大一上学期高等代数模拟试卷

合集下载

高等代数(一)试题及参考答案汇编

高等代数(一)试题及参考答案汇编

高等代数(一)考试试卷一、单选题(每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号填入答题纸内相应的表格中。

错选、多选、不选均不给分,6小题,每小题4分,共24分)1. 以下乘积中( )是4阶行列式ij D a =展开式中取负号的项.A 、11223344a a a a .B 、14233142a a a a .C 、12233144a a a a .D 、23413214a a a a .2.行列式13402324a --中元素a 的代数余子式是( ).A 、0324-. B 、0324--. C 、1403-. D 、1403. 3.设,A B 都是n 阶矩阵,若AB O =,则正确的是( ). A 、()()r A r B n +≤. B 、0A =. C 、A O =或B O =. D 、0A ≠.4.下列向量组中,线性无关的是( ).A 、{}0.B 、{},,αβ0.C 、{}12,,,r ααα,其中12m αα=.D 、{}12,,,r ααα,其中任一向量都不能表示成其余向量的线性组合.5.设A 是n 阶矩阵且()r A r n =<,则A 中( ).A 、必有r 个行向量线性无关.B 、任意r 个行向量线性无关.C 、任意r 个行向量构成一个极大线性无关组.D 、任意一个行向量都能被其它r 个行向量线性表出.6.n 阶矩阵A 具有n 个不同的特征值是A 与对角阵相似的( )条件. A 、充要. B 、充分非必要. C 、必要非充分. D 、非充分非必要. 二、判断题(正确的打√,错误的打×,5小题,每小题2分,共10分).1.若A 为n 阶矩阵,k 为非零常数,则kA k A =. ( ) 2.若两个向量组等价,则它们包含的向量个数相同. ( ) 3.对任一排列施行偶数次对换后,排列的奇偶性不变. ( ) 4.正交矩阵的逆矩阵仍是正交矩阵. ( ) 5.任何数域都包含有理数域. ( ) 三、填空题(每空4分,共24分).1.行列式000100200100D n n==- . 2.已知5(1,0,1)3(1,0,2)(1,3,1),(4,2,1)αβ---=--=-,则α= ,(,)αβ= .3.矩阵12311211022584311112A ---⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥--⎣⎦,则()r A = . 4.设线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解,其系数矩阵A 与增广矩阵A 的秩分别为s 和t ,则s 与t 的大小关系是 .5.设111123111,124111051A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,则1A B -= .四、计算题(4小题,共42分)1.计算行列式(1)111111111111a a a a;(2)111116541362516121612564.(每小题6分,共12分)2.用基础解系表出线性方程组123451234512345123452321236222223517105x x x x x x x x x x x x x x x x x x x x ++-+=⎧⎪+++-=⎪⎨+++-=⎪⎪+--+=⎩的全部解.(10分)3.求与向量组123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-等价的正交单位向量组.(10分)4.求矩阵211020413A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征根和特征向量.(10分)一、单选题(每题4分,共24分)二、判断题(每题2分,共10分)三、填空题(每空4分,共24分)1.(1)2(1)!n n n --⋅; 2.(1 (2)0;3.3; 4.s t =;5.351222312212112-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦. 四、计算题(共42分)1.(12分,每小题各6分) (1)解:11131111111111311111(3)111311111111311111a a a a a a a a a a a aa a a++==+++ ..............(3分)31111010(3)(3)(1)001001a a a a a a -=+=+--- ...................(3分)注:中间步骤形式多样,可酌情加分(2)解:222233331111111116541654136251616541216125641654=,此行列式为范德蒙行列式 ......(3分)进而2222333311111654=(61)(51)(41)(56)(46)(45)12016541654=------=-原式 .......(3分) 2.(10分)解:用初等变换把增广矩阵化为阶梯形1213211213211213212111360317740115411122220115410317742351710501711630171163---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥--------⎣⎦⎣⎦⎣⎦1213211213210115410115410317740048510171163000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥-----⎢⎥⎢⎥---⎣⎦⎣⎦..................(3分) 得同解方程组12345234534523215414851x x x x x x x x x x x x ++-+=⎧⎪--+=-⎨⎪+-=-⎩取45,x x 为自由未知量,得方程的一般解为12345234534521321544185x x x x x x x x x x x x++=+-⎧⎪-=+-⎨⎪=--+⎩(其中45,x x 为自由未知量) 将450,0x x ==代入得特解01551(,,,0,0)444γ=--. ................(3分)用同样初等变换,得到与导出组同解的方程组12345234534523205404850x x x x x x x x x x x x ++-+=⎧⎪--+=⎨⎪+-=⎩仍取45,x x 为自由未知量,得一般解12345234534523254485x x x x x x x x x x x x++=-⎧⎪-=-⎨⎪=-+⎩,将451,0x x ==和450,4x x ==分别代入得到一个基础解系:12(1,3,2,1,0),(9,11,5,0,4)ηη=--=- ...............(3分)所以,原方程组的全部解为01122k k γηη++,12,k k 为数域P 中任意数。

多项式试题

多项式试题

《高等代数》(上)题库第一章多项式填空题(1.7)1、设用x-1除f(x)余数为5,用x+1除f(x)余数为7,则用x2-1除f(x)余数是。

(1.5)2、当p(x)是多项式时,由p(x)| f(x)g(x)可推出p(x)|f(x)或p(x)|g(x)。

(1.4)3、当f(x)与g(x) 时,由f(x)|g(x)h(x)可推出f(x)|h(x)。

(1.5)4、设f(x)=x3+3x2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b。

(1.7)5、设f(x)=x4+3x2-kx+2用x-1除余数为3,则k= 。

(1.7)6、如果(x2-1)2|x4-3x3+6x2+ax+b,则a= b= 。

(1.7)7、如果f(x)=x3-3x+k有重根,那么k= 。

(1.8)8、以l为二重根,2,1+i为单根的次数最低的实系数多项式为f(x)= 。

(1.8)9、已知1-i是f(x)=x4-4x3+5x2-2x-2的一个根,则f(x)的全部根是。

(1.4)10、如果(f(x),g(x))=1,(h(x),g(x))=1 则。

(1.5)11、设p(x)是不可约多项式,p(x)|f(x)g(x),则。

(1.3)12、如果f(x)|g(x),g(x)|h(x),则。

(1.5)13、设p(x)是不可约多项式,f(x)是任一多项式,则。

(1.3)14、若f(x)|g(x)+h(x),f(x)|g(x),则。

(1.3)15、若f(x)|g(x),f(x)| h(x),则。

(1.4)16、若g(x)|f(x),h(x)|f(x),且(g(x),h(x))=1,则。

(1.5)17、若p(x) |g(x)h(x),且则p(x)|g(x)或p(x)|h(x)。

(1.4)18、若f(x)|g(x)+h(x)且f(x)|g(x)-h(x),则。

(1.7)19、α是f(x)的根的充分必要条件是。

(1.7)20、f(x)没有重根的充分必要条件是。

大学高等代数试卷

大学高等代数试卷

大学高等代数试卷一、选择题(每题5分,共20分)下列关于行列式的叙述,正确的是()A. 行列式的值只与矩阵的元素有关B. 行列式可以通过行变换或列变换进行化简C. 若行列式的两行互换位置,则行列式的值不变D. 行列式的值可以是任意复数下列关于矩阵的叙述,错误的是()A. 矩阵的秩是指矩阵中行向量或列向量的最大线性无关组的大小B. 矩阵的逆矩阵存在当且仅当矩阵是可逆的C. 矩阵的转置是将矩阵的行变为列,列变为行D. 矩阵的特征值总是实数二、填空题(每题5分,共20分)若矩阵A满足A^2 = A,则称A为幂等矩阵,此时矩阵A的特征值λ满足____________。

若矩阵B满足B^2 = 0,则称B为幂零矩阵,此时矩阵B的特征值λ满足____________。

设矩阵C的特征值为2, -1, -3,则矩阵C的迹(即矩阵C的主对角线元素之和)为____________。

三、计算题(每题10分,共30分)计算矩阵A的行列式,其中A = [1, 2; 3, 4]。

计算矩阵B的特征值,其中B = [1, -1; -1, 1]。

设矩阵C的一个特征值为λ,求对应的特征向量。

四、应用题(每题10分,共20分)证明或反证:若矩阵A是n阶正交矩阵,则A的逆矩阵A^{-1}等于A的转置矩阵A^T。

证明或反证:若矩阵A是n阶可逆矩阵,且满足AA^T = A^TA = I,则A是正交矩阵。

五、探究题(每题5分,共10分)探究矩阵A的相似对角化问题,其中A = [0, 1; -1, 0]。

说明是否存在一个可逆矩阵P,使得P^{-1}AP是对角矩阵,并给出相应的对角矩阵。

总分:80分这份试卷涵盖了行列式、矩阵的性质、特征值和特征向量等基础知识点,以及矩阵的相似对角化问题,难度较高,适合作为一次高等代数的考试试卷。

大一数学测试题

大一数学测试题

高等数学(上)模拟试卷一一、 填空题(每空3分,共42分)1、函数lg(1)y x =-的定义域是 ;2、设函数20() 0x x f x a x x ⎧<=⎨+≥⎩在点0x =连续,则a = ; 3、曲线45y x =-在(-1,-4)处的切线方程是 ; 4、已知3()f x dx x C=+⎰,则()f x = ;5、21lim(1)xx x →∞-= ; 6、函数32()1f x x x =-+的极大点是 ;7、设()(1)(2)2006)f x x x x x =---……(,则(1)f '= ;8、曲线x y xe =的拐点是 ;9、21x dx-⎰= ;10、设32,a i j k b i j k λ=+-=-+,且a b ⊥,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()()f x d e =。

二、 计算下列各题(每题5分,共20分)1、011lim()ln(1)x x x →-+ 2、y =y ';3、设函数()y y x =由方程xye x y =+所确定,求0x dy =; 4、已知cos sin cos x t y t t t =⎧⎨=-⎩,求dydx 。

三、 求解下列各题(每题5分,共20分)1、421x dx x +⎰2、2secx xdx⎰3、40⎰4、2201dx a x +四、 求解下列各题(共18分):1、求证:当0x >时,2ln(1)2x x x +>-(本题8分) 2、求由,,0x y e y e x ===所围成的图形的面积,并求该图形绕x 轴旋转一周所形成的旋转体的体积。

(本题10分)高等数学(上)模拟试卷二一、填空题(每空3分,共42分)1、函数lg(1)y x =-的定义域是 ; 2、设函数sin 0()20xx f x xa x x ⎧<⎪=⎨⎪-≥⎩在点0x =连续,则a = ;3、曲线34y x =-在(1,5)--处的切线方程是 ; 4、已知2()f x dx xC=+⎰,则()f x = ;5、31lim(1)x x x →∞+= ; 6、函数32()1f x x x =-+的极大点是 ; 7、设()(1)(2)1000)f x x x x x =---……(,则'(0)f = ;8、曲线xy xe =的拐点是 ; 9、32x dx-⎰= ;10、设2,22a i j k b i j k λ=--=-++,且a b ,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()(2)f x d =。

大一(第一学期)高数期末考试题及答案

大一(第一学期)高数期末考试题及答案

页眉内容大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:101233()2x f x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

高等代数模拟试题

高等代数模拟试题

高等代数模拟试题一 选择题(每小题2分,共16分)1 哪个向量组是线性相关的? (A) P[x]中, 1 , 2n, ,,x x x .(B) 2 2P ⨯中, 任意5个矩阵A ,B ,C ,D ,E(C) 在次数≤2的全体多项式以及零多项式所成线性空间3[]P x 中, 1 , 22 1 , 1 x x +-.(D) 3P 中, 123(1,0,0), (1,1,0), (1,1,1)ααα===2在数域P 上 ,下列集合关于通常的加法和数乘是线性空间的有( ) (1) {}(, 0 , ,0 , ),V a b a b P =∈ . (2) {}1212(, , ,)0n V a a a a a =+= (3) {} ()0n nV A Ptr A ⨯=∈=(4) {}()[] (0)0V f x P x f =∈=(A) 1个 (B) 2个 (C) 3个 (D) 4个3下述结论错误的是(A) [,]a b V C = 是实数域上的无限维线性空间. (B) {} n nV A P A A ⨯'=∈=是P 上(1)2n n +维线性空间. (C) {} n nV A P A A ⨯'=∈=-是P 上(1)2n n -维线性空间.(D) ,a b V a b P b a ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭是P 上4维线性空间. 4.设V =3R ,123123(,,),(,,)x x x y y y αβ==,二元实函数是(,)'A αβαβ=,其中(A)101010100A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, (B) 101010102A ⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,(C)101000100A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, (D) 111110101A -⎛⎫ ⎪= ⎪ ⎪⎝⎭第1页选取上述那个矩阵A 能使V 成为欧氏空间。

5 设A , B ,C 都是n×n 矩阵,且0C ≠,那么(1) CAC ~ A 2C (2) 22~ CB B C (3) ~ CAB ABC (4) ~ CA AC (A) (1) , (2) , (3) , (4) 都正确 (B) (1) , (4) 正确 (C) (1) , (2) , (3) 正确 (D) 都不正确6 下列结论错误的是(A) 如果n 阶复数矩阵A 的最小多项式无重根,那么A 相似于一个对角矩阵 (B) 如果n 阶矩阵A 有n 个线性无关的特征向量,那么A 相似于对角矩阵 (C) 如果n 阶矩阵A 相似于一个对角矩阵,那么A 有n 个不同的特征值 (D) 相似矩阵有相同的特征值 7 能与对角矩阵相似的矩阵是(1) 实对称矩阵 (2) 满足220A A E --= (3) 幂等矩阵 (4) 102003a b c ⎛⎫ ⎪ ⎪ ⎪⎝⎭(A) (1) , (2) , (3) (B) (1) , (2) , (3) ,(4)(C) (1) , (3) , (4) (D) (1), (2) 8 如果四个线性变换1234A A A A ,,,在标准正交基下的矩阵分别是(A)100010001⎛⎫ ⎪- ⎪ ⎪-⎝⎭ (B)011011100⎛⎫⎪- ⎪ ⎪⎝⎭(C)00100⎛⎫⎪⎪⎪-⎝⎭(D) 1000cos sin 0sin cos θθθθ⎛⎫⎪- ⎪ ⎪⎝⎭那么( )不是正交变换。

扬州大学第一学期高等代数试卷A

扬州大学第一学期高等代数试卷A

扬州大学第一学期高等代数试卷A数学与应用数学专业 级 班答卷说明:1、本试卷共 3 页,四 个大题,满分100分,120 分钟完卷。

1、已知多项式()()2,85235+=--=x x g x x x x f ,用()x g 去除()x f ,则其商式为 ,余式为 。

2、多项式1415623-+-x x x 的有理根为 。

3、9级排列987654321的逆序数是 。

4、行列式=+++1222111b a ac c b ba c ac b c b a 。

5、已知向量组()3,1,2,2α=,()2,2,1,1β=-,()6,6,6,2=γ,则这个向量组的秩为 。

6、当=λ 时,方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x 无解。

7、已知矩阵A 是3级方阵,5-=A ,把A 按列分块为()γβα,,,其中γβα,,分别是A 的第一、二、三列,则行列式()αβαγ,3,7-= 。

8、矩阵⎪⎪⎪⎭⎫ ⎝⎛=120010001A ,则1-A = 。

9、设4阶方阵()123,,,A αγγγ=,()123,,,B βγγγ=,其中123,,,,αβγγγ均为4维列向量,已知行列式|A|=4,|B|=1,则|A+B|= 。

10、已知()⎪⎭⎫ ⎝⎛==31,21,1,3,2,1βα,设βα'=A ,则nA = 。

s p ,11 是s 个互不相同的互数,1>n 。

则多项式()s n p p p x x f 21-=在有理数域上( )。

A 、不可约; B 、可约; C 、有有理根; D 、不一定可约。

2、方程()0347534453542333322212223212=---------------=x x x x x x x x x x x x x x x x x f 的根的个数为( )。

A 、1个; B 、2个; C、3个; D 、4个。

大一高等数学考试试题

大一高等数学考试试题

高等数学(上)模拟试卷一一、 填空题(每空3分,共42分) 1、函数lg(1)y x =-的定义域是;2、设函数20() 0x x f x a x x ⎧<=⎨+≥⎩在点0x =连续,则a =;3、曲线45y x =-在(-1,-4)处的切线方程是;4、已知3()f x dx x C=+⎰,则()f x = ;5、21lim(1)x x x →∞-=;6、函数32()1f x x x =-+的极大点是;7、设()(1)(2)2006)f x x x x x =---……(,则(1)f '=;8、曲线xy xe =的拐点是;9、21x dx-⎰= ;10、设32,a i j k b i j k λ=+-=-+,且a b ⊥,则λ= ;11、2lim()01x x ax b x →∞--=+,则a =,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()()f x d e = 。

二、 计算下列各题(每题5分,共20分) 1、011lim()ln(1)x x x →-+2、y =y ';3、设函数()y y x =由方程xyex y =+所确定,求0x dy =;4、已知cos sin cos x t y t t t =⎧⎨=-⎩,求dy dx 。

三、 求解下列各题(每题5分,共20分)1、421x dx x +⎰2、2sec x xdx ⎰3、40⎰4、221dx a x +四、 求解下列各题(共18分):1、求证:当0x >时,2ln(1)2x x x +>-(本题8分)2、求由,,0xy e y e x ===所围成的图形的面积,并求该图形绕x 轴旋转一周所形成的旋转体的体积。

(本题10分)高等数学(上)模拟试卷二一、填空题(每空3分,共42分)1、函数lg(1)y x =-的定义域是 ;2、设函数sin 0()20xx f x xa xx ⎧<⎪=⎨⎪-≥⎩在点0x =连续,则a = ;3、曲线34y x =-在(1,5)--处的切线方程是 ; 4、已知2()f x dx x C=+⎰,则()f x = ;5、31lim(1)xx x →∞+=; 6、函数32()1f x x x =-+的极大点是 ; 7、设()(1)(2)1000)f x x x x x =---……(,则'(0)f = ;8、曲线xy xe =的拐点是 ; 9、32x dx-⎰= ;10、设2,22a i j k b i j kλ=--=-++,且a b,则λ= ;11、2lim()01x x ax b x →∞--=+,则a =,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()(2)f x d = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 单项选择题(本题共5道小题,每题4分,把答案填在横线上)
1.设⎪⎪⎪⎭⎫
⎝⎛=33
3
222
111c b a c b a c b a A ,⎪⎪⎪


⎝⎛=33
3
222
111
d b a d b a d b a B ,且2=A ,3=B ,则=-B A 2 .
(A) 1 (B) 2 (C) 3 (D) 4 2. 设m ααα ,,21均为n 维向量,那么下面结论正确的是 (A)若02211=+++m m k k k ααα ,则m ααα ,,21线性相关
(B) 若对任意一组不全为零的数m k k k ,,21,都有02211≠+++m m k k k ααα ,则m ααα ,,21线性无关
(C)若m ααα ,,21线性相关,则对任意一组不全为零的m k k k ,,21,都有
02211=+++m m k k k ααα
(D) 000021=+++m ααα ,则m ααα ,,21线性无关
3.设21,ββ是非齐次线性方程组b Ax =的两个不同解,21,αα是方程组0=Ax 的基础解系,21,k k 为任意常数,则b Ax =的通解为 . (A)2
)(2
121211ββααα-+
++k k (B) 2
)(2
121211ββααα++
-+k k
(C) 2
)(2
121211ββββα-+
-+k k (D) 2
)(2
121211ββββα++
-+k k
4.已知⎪⎪⎪


⎝⎛=96342321t Q ,P 是3阶非零矩阵,且满足0=PQ ,则 .
(A)6=t 时,P 的秩必为1 (B) 6=t 时,P 的秩必为2
(C)6≠t 时,P 的秩必为1 (D) 6≠t 时,P 的秩必为2
5.设A 为n 阶矩阵,0≠A ,*A 为A 的伴随矩阵,n E 为n 阶单位矩阵,若A 有特征值λ,则n E A +2*)(必有特征值 .
(A) 12+⎪⎪⎭⎫ ⎝⎛λA (B) 2
⎪⎪⎭
⎫ ⎝⎛λA (C) 12+A (D) 2A
二.填空题(本题共6道小题,每题4分,把答案填在横线上)
1.行列式=+++y
x
y
x x y x y y x y x
.
2. 设)3
1
,21,1(,)3,2,1(==βα,βαT A =,则n A = .
3. 设⎪⎪⎪⎭
⎫ ⎝⎛-=021112111A ,则=-+-)()(21E A E A .
4.设A 为n 阶方阵,*A 是A 的伴随矩阵,则*)(aA = .
5.设1112
223
3
3a b c A a b c a b c ⎛⎫
⎪= ⎪ ⎪⎝⎭,若1
112
223
3
3a c b AP a c b a c b ⎛⎫

= ⎪ ⎪⎝⎭
,则初等矩阵P = . 6. 设A 为3级实对称矩阵,且满足条件22A A O +=.已知A 的秩等于2,则A 的全部特征值为_____ _.
三.计算题(本题共32分)
1.(10分)计算行列式3
214214314324321.
2.(12分)已知向量组),0,1,(),1,2,(),1,1,0(321b a ==-=βββ与向量组)3,2,1(1-=α,
)7,6,9(),1,0,3(32-==αα具有相同的秩,且3β可由321,,ααα线性表示,求b a ,的值
3.(10分)已知XA A X =+,其中⎪⎪⎪

⎫ ⎝⎛-=200012031A ,求矩阵X.
四.讨论题(14分)
设方程组⎪⎪⎩⎪⎪⎨⎧=----=+++-=+-+=+-+t x x x x x px x x x x x x x x x x 432143214
32143216172314620322问当t p ,取何值时,(1)方程组有唯一解;(2)
方程组无解;(3)方程组有无穷多解,求其通解(用导出组的基础解系表示).
五.证明题(本题共10分)
1. 假设向量β可以经向量组r ααα ,,21,证明:表示法是唯一的充分必要条件是r ααα ,,21线性无关。

相关文档
最新文档