数学北师大版六年级下册有趣的时钟问题
六年级奥数-钟表问题

时钟问题研究钟面上时针和分针关系的问题称为时钟问题。
钟面的一周分为60格。
当分针走60格时,时针正好走5格,所以时针的速度是分针的5÷60=1/12,时钟问题变化多端,也存在着不少学问。
时钟问题常常研究钟表的表针之间的重合、追及和钟表快慢等,多运用分数应用题、比例问题的解题方法来解决。
例1、有一只钟,每小时比标准时间慢1分,中午12点调准,下午慢钟指到6点时,标准时间是下午几时几分。
例2、小莉晚上9点整将手表对准,可第二天早晨8点到校时,她以为准时到校,却迟了10分钟,那么,小莉的手表每小时慢几分钟?例3、现在是下午3点,从现在起时针与分针什么时候第一次重合?例4、星期日小明去同学家玩了两个多小时,离家时他看了看钟,回家时又看了看钟,发现时针与分针恰好互换了一个位置,问小明离开家多少时间?例5、在4点与5点之间,时针与分针什么时候成直角?课堂练习1、小明家的挂钟每小时慢2分,早上8点小明把挂钟对准了标准时间,那么这只挂钟走到中午12点时,标准时间是几点几分?2、3点过多少分时,时针与分针离“3”的距离相等,并且在“3”的两边?3、赵兵家有一只闹钟,每小时比标准时间慢半分钟,有一天晚上8点时,赵兵对准了闹钟,他想第二天早晨5点55分起床,于是他将闹钟的闹铃定在5点55分,问这个闹钟将在何时响铃?4、在7点与8点之间,时针与分针什么时候成直角?5、徐迪参加义务劳动不足1小时,他发现劳动结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。
问徐迪参加义务劳动多少时间?6、小张下午要到工厂上3点的班,他估计快到上班时间了,到屋里看钟,可是钟早在12点10分就停了,他上足发条后忘了拨针,匆匆离家,到工厂一看离上班时间还有10分钟,8小时工作后夜里11点下班,小张回到家里,一看钟才9点整。
假定他上下班在路上用的时间相同,那么他家的钟停了多长时间?总结:解钟表问题时,根据速度不变,可看作钟表时间与标准时间成正比例关系来解答;根据时针分针的间隔格数(或度数)可看作分针追及时针的追及问题来解答。
小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
六年级数学专题讲义时钟问题

时钟问题时钟问题是研究钟面上时针和分针关系的问题。
钟面的一周分为60分格,当分针走60格时,时针正好走5格,所以时针的速度是分针的5÷60=112,我们可以将分针的速度看成是1格/分,时针就是112格/分。
分针每走60÷(1-560)=56511(分),与时针重合一次。
时钟问题变化多端,也存在着不少的学问。
这里列出一个基本公式:在初始时刻需追赶的格数÷(1-112)=追及时间(分钟)。
其中,1-112为分针每分钟比时针多走的格数,即速度差。
〖经典例题〗例1、如图1,在时钟盘面上,1点45分时的时针与分针之间的夹角是多少?【分析】将时钟盘面分成12个分格,那么在1点45分,分针必落在9这个位置上,而时钟针不在1这个位置上,而是在1和2之间的某个位置上,也就是要求出从1点到1点45分,45分钟的时间时针转过的角度。
时针走60分钟转过360°÷12=30°,那么走45分钟,转过300×4560=22.50。
而且从1点45分时时钟盘面上时针、分针的位置易知,从9点整到13点整之间包含有4个大格。
那么此时时针与分针的夹角是这两部分角度的和:30×4+22.50=142.50。
例2、在10点与11点之间,钟面上时针和分针在什么时刻垂直?【分析】分两种情况进行讨论。
(1)在顺时针方向上分针与时针成270°角:在顺时针方向上当分针与时针成270°时,分针落后时针60×(270÷360)=45(个)格,而在10点整时分针落后时针5×10=50(个)格。
因此,在这段时间内,分针要比时针多走50-45=5(个)格,而每分钟分针比时针多走(1-1 12)个格,因此所用的时间为:5÷(1-112)=5511(分钟)。
(2)在顺时针方向上分针与时针成90°角:在顺时针方向上当分针与时针成90°角时,分针落后时针60÷(90÷360)=15个格,因此在这段时间内,分针要比时针多走50-15=35个格,所以所用的时间为:35÷(1-112)=38211(分钟)。
小学六年级奥数时钟问题(含例题讲解分析和答案)知识分享

小学六年级奥数时钟问题(含例题讲解分析和答案)时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为5分。
6511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢 30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时 ,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒 【巩固】 小强家有一个闹钟,每时比标准时间快3分。
小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)篇章重构:时钟问题是一个特殊的圆形轨道上两个指针的追及或相遇问题。
在时钟问题中,我们研究的是时钟的快慢、周期以及时针和分针所成的角度等等。
时钟问题的速度和总路程的度量方式不同于其他行程问题,而是以“每分钟走多少角度”或“每分钟走多少小格”为单位。
对于标准的时钟,整个钟面为360度,上面有12个大格,每个大格为30度,60个小格,每个小格为6度。
分针每分钟走1小格或6度,时针每分钟走1小格或0.5度。
然而,在许多时钟问题中,我们会遇到各种“怪钟”或“坏了的钟”,它们的时针和分针每分钟走的度数与常规的时钟不同,因此需要对不同的问题进行独立的分析。
要将时钟问题视为行程问题,分针快,时针慢,因此分针和时针之间的问题就是追及问题。
在解决时钟的快慢问题时,需要学会十字交叉法。
例如,对于时钟问题,需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65分钟。
下面是例题精讲:例1:XXX有一只手表,他发现手表比家里的闹钟每小时0秒,而闹钟却比标准时间每小时慢30秒。
那么XXX的手表一昼夜比标准时间差多少秒?解析:闹钟每小时只走(3600-30)/3600个小时,而手表每小时走(3600+30)/3600个小时。
因此,标准时间走1小时,手表走(3600-30)/3600*(3600+30)/3600个小时。
手表每小时比标准时间慢1-(3600-30)/3600*(3600+30)/3600=1-/=1/个小时,即四分之一秒。
因此,一昼夜24小时比标准时间慢四分之一乘以24等于6秒。
巩固题1:XXX家有一个闹钟,每小时比标准时间分。
有一天晚上10点整,XXX对准了闹钟,他想第二天早晨6:00起床,他应该将闹钟的铃定在几点几分?解析:从晚上10点到第二天早晨6点,共计8小时。
因为闹钟比标准时间分,所以实际上只需要设置闹钟在标准时间的8小时之前3*8=24分即可。
小学数学六年级《时钟问题(一)》练习题

时钟问题(一)【知识要点】时钟问题就是研究钟面上时针和分针关系的问题。
大家都知道,钟面的一周分为60格,分针每走60格,时针正好走5格,所以时针的速度是分针速度的5÷60=121。
时钟问题经常围绕着两针(指示针和分针)重合、两针垂直、两针成直线、两针成多少度角提出问题。
因为时针与分针的速度不同,并且都沿顺时针方向转动,所以经常将时钟问题转化为追及问题来解。
【例题讲解】例1.现在是2点,什么时候时针与分针第一次重合?例2.在7点与8点之间,时针与分针在什么时刻相互垂直?例3.在3点与4点之间,时针和分针在什么时刻位于一条直线上?例4.晚上7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。
这部动画片播出了多长时间?例5.3点过多少分时,时针和分针离“3”的距离相等,并且在“3”的两边?例6.小明做作业的时间不足1时,他发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。
小明做作业用了多少时间?【课内练习】1.时针与分针在9点多少分时第一次重合?2.王师傅2点多钟开始工作时,时针与分针正好重合在一起。
5点多钟完工时,时针与分针正好又重合在一起。
王师傅工作了多长时间?3.8点50分以后,经过多长时间,时针与分针第一次在一条直线上?4.小红8点钟开始画一幅画,正好在时针与分针第三次垂直时完成,此时是几点几分?5.3点36分时,时针与分针形成的夹角是多少度?6.3点过多少分时,时针和分针离“2”的距离相等,并且在“2”的两边?7.小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题共用了多少时间?答案【例题讲解】例1 现在是2点,什么时候时针与分针第一次重合?分析:如右图所示,2点分针指向12,时针指向2,分针在时针后面5×2=10(格)。
因为时针速度是分针的121,所以分针走1格,时针走121格,分针比时针多走1-121(格)。
(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为 6 度。
分针速度:每分钟走 1 小格,每分钟走 6 度1时针速度:每分钟走小格,每分钟走0.5 度12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。
11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走( 3600-30 )/3600 个小时,手表又比闹钟快那么它一小时走(3600+30 )/3600 个小时,则标准时间走 1 小时手表则走 ( 3600-30 )/3600* ( 3600+30 ) /3600 个小时,则手表每小时比标准时间慢1—【( 3600-30 )/3600* (3600+30 ) /3600 】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600= 四分之一秒,所以一昼夜24 小时比标准时间慢四分之一乘以24 等于 6 秒【巩固】小强家有一个闹钟,每时比标准时间快 3 分。
六年级《时钟问题》奥数解析

六年级《时钟问题》奥数解析分针每分钟旋转的速度:360°÷60=6°时针每分钟旋转的速度:360°÷(12×60)=0.5°在钟面上总是分针追赶时针的局面,或是分针超越时针的局面。
这里的转动角度用度数来表示,相当于行走的路程。
因此钟面上两针的运动是一类典型的追及行程问题。
分析正3时时,分针在12的位置上,时针在3的位置上,两针相隔90°。
当两针第一次重合,就是3时过多少分。
在正3时到两针重合的这段时间内,分针要比时针多行走90°。
而可知每分钟分针比时针多行走6-0.5=5.5(度)。
相应的所用的时间就很容易计算出来了。
解360÷12×3=90(度)90÷(6-0.5)=90÷5.5≈16.36(分)答两针重合时约为3时16.36分。
分析在正5时时,时针与分针相隔150°。
然后随时间的消逝,分针先是追上时针,在此时间内,分针需比时针多行走150°,然后超越时针180°就成一条直线且指向相反了。
解360÷12×5=150(度)(150+180)÷(6—0.5)=60(分)5时60分即6时正。
答分针与时针在同一条直线上且指向相反时应是5时60分,即6时正。
例3钟面上12时30分时,时针在分针后面多少度?解(6—0.5)×30=55×3=165(度)答时针在分针后面165度。
例4钟面上6时到7时之间两针相隔90°时,是几时几分?分析从6时正作为起点,此时两针成180°。
当分针在时针后面90°时或分针超越时针90°时,就是所求的时刻。
解(180—90)÷(6—0.5)=90÷5.5≈16.36(分钟)(180+90)÷(6—0.5)=270÷5.5≈49.09(分钟)答两针相隔90°时约为6时16.36分,或约为6时49.09分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有趣的时钟问题
一、学习目标:
1、知识与技能:巧用追及问题解时钟的分针、时针的夹角、重合以及成平角、成直角问题。
2、数学思考:经历探索新知的过程,提高学生的动手操作能力、观察能力和归纳总结能力。
3、解决问题:能利用一元一次方程解决时钟的分针对时钟的追及问题。
4、情感态度:在解决问题的过程中,体会用方程的思想、数形结合的思想解决时钟问题,增强学生学习数学的学习兴趣。
二、学习过程
【自主发现】
通过观察你发现了闹钟的时针、分针是怎么走的吗?,有什么规律?
【互动探究】
探究1:
1、圆形的时钟的钟面被分成个大格,个小格,一个大格是度一个小格是度。
2、时针每小时走度,每分钟走度,为什么?
3、分针每分钟走度,为什么?
探究2、
从一时刻到另一时刻走过的角度
问题:从2点30分到2点45分,时针和分针各走了和度。
变式:1、由2点到7点30分,钟表的时针转过的角度是度。
2、时钟的时针转了20°角,则时间过了分钟。
探究3、时针和分针的夹角
1、一钟表9点20分停了,这时表面上时针与分针的夹角是多少度?
2、钟表在10点10分时时针与分针所夹的锐角是多少度?
【应用拓展】
拓展1、
例1:我国元朝朱世杰于1299年编写的《算学启蒙》里有这样一个题目:良马日行240里,驽马日行150里,驽马先行12日,问良马几何追及之?
例1:快马每天走240里,慢马每天走150里.慢马先走12日,快马几天可以追上慢马?
变式:甲乙在同一地点出发,同向而行(甲快,乙慢),当甲追上乙时,肯定比乙多跑了一圈。
(第一次甲追上乙)
结论:甲总路程-乙总路程=
拓展2:巧用追及解钟表问题
例2:在两点到三点之间,什么时刻时针和分针重合?
拓展3:
你能利用一元一次方程解决下面的问题吗?
例3:在3时和4时之间的哪个时刻,钟的时针与分针:(1)成直角; (2)成平角
【总结提升】
1、你学到到了哪些知识?
2、你掌握了哪些数学方法?知道了哪些数思想?
3、你还有哪些疑惑?
三、课后作业:
(一)练习:
1、从7点到8点之间,什么时刻时针与分针重合?
2、在1点到2点之间,什么时刻时针与分针成直角
3、从5点到6点之间,什么时刻时针与分针成直角?
4、8点几分时针和分针在一条直线上?
5、小红傍晚6点钟去商场买本,走进商场看到钟表上的时针和分针的夹角是120°,买完本后,走出商场看到钟表上的时针和分针的夹角又是120°,但已近晚上7点钟了,问小红买本用了多长时间?
(二)补充拓展:
1、时钟的时针、分针从一次重合到下一次重合需多长时间?24小时之内可有多少次重合?
2、时钟的时针和分针在24小时之内可成多少次平角?成多少次直角?。