抵抗变形或破裂的能力;刚度:外应力作用下材料抵抗弹性变形能力;塑性:外力作用下,材料发生不可逆的永久性变形而不破坏的能力;韧性:材料从塑性变形到断裂全过程中吸收能量的能力。

(2)物理性质。

包括电学性质、磁学性质、光学性质及热学性质等。

电学性质:主要包括材料的导电性、绝缘性及介电性等;磁学性质:主要包括材料的抗磁性、顺磁性及铁磁性等;光学性质:主要包括材料的光反射、光折射、光学损耗及光透性等;热学性质:主要包括材料的导热性、热膨胀、热容和熔化等。

(3)化学性质包括催化性质及防化性质等。

2、材料的性能。

在某种环境或条件作用下,为描述材料的行为或结果,按照特定的规范所获得的表征参量,称为材料的性能。

包括力学性能、(1)力学性能。

弹性表征:包括弹性极限、屈服强度、比例极限等;塑性表征:包括延伸率、断面收缩率、冲杯深度等;硬度表征:包括布氏硬度、洛氏硬度、维氏硬度等;刚度表征:包括弹性模量、杨氏模量、剪切模量等;疲劳强度表征:包括疲劳极限和疲劳寿命等;抗蠕变性表征:包括蠕变极限和持久强度等;韧性表征:包括断裂韧性和K IC和断裂韧性J IC等。

4金属的热性能

4金属的热性能
升高(或降低)1℃时,吸收(或放出)的 热量(Q)称为这种物质的热函(比热)。
③比热的表达式
c = ——Q—— m(T2-T1)
式中:T1 —— 初温(K),T2—— 末温(K) Q —— 从T1升高到T2所需的热量(能量)(J) Q>0时为吸热,Q<0时为放热 m —— 物体的质量(kg)
4. 热膨胀
分子动能:由于分子热运动而具有的能。 分子势能:由于分子间存在着相互作用而具有
的能。
b. 热量——任何物体(系统)都具有内能,可以通 过热传递与做功(摩擦生热就是指这个, 机械能转化为热能)来提高物体内能,而 通过热传递所产生的热能就称为热量。
用Q表示热量,热量的国际单位是焦耳(J), 但习惯上常用卡(cal)。
金属的导热性的高低用导热率(K)来表示 表达式为:
K 式中:
=
(1/3)λ
μ
C1N
μ — 电子无秩序运动的迁移率
C1 —电子热容
N— 单位体积中的电子数
λ— 电子的平均自由行程
N↑ 热能↑ K↑ μ ↑ 热能↑ K↑
②热导率与电导率的关系
将金属的热导率 K = (1/3)λ μ C1N
除以电导率
γ= ——Ne—2τ = Neμ m
方向无关而玻尔贴热Q与电流的方向有关,利用这一点可以将
这两种热分开。
玻尔贴热量Q 与两个金属的性质有关,与通过电流的时间τ和
电流强度I 成正比。
Q=πIτ 式中 π——玻尔贴系数
2. 玻尔贴效应的物理解释
电子在导体中运动形成电流。由于电子在不同的金属材料中
处于不同的能级,当它从高能级向低能级
A
运动时,便释放出多余的能量;相反,
§2-3 热性能

材料性能学课程教学大纲

材料性能学课程教学大纲

《材料性能学》课程教学大纲课程名称(英文):材料性能学(Properties of Materials)课程类型:学科基础课总学时: 72 理论学时: 60 实验(或上机)学时: 12学分:4.5适用对象:金属材料工程一、课程的性质、目的和任务本课程为金属材料工程专业的一门专业基础课,内容包括材料的力学性能和物理性能两大部分。

力学性能以金属材料为主,系统介绍材料的静载拉伸力学性能;其它载荷下的力学性能,包括扭转、弯曲、压缩、缺口、冲击及硬度等;断裂韧性;变动载荷下、环境条件下、高温条件下的力学性能;摩擦、磨损性能以及其它先进材料的力学性能等。

物理性能概括介绍常用物理性能如热学、电学、磁学等的基本参数及物理本质,各种影响因素,测试方法及应用。

通过本课程的学习,使学生掌握材料各种主要性能指标的宏观规律、物理本质及工程意义,了解影响材料性能的主要因素,了解材料性能测试的原理、方法和相关仪器设备,基本掌握改善或提高材料性能指标、充分发挥材料潜能的主要途径,初步具备合理的选材和设计,开发新型材料所必备的基础知识和基本技能。

在学习本课程之前,学生应学完物理化学、材料力学、材料科学基础、钢的热处理等课程。

二、课程基本要求根据课程的性质与任务,对本课程提出下列基本要求:1.要求学生在学习过程中打通与前期材料力学、材料科学基础等课程的联系,并注重建立与同期和后续其它专业课程之间联系以及在生产实际中的应用。

2.能够从各种机器零件最常见的服役条件和失效现象出发,了解不同失效现象的微观机理,掌握工程材料(金属材料为主)各种力学性能指标的宏观规律、物理本质、工程意义和测试方法,明确它们之间的相互关系,并能大致分析出各种内外因素对性能指标的影响。

3.掌握工程材料常用物理性能的基本概念及影响各种物性的因素,熟悉其测试方法及其分析方法,初步具备有合理选择物性分析方法,设计其实验方案的能力。

三、课程内容及学时分配总学时72,课堂教学60学时,实验12学时。

材料科学基础I 第四章 (凝固与结晶)

材料科学基础I  第四章  (凝固与结晶)

本章应掌握以下内容: 本章应掌握以下内容: 1. 金属凝固的过程和现象 2. 凝固和结晶的热力学条件 3. 几个重要概念:过冷度,临界晶核半径,临界形核功, 几个重要概念:过冷度,临界晶核半径,临界形核功, 形核率,均匀形核,非均匀形核, 形核率,均匀形核,非均匀形核,成分过冷 4. 冷却速度、过冷度对凝固过程和凝固组织的影响 冷却速度、 5. 液—固界面的结构及晶体生长形态 固界面的结构及晶体生长形态 6. 成分过冷对晶体生长形态的影响 7. 单相固溶体的长大 8. 两相共晶体的长大
三、近程有序(Short range order) 近程有序
由于有序原子集团的尺寸很小, 由于有序原子集团的尺寸很小,所以把液态金属结构的特点 概括为近程有序 温度降低,这些近程有序的原子集团( 近程有序。 概括为近程有序。温度降低,这些近程有序的原子集团(又称 晶胚Embryo)尺寸会增大;当具备结晶条件时,大于一定尺 为晶胚 )尺寸会增大;当具备结晶条件时, 寸的晶胚就会成为晶核 晶核(Nucleus)。晶核的出现就意味着结晶开 寸的晶胚就会成为晶核 。 始了。 始了。 综上所述,接近熔点的液态金属是由许多“原子集团”组成, 综上所述,接近熔点的液态金属是由许多“原子集团”组成, 其中原子呈规律排列,结构与原固体相似(近程有序);但是 其中原子呈规律排列,结构与原固体相似(近程有序);但是 ); 金属液体中存在很大的能量起伏,热运动激烈。 金属液体中存在很大的能量起伏,热运动激烈。原子集团的大 小不等,存在时间很短,时聚时散,空位较多。 小不等,存在时间很短,时聚时散,空位较多。原子集团之间 存在“空穴”和一些排列无序的原子。 存在“空穴”和一些排列无序的原子。
三、结晶的驱动力
∆G=GS‒GL<0,符合热力学第二定律。 ,符合热力学第二定律。 单位体积金属结晶时自由能的变化: 单位体积金属结晶时自由能的变化: ∆Gv=GS‒GL=(HS‒TSS) ‒(HL‒ TSL)= (HS‒ HL) ‒T (SS ‒ SL) = ‒∆Hm+ T∆S = ‒∆Hm+T(∆Hm/Tm) = ‒∆Hm(Tm‒T)/Tm =(‒∆Hm/Tm) ∆T ‒ ∆T=Tm‒T,称为过冷度 ,称为过冷度 ∆Hm,即结晶潜热 m 即结晶潜热L ∆Gv(<0)就是结晶的驱动力,∆T越大,结晶的驱动力越大。 就是结晶的驱动力, 越大 结晶的驱动力越大。 越大, 就是结晶的驱动力

材料四要素

材料四要素

氯化钠晶体
氯化钠内部质点排列
扫描隧道显微镜所探测到的石墨层面的碳原子排列
材料结构的分类:
晶体结构
原子排列短程有序,无周期。
非晶态固体的性能是各向同性的
非晶体
晶体
原子排列长程有 序,有周期
准晶体
原子排列长程有 序,无周期。
材料结构的分类:
晶体周期性
晶体结构
布喇菲(Bravais) 空间点阵学说:理想晶体的内部结构是组成晶 体的原子、分子或原子团等在三维空间中有规则地周期性重复排列, 这种周期性排列是晶体最基本的特点,也是研究晶体各种物理性质 的重要基础。 ◎ 布喇菲点阵 组成晶体的原子、离子、分子或原子团统称为晶体的基本结构 单元,简称基元。 为了简单明了地认识晶体的几何规则性,我们可以把晶体中的 基元用处在那个位置的几何点来代替,这样就得到了一个晶体基元 周期性排列的点的集合,它就称为“晶格”(或点阵),这些点被 称为格点。因此,可以说晶体的结构是由组成晶体的基元加上空间 点阵来决定的。
弹性:反映晶格中原子在外力作用下自平衡位臵产生可逆位移的力 学性能之一。 塑性:外力作用下,材料发生不可逆的永久性变形而不破坏的能力。
强度:材料在载荷作用下抵抗明显的塑性变形或破坏的最大能力。 刚度:材料力学中的弹性模量。它的物理意义是指材料产生单位弹 性的相对变形所需的应力。外应力作用下材料抵抗弹性变形能力。 韧性:材料从塑性变形到断裂全过程吸收能量的能力。 硬度:材料在表面上的小体积内抵抗变形或破裂的能力。
巨磁阻效应:是指磁性材料的交变阻抗随外磁场显著 变化的效应 。
电致发光:在电场的作用下电子在发光层内高速运
动, 激活发光材料原子使其发生能级跃迁而发光。
材料的化学性质
材料的腐蚀:材料受环境介质的化学、电化学作用而

材料科学与工程的四要素

材料科学与工程的四要素

材料科学与工程的四要素材料科学与工程,听起来是不是有点高大上?其实,里面的门道可不少,今天咱们就来轻松聊聊这四个基本要素,让你对这门学科有个更直观的了解。

话说回来,谁说科学就得死板呢?咱们也能把它说得活灵活现!1. 材料的种类首先,得说说材料的种类。

生活中我们见到的材料,可以说是五花八门,简直是琳琅满目。

你看,金属、陶瓷、聚合物、复合材料,每种材料都有它独特的性格,就像人一样,铁汉子就得是金属,温柔的小仙女就得是聚合物。

金属的强度和导电性让它在建筑和电子产品中呼风唤雨,而陶瓷呢,坚硬耐磨,还能抵抗高温,简直是厨房里的得力助手。

而聚合物的轻便和灵活性则让它成为了生活中的“百变女王”,从塑料袋到手机壳,全都少不了它的身影。

1.1. 金属的魅力说到金属,那可真是不可小觑!从古代的青铜器到现代的飞机制造,金属材料的应用无处不在。

想象一下,金属的强度能支撑起高楼大厦,而它的导电性又让电流畅通无阻,真是现代生活的脊梁。

1.2. 陶瓷的坚韧而陶瓷呢,更是个沉稳的“老司机”。

它的耐热性让你在烤箱里随意折腾,绝对不会怕!从日常的茶具到高级的工艺品,陶瓷都能带给你一种优雅的感觉。

2. 材料的性能接下来,我们聊聊材料的性能。

这可是材料科学的“绝对主角”,性能好坏直接关系到它能否胜任某个角色。

就像演员一样,不是每个人都能演好英雄,材料也有自己的“拿手绝活”。

2.1. 力学性能材料的力学性能,包括强度、韧性和硬度,这些就像是材料的身体素质。

强度高的材料,简直就像是个“拳击手”,能抵挡住各种冲击;而韧性好的材料,则是个“铁人”,即使被折腾也不会轻易断裂。

2.2. 热学性能然后就是热学性能了。

某些材料在高温下依然能保持稳定,而某些材料则可能在热浪中“崩溃”,这可不是开玩笑。

像一些耐火材料,就像是一位“消防员”,时刻准备着应对高温的挑战。

3. 材料的加工再说到材料的加工,这个环节就像是把原材料变成美食的厨师。

无论是铸造、焊接,还是切割,每种加工方法都有自己的诀窍和窍门,能让材料变得更加适合实际应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.7~63.5
10.2~40.6 25.4~50.2 15.0~40.6 自熄
PVC
聚偏二氯乙烯 尼龙 脲醛树脂 聚四氟乙烯
自熄
自熄 自熄 自熄 不燃
聚砜
自熄
表4-17 高分子材料的燃烧发热值,KJ/g
名称 软质PVC 硬质PVC 聚丙烯 聚苯乙烯 ABS 燃烧发热值 46.6 45.8 43.9 40.1 35.2 PVC 赛璐咯 酚醛树脂 聚四氟乙烯 玻璃纤维增强塑 料 氯丁橡胶 名称 燃烧发热值 13~23 17.3 13.4 4.2 18.8
nO2 100 nO m N 2 2
氧指数 22.5 18.1 17.3 26~22 19.3
聚酰胺
软质PVC
26.7
23~40
氯丁橡胶
硅橡胶
26.3
3、影响因素
Ⅰ结构因素: 刚性链 结 晶 交 联 Ⅱ分子量 Ⅲ增塑剂 Ⅳ填料,纤维增强
4-2-4热稳定性 (thermal Stability)
1、表征方法
不可逆
起始分解温度(Td):聚合物化学结合(结构)开始
发生变化的温度
常采用相对标准 (1)半分解温度
(2)热失重曲线(TG)
比较曲线 给定温度下的失重
CTE
表4-2-2 各种材料的线膨胀系数
材料名称 玻璃 线膨胀系数×105,K-1 0.1~1.0 材料名称 聚苯乙烯 线膨胀系数×105,K1
7
陶瓷
石英玻璃 硬质玻璃 光学玻璃 钢 黄铜 铝 环氧树脂 酚醛树脂(填充木 粉) 脲醛树脂 聚酯树脂 木材(顺纤维方向) 木材(横纤维方向) 碳化天然橡胶
4-2-3耐热性 (Heat Resistance) 1、概念:
耐热性——指在受负荷下,材料失去其物理机械性能而发生 永久变形的温度。 材料的使用上限温度 高分子材料 常温及中温条件下使用,<500C,一般170C。 钢——550C;合金——900C;石墨——3000C。 陶瓷——2000C。
(3) 含磷、氮等元素,临界氧指数高
? 阻燃
表4-16 聚合物的燃烧速度,mm/min
聚合物 聚乙烯 聚丙烯 聚丁烯 燃烧速度 7.5~30.5 17.3~40.6 27.9 聚合物 硝酸纤维素 醋酸纤维素 氯化聚乙烯 燃烧速度 迅速燃烧 12.7~30.3 自熄
聚苯乙烯
苯乙烯 - 丙烯腈共 聚物 ABS PMMA PC
给定失重的温度
起始分解温度(外推) (3)DSC和DTA:热焓的变化
2、热稳定性与结构的关系
k =Ae(-E/RT)
3、 热分解机理
(1) 只受热(惰性气体,或 真空中)大分子链成自由基。
开链——单体; PMMA
随机断链。 (2) 热氧分解
氧(环境)参加
分解快
C -C-C-C->-C-C-C->-C-C-C->-C->-C->-C->-CC C P H C Cl
(E)V Q
dE CV dT V
(H ) P Q
dH CP dT P
等压热容:焓对温度的曲线上的斜率
固体多用CP ,J· mol-1· K-1。Cp>Cv。 绝对零度时 CP= CV=0 RT 相近
固体热容理论 原子的振动--- 晶格的振动 经典理论 谐振子 量子理论 随机振动 德拜模型 晶体中原子的相互作用,弹性波的振动(声波)
FIGURE 17.3 (a) Plot of potential energy versus interatomic distance, demonstrating the increase in interatomic separation with rising temperature. With heating, the interatomic separation increases from r0 to r1 to r2 , and so on. (b) For a symmetric potential energyversus-interatomic distance curve, there is no increase in interatomic separation with rising temperature (i.e., r1 r2 r3 ).
Chapter 17
Thermal Performance of Materials
4-2 材料的热性能(thermal performance)
热导率 热物理性能: 比热容 热膨胀 耐热性
热化学性能: 热稳定性
燃烧特性
4-2-1 材料的热学性质(thermal property) 1. 热传递
三种方式:热传导、热辐射、热对流
Cv=3R fD(θD/T) 德拜比热函数
θD :德拜温度, 材料参数 (简单晶体)
FIGURE 17.1 Schematic representation of the generation of lattice waves in a crystal by means of atomic vibrations.
比热(容) =热容/原子量, J· Kg-1· K-1
定义:1Kg质量的固体(或液体)升高(或降低)1C时, 所增加(或减少)的(振动能量)热量 比热容与材料的组成和结构 金属 CP <1 KJ· Kg-1· K-1,热容小,容易加热、容易冷却 自由电子的贡献很小。
无机非金属, 同上,更符合德拜模型
聚酰胺 聚碳酸酯 PMMA
30.8 30.5 26.2
23.4~32.6 23.0 14.6
煤 木材
表4-18 几种聚合物的氧指数
聚合物 聚乙烯 聚丙烯 氯化聚乙烯 PVC 聚四氟乙烯 氧指数 17.4~17.5 17.4 21.1 15~49 79.5 聚合物 聚乙烯醇 聚苯乙烯 PMMA 聚碳酸酯 环氧树脂
0.45
0.1 0.3 0.8 1.2 1.9 2.4 6~7 3 2.5~3 8~10 0.2~0.6 3.25~6.2 8
聚甲基丙烯酸甲酯
尼龙 聚乙烯 聚氯乙烯 纤维素的酯及醚类 石墨 金刚石 氯化橡胶 氯丁橡胶 丁腈橡胶 丁基橡胶 丁苯橡胶 聚乙烯醇 聚乙烯醇缩醛
8~9
10 17 19 6~17 0.79 0.12 12~13 20.0 19.6 19.4 21.6 7~12 8~22
黄铜
120
375
酚醛树脂(电木)
尼龙-66
0.15
0.24
1650
1670
4-28 有一块面积为0.25m2、厚度为10mm的钢板热导率为
51.9 W/(m*K),两表面的温度分别为300℃和100℃, 试计算该钢板每小时损失的热量?
Q=λA(T1-T2)/d=51.9*0.25*(300-100)/0.01
表4-2-1 某些材料的热导率和比热容
材料 铝 铜 金 铁 镍 银 钨 1025钢 316不锈钢 热导 率 W/( m· k) 247 398 315 80.4 90 428 178 51.9 16.3 比热容 J(kg· k) 900 389 130 448 443 235 142 486 502 硅 氧化铝 氧化镁 尖晶石 钠钙玻璃 聚乙烯 聚丙烯 聚苯乙烯 聚四氟乙烯 材料 热导 率 W/( m· k) 150 30.1 37.7 15.0 1.7 0.38 0.12 0.13 0.25 比热容 J(kg· k) 775 940 790 840 2100 1880 1360 1050
热传导-基本的传递方式 A 自由电子(金属) B 晶格振动,离子和共价晶体(陶瓷) C 分子传导(高分子、小分子气体、液体)
热流量
q=- (d T / d X)
q = A t(T1 - T2)/d
两平面稳态热流量(与时间无关) 式中 A 为平板面积, 为热导率, t 热传导的时间 非稳态: =/CP·
2、耐热性表征(高分子材料)
物理状态 Tg 无定形 Tm 结晶 工业表征方法及指标 σ、ε 马丁耐热温度 热变形温度 维卡软化温度
第四章
屈服 脆韧转变 ?
Chapter 7
FIGURE 7.25 Schematic tensile stress–strain curve for a semicrystalline polymer. Specimen contours at several stages of deformation are included.
2、热膨胀类型(coefficient of thermal expansion) 线膨胀 l =(1/ l )d l /dT 体膨胀 V =(1/ V )d V /dT 影响因素 ① 温度 T升高,增大 ② 结构 键能大,减小 无机材料 小,10-5~10-6 金属 中,1~3×10-5 高分子 大,2.5~25×10-5 取向 交联度 减小 晶格类型、结晶度 柔顺性 刚性 , 柔性 ,
残渣。
放热反应
条件:温度、氧气(空气)
2、材料的燃烧特性
燃烧速度 燃烧反应放热值
3、临界氧指数 Limiting Oxygen Index
能够维持稳定燃烧的最小氧浓度 >0.27的聚合物是有自熄性 self-extinguish
(LOI)
(1) 仅由C、H、O元素组成,临界氧指数为0.16~0.18 (2) 含卤族元素(F、Cl、Br、I),临界氧指数大于0.40
4-2 材料的热性能
Thermal-physical properties thermal conductivity heat capacity thermal expension heat resistance Thermal-chemical properties thermal Stability flame retardancy
相关文档
最新文档