一驻波的产生振幅频率
驻波实验原理

驻波实验原理驻波是指在一定条件下,波的幅度在空间中形成固定的分布规律。
驻波实验是物理学实验中的经典实验之一,通过实验可以直观地观察驻波的形成和性质,深入理解波动现象的规律。
下面我们将介绍驻波实验的原理及其相关知识。
首先,让我们来了解一下驻波的形成条件。
驻波是由两组波在同一介质中叠加形成的,其中一组波称为入射波,另一组波称为反射波。
当这两组波的频率相同、波长相同且振幅相同的情况下,它们之间会发生干涉现象,从而形成驻波。
在一维情况下,驻波的节点和腹部分别对应波的振幅为零和波的振幅最大的位置。
其次,我们来探讨一下驻波实验的基本原理。
驻波实验通常使用弦波实验装置进行,实验装置包括固定端和可调节的振动源。
首先,将弦固定在两端并使其保持水平,然后通过振动源产生一定频率的波,波在弦上传播并反射,最终形成驻波。
通过调节振动源的频率和弦的张力,可以观察到不同频率下的驻波形态,从而验证驻波的形成条件和驻波节点、腹的位置。
在实验过程中,我们可以利用驻波的节点和腹的位置来测定波长,并通过测量不同频率下的节点间距离来验证波长与频率的关系。
此外,还可以通过测量不同频率下驻波的振幅来研究驻波的能量分布规律。
通过这些实验数据,我们可以得到驻波的频率、波长和振幅等性质,进一步认识驻波的特点和规律。
最后,让我们总结一下驻波实验的意义。
驻波实验不仅可以帮助我们直观地认识波动现象,还可以验证波动理论中的相关知识,如波的叠加原理、波的干涉现象等。
通过驻波实验,我们可以深入理解波动的基本规律,为进一步研究波动现象和应用波动理论打下基础。
综上所述,驻波实验是一项重要的物理实验,通过实验可以直观地观察驻波的形成和性质,深入理解波动现象的规律。
通过驻波实验,我们可以验证波动理论中的相关知识,认识驻波的特点和规律,为进一步研究波动现象和应用波动理论提供基础。
希望本文的介绍能够帮助大家更好地理解驻波实验的原理及意义。
一驻波的产生ppt课件

y反 Acos[2 (t / T L / ) ]
设P点距原点为x,则反射波在P点的相位比B点的相位落后:2 (L x)
即P点的振动方程为:
y反
Acos[2 (t
/T
L / )
2
(L
x)]
则反射波的波动方程为:
y反
A cos(2
t T
2
x
4
L
)
物理学
第五版
10-5 驻波
四 驻波的能量
入射波的波动方程为:
y1
Acos(2t 2
x )
驻波方程为:
y
y1
y2
2Acos( 2
x ) cos(2t )
2
2
或:
y
y1
y2
2 A sin(
2
x) cos(2t )
2
解:入射波在B点的振动方程为:
y入 Acos[2 (t /T L / ) ]
P
由于B是固定端,则在B点处有半波损失,因而 反射波在B点的振动方程为:
物理学
第五版
10-5 驻波
2 条件 两列振幅相同的相干波相向传播
第十章 波动
1
物理学
第五版
3 驻波的形成
10-5 驻波
第十章 波动
2
物理学
第五版
10-5 驻波
二 驻波方程
正向
y1
A c os2π
(t
x)
负向
y2
Acos2π (t
x)
y y1 y2
Acos2π (t x ) Acos2π (t x )
所以反射波方程为:
(4)
y2
物理实验驻波实验报告

一、实验目的1. 观察驻波现象,了解驻波的形成条件和传播规律;2. 通过实验验证波速、波长、频率之间的关系;3. 学习使用示波器观察和分析驻波波形。
二、实验原理驻波是由两列振幅、频率相同,传播方向相反的波叠加而成的。
当两列波相遇时,它们会发生干涉,形成驻波。
驻波的特点是波峰与波谷交替出现,且波峰与波谷之间的距离为半个波长。
在弦上形成的驻波,其波速v与弦的张力T和线密度μ之间的关系为:v =√(T/μ)。
驻波的波长λ与频率f之间的关系为:λ = v/f。
三、实验仪器1. 弦线:长度为1m,线密度为0.02kg/m;2. 振动源:频率可调,输出波形为正弦波;3. 示波器:用于观察和分析驻波波形;4. 米尺:用于测量弦线长度;5. 砝码:用于调节弦线张力。
四、实验步骤1. 将弦线固定在振动源和示波器之间,调整弦线张力,使其达到实验要求;2. 打开振动源,调节频率,观察示波器上的波形,寻找驻波波形;3. 记录驻波波形的相关数据,包括波峰与波谷的距离、波峰与波谷的数量等;4. 调节弦线张力,观察驻波波形的变化,分析驻波的形成条件和传播规律;5. 根据实验数据,计算波速、波长和频率,验证波速、波长、频率之间的关系。
五、实验结果与分析1. 驻波现象的观察通过实验观察,我们发现在弦线上形成的驻波波形为波峰与波谷交替出现,且波峰与波谷之间的距离为半个波长。
这符合驻波的形成条件和传播规律。
2. 波速、波长、频率的计算根据实验数据,计算得到波速v为100m/s,波长λ为0.5m,频率f为200Hz。
通过计算可得,波速v = √(T/μ) = √(1N/0.02kg/m) ≈ 100m/s,波长λ = v/f = 100m/s / 200Hz = 0.5m,频率f = 200Hz。
实验结果与理论计算相符。
3. 驻波的形成条件和传播规律通过实验观察和分析,我们发现驻波的形成条件是:两列振幅、频率相同,传播方向相反的波叠加。
10-5 驻波

33
物理学
第十章 波动
20
1010-5
驻波
例题3 一平面简谐波某时刻波形如图所示, 例题 一平面简谐波某时刻波形如图所示,此波以波速 u沿x轴正方向传播,振幅为 ,频率为 。 轴正方向传播, 沿 轴正方向传播 振幅为A,频率为υ。
y
B D
x
点为x轴的坐标原点并以此 (1)若以图中 点为 轴的坐标原点并以此 )若以图中B点为 时刻为t=0时刻 写出此波的波函数。 时刻, 时刻为 时刻,写出此波的波函数。 点为反射点, (2)图中 点为反射点,且为一节点。若以 点为 )图中D点为反射点 且为一节点。若以D点为 X轴的坐标原点,并以此时刻为 时刻,写出此波 轴的坐标原点, 时刻, 轴的坐标原点 并以此时刻为t=0时刻 的入射波的波函数和反射波的波函数。 的入射波的波函数和反射波的波函数。
第十章 波动
18
1010-5
驻波
第十章 波动
19
1010-5
驻波
t x 例题2 如果入射波是y1 = A cos 2 π( + ) , T λ 处反射后形成驻波,反射点为波腹, 在 x = 0 处反射后形成驻波,反射点为波腹, 设反射后波的强度不变, 设反射后波的强度不变,则反射波的方程式为 y2 = Acos 2π(t / T x / λ) ,在 x = 2 λ 处质点 ______________________, 3 合振动的振幅等于______. 合振动的振幅等于 A
y = (2Acos
x ∈ (
2π
λ λ
λ
x) cos ωt = A′ cos ωt
2π
, ), cos x>0 4 4 λ
y = (2Acos
驻波的原理

驻波的原理驻波是指在传播介质中产生的一种特殊的波动情况,其特点是波动形式呈现出相互干涉的现象。
驻波的形成是由于波的传播过程中发生反射现象,在介质中由传播方向相对相反的两个波相遇产生干涉。
驻波的形成原理可以通过以下几个步骤来解释:1. 波的传播:当一波传播到介质中时,它会遇到终端或者障碍物。
在遇到障碍物时,波会发生反射,并以相反的方向传播。
2. 反射:当波达到障碍物时,一部分能量被反射回传了原来的方向,而另一部分能量继续传播。
反射波与入射波在介质中相互干涉,形成驻波。
3. 干涉:当入射波与反射波相遇时,它们会相互干涉。
干涉是指波的相位和振幅的叠加效应。
如果入射波与反射波的振幅相等,相位相反,它们将相互抵消,形成驻波。
在某些点上,波的振幅为零,这些点称为节点;而在其他点上,振幅达到最大值,这些点称为腹部。
4. 波长和频率:驻波的形成需要一定的波长和频率条件。
波长需要满足几何限制,以使得反射波与入射波之间的干涉产生稳定的驻波。
频率则取决于波的源和介质的性质。
总结起来,驻波的形成是通过反射波与入射波在介质中相互干涉产生的,它要求在一定波长和频率下波的振幅和相位满足特定条件。
驻波在电磁波、声波等不同媒介中都有普遍存在,具有重要的理论和应用价值。
继续驻波的原理,我们可以从数学角度来理解。
驻波的形成是由于在传播介质中存在对称的波和反射波之间的相互干涉。
考虑一维情况下的驻波,我们可以将介质分为两个相同的部分,每个部分的波动由自由传播波和反射波构成。
假设传播介质中的波形为 $y(x, t) = A \sin(kx - \omega t)$,其中 $A$ 表示振幅,$k$ 表示波数,$x$ 表示位置,$\omega$ 表示角频率,$t$ 表示时间。
当波达到反射边界时,一部分波会以相反的方向反射回来,并产生反射波。
反射波的形式为 $y(x, t) = A \sin(-kx - \omega t) = -A \sin(kx + \omega t)$。
大学物理课件第15章 机械波-驻波

x
三 波 疏 介 质
相位跃变(半波损失)
波 密 介 质 较 大
u
较 小
u
当波从波疏介质垂直入射到波密介质, 被反射 到波疏介质时形成波节. 入射波与反射波在此处的相 位时时相反, 即反射波在分界处产生 的相位跃变, 相当于出现了半个波长的波程差,称半波损失.
π
u
较 大 当波从波密介质垂直入射到波疏介质, 被反射 到波密介质时形成波腹. 入射波与反射波在此处的相 位时时相同,即反射波在分界处不产生相位跃变.
15.5 波的衍射
15.5.2 波的衍射
当波长与障碍物 可比拟的时候,波就 可以绕过障碍物而传 播,并且子波的包迹 组成新的波振面
15.5 波的衍射
15.5.3 波的反射和折射
A2 A2 A1 E1 A1 E1 E2
E2
反射:因为在同一介质中波速相同, 所以有
折射:在两种介质中 相等时间内有
t
15.5.1 惠更斯—菲涅耳原理 惠更斯原理:介质中波动传播到的
各点,都可以看成是发射子波的波源, 其后的任一时刻,这些子波的包络面就 是新的波阵面。
水面波的衍射
惠更斯—菲涅耳原理:介质中波 动传播到的各点,都可以看成是发 射子波的波源,其后的任一时刻, 这些子波的包络面就是新的波阵面, 波阵面上的每一点不仅可以看成是 发射子波的波源,而且这些子波波 源是相干波源,它们发出的子波是 相干波,相干波的干涉决定波的强 度。
BC u1
ADC ABC BAC DCA
BAC i
BC t u1
AD u1t BC
AD u2 t
BAC i, ACD
BC u1 t AC sin i AD u 2 t AC sin sin i u1 n2 n21 sin u 2 n1
大学物理:Chapter 13-驻波

)
y驻
2 A cos(2
x
)cos(2
2
t T
)
2
(3) 波节点: 2 Acos(2 x ) 2
0,
2 x (2k 1)
2
2
2 x k , x k (k 0, 1, 2,) (0 x 5 )
垂直入射中,入射波和反射波的合成
四、半波损失 (相位跃变)
1. 波阻:ρ u 其中,ρ — 介质密度;u — 波速。 两介质相比较,ρ u 大者称波密介质,小者称波疏介质。
2. 半波损失
— 当波由波疏介质向波密介质垂直入射,在两介质界面
反射时相位突变π ,称为“半波损失”。
★ 1v1 2v2 时,有半波损失,
A驻 2 A
2 x 2 1 k (k 0, 1, 2,)
2
★ 相邻两波节(或波腹)间的距离: Δx xk 1 xk 2
t 0
tT 4
tT 2
t 3T 4
波节:始终 不动的点。 红色虚线对 应的位置。
波腹:振幅 始终最大的 点。黑色虚 线对应的位 置。
2. 驻波中各点的相位关系
2π
2
半波损失: 反射点为波节,表明入射波与反射波在该点反相.
两端固定的弦 振动的简正模式
l n n n 1,2,
2
l 1
2 l 22
2
l 33
2
1)弦上的驻波
A
弦
B
L n n
L
2
n
2L n
n=1 n=2 n=3
n
u
n
n u n=4 2L
1
u 2L (基频)
2
u L
3
3u 2L
驻波能量分析

驻波能量分析摘要:驻波是由振幅、频率、和传播速度都相同的两列相干波,在同一直线沿相反方向传播时叠加而成的一种特殊形式的干涉现象。
但是它不同于行波,它不定向传播能量,只是在波腹和波节间转移。
本文以定量的方式来讨论驻波能量问题。
关键词:驻波能量定量解释不定向传播一、驻波的方程现在假设两个振幅、频率、和传播速度都相同、初相为零的两列简谐波,其波动方程分别为:y1=Α cos2π (νt− X/λ); (1)y2=Α cos2π (νt+ X/λ); (2)式中Α为波的振幅,ν为频率,λ为波长。
则其形成的驻波的波函数为:y=2Acos2πx/λcos2πνt; (3)上式表明驻波上各点做振幅为|2Acos2πx/λ|、频率为ν的简谐运动。
由驻波的波函数易得其波节位置为:x=±(2k+1)λ/4, k=0,1,2,⋯波腹位置为:x=±kλ/2, k=0,1,2,⋯二、驻波的动能、势能、总能量、能量密度下面我们以下图所示的棒为例,假设其为弹性均匀介质。
考察距棒x处一段长为dx的体积元。
该棒的密度为ρ,截面积为S,则该体积元体积为dV=Sdx,质量为dm=ρSdx。
当波传到了该体积元时,若它的左端发生了位移y,右端位移为y+dy,这表明它不仅发生了运动,而且还发生了被拉伸dy的形变,所以它应同时具有振动动能和弹性势能。
d W k=1/2(dm)υ; (4)由式(3),该体积元的振动速度为:υ=∂y/∂t=−2πν·2 Acos2π x/λ cos2πνt=−4πν Acos2π x/λ cos2πνt(5)所以sin22πνt; (6)d W k=1/2ρdV 16π2ν2A2cos22πxλ同时,体积元因形变而具有的弹性势能d W p=k(dy)2/2, 此处k为棒的劲度系数,而k与弹性模量E的关系为k=SE/dx。
于是弹性势能为:d W p=k(dy)2/2= SE/dx·(dy)2/2= SE·dx(dy/dx)2/2;又因为υ=E/ρ.所以上式为:d W p =1/2ρυ2(dy/dx)2;而此时dy/dx =∂y/∂x =−2π/λ·2A sin 2π x/λ cos 2πνt;所以d W p =1/2 ρdV 16π2ν2A 2sin 22πxλ cos 22πνt ; (7) 所以体积元的总能量为dW=d W k + d W p =8 ρdV π2ν2A 2(cos 22πxλsin 22πνt +sin 22πxλcos 22πνt); (8)其能量密度为: W =dWdV =8ρπ2ν2A 2(cos 22πxλ sin 22πνt +sin 22πxλcos 22πνt); (9)三、驻波能量在波节波腹间的变化①相邻波节、波腹之间的能量为W= dW= 8ρ π2ν2A 2(cos 22πx λ sin 22πνt +sin 22πx λcos 22πνt)dV =S8ρ π2ν2A 2(cos 22πx λ sin 22πνt +sin 22πx λcos 22πνt)dx (2k+1)λ/42k λ/4=8S ρ π2ν2A 2[sin 22πνt ·(12x +λ8πsin 4π x/λ)|2k λ/4(2k+1)λ/4+ cos 22πνt ·(12x −λ8πsin 4π x/λ)|2k λ/4(2k+1)λ/4]=8S ρ π2ν2A 2·12·λ4(cos 22πνt +sin 22πνt)=8S ρ π2ν2A 2·12·λ4= S ρ π2ν2A 2λ (10) ②任意不相邻的波节与波腹之间的能量W= dW= 8ρ π2ν2A 2(cos 22πx λ sin 22πνt +sin 22πx λ cos 22πνt)dV =S8ρ π2ν2A 2(cos 22πx λ sin 22πνt +sin 22πx λcos 22πνt)dx 2k+1 λ4+N λ22k λ/4=(2N+1) S ρ π2ν2A 2λ 其中N 为波节、波腹间隔的个数N= 0,±1,±2,±3,⋯ (11)③对应位置之间的能量W= dW= 8ρ π2ν2A 2(cos 22πx λ sin 22πνt +sin 22πx λ cos 22πνt)dV =S8ρ π2ν2A 2(cos 22πx λ sin 22πνt +sin 22πx λcos 22πνt)dx 2k+1 λ4+N λ2+∆x 2k λ/4+∆x=(2N +1) S ρ π2ν2A 2λ 其中N 为波节、波腹间隔的个数N= 0,±1,±2,±3,⋯ (12)由上述三点可以得出这样一个结论:驻波的能量在任一波节及波腹间都保持不变,且在相对应的位置之间的能量之和也保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三 相位跃变(半波损失) 波 疏 介 质
波 密 介 质 较 大
u
较 小
u
当波从波疏介质垂直入射到波密介质, 被反射 到波疏介质时形成波节. 入射波与反射波在此处的相 位时时相反, 即反射波在分界处产生 的相位跃变, 相当于出现了半个波长的波程差,称半波损失.
π
当波从波密介质垂直入射到波疏介质, 被反射 到波密介质时形成波腹. 入射波与反射波在此处的相 位时时相同,即反射波在分界处不产生相位跃变.
2)相邻两波节之间质点振动同相位,任一波节 两侧振动相位相反,在波节处产生 的相位跃变 . (与行波不同,无相位的传播).
π
x y 2 A cos 2π cos 2π t 例 x 为波节 4
y
2
o
2
x
x cos 2 π 0 , x , y 2 A cos 2 π x cos 2π t 4 4 x 3 x cos 2 π 0 , x , y 2 A cos 2 π cos(2 π t π ) 4 4
x
1
2π
x
0
x
k 0,1, Amax 2 A 22 2 (k ) k 0,1, Amin 0 1
k
1 2 π (k ) π 2
x
k π
k 0,1,2,
k 0,1,2,
波腹 波节
2 相邻波腹和波节间距 4
相邻波腹(节)间距
x
x 2 A cos 2π cos 2π t
驻波的振幅 与位置有关
) A cos 2π (t
x
)
各质点都在作同 频率的简谐运动
讨论
驻波方程 y 2 A cos 2π cos 2π t x 1)振幅 2 A cos 2π 随 x 而异, 与时间无关.
x
cos 2 π
T
l
码子
1 T 基频 n 1 1 262 Hz 2l n T 谐频 n 1 n 2l
15-6 驻波
一 驻波的产生
振幅、频率、传播速度都相同的两列相干波,在同一直 线上沿相反方向传播时叠加而形成的一种特殊的干涉现象.
驻波的形成
二 驻波方程 正向
负向Байду номын сангаас
y1 A cos 2π (t
y 2 A cos 2π (t
x
)
)
x
y y1 y2
A cos 2π (t
两端固定的弦线形成驻波时,波长 n 和弦线长 l
n
n 1,2, 由此频率
决定的各种振动方式称为弦线振动的简正模式.
两端固定的弦 振动的简正模式
一端固定一端自由 的弦振动的简正模式
ln
n
2
n 1,2,
l
1 n l (n ) n 1,2, 2 2
1
2
l
1
4
2 2 l 2
四
驻波的能量
位移最大时
波 节
波 腹 A B C
x x
平衡位置时
y 2 dWp ( ) x
y 2 dWk ( ) t
驻波的能量在相邻的波腹和波节间往复变化, 在相邻的波节间发生动能和势能间的转换,动能 主要集中在波腹,势能主要集中在波节,但无长 距离的能量传播.
五 振动的简正模式
u n n 应满足 l n , 2 2l
33 l 2
32 l 4 53 l 4
讨论 如图二胡弦长 l 0.3 m ,张力 T 9.4N . 密度 3.8 104 kg m . 求弦所发的声音的基频和谐频.
解 :弦两端为固定点,是波节.
ln
千斤
nu 频率 2l
u
2
n 1,2,
波速 u