《高等代数》(上)期末试卷(A)

合集下载

高等数学a上期末考试试题和答案

高等数学a上期末考试试题和答案

高等数学a上期末考试试题和答案高等数学A上期末考试试题一、选择题(每题3分,共30分)1. 极限的定义是()。

A. 函数在某点的值B. 函数在某点的增量C. 函数在某点的导数D. 函数在某点的无穷小答案:D2. 函数f(x)=x^2在x=0处的导数是()。

A. 0B. 1C. 2D. 3答案:C3. 定积分∫₀¹x²dx的值是()。

A. 1/3B. 1/2C. 1D. 2答案:C4. 函数f(x)=sinx在x=π/2处的值是()。

A. 0B. 1C. -1D. π/2答案:B5. 函数f(x)=e^x的原函数是()。

A. e^xB. e^(-x)C. ln(x)D. x答案:A6. 函数f(x)=x^3-3x^2+2的极值点是()。

A. 0B. 1C. 2D. 3答案:B7. 函数f(x)=x^2+2x+1的最小值是()。

A. 0B. 1C. 2D. 3答案:B8. 函数f(x)=ln(x)的定义域是()。

A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B9. 函数f(x)=x^3-6x^2+11x-6的拐点是()。

A. 1B. 2C. 3D. 4答案:B10. 函数f(x)=x^4-4x^3+6x^2-4x+1的零点是()。

A. 0B. 1C. 2D. 3答案:B二、填空题(每题3分,共30分)11. 函数f(x)=x^3-3x^2+2的导数是______。

答案:3x^2-6x12. 函数f(x)=e^x的二阶导数是______。

答案:e^x13. 函数f(x)=ln(x)的不定积分是______。

答案:xln(x)-x+C14. 函数f(x)=x^2-4x+4的顶点坐标是______。

答案:(2, 0)15. 函数f(x)=sinx+cosx的周期是______。

答案:2π16. 函数f(x)=x^3-3x^2+2的单调增区间是______。

高等代数期末卷及答案

高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试《高等代数》试卷(1)1 •设 f (x) = x 4+x ? +4x - 9 ,贝H f (一3) = 69 .. 2•当 t = _2,-2 . 时,f(x)=x 3—3x+t 有重因式。

3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2=23 。

1 1 —-2 0 1x , 2x 2 2x 3 x 4 二 07. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为x( ~'X 2 _'4x 3 ~3x 4 = 0题号-一--二二-三四五六七总分得分、填空(共35分,每题5 分)得分4.行列式1 -35.■’4 10"1 0 3-1、 -1 1 3'9 -2 -1 2 1 0 2」2 0 1< 9 9 11<1 3 4 丿6.z5 0 0 1 -1<0 2 1;0-2 3矩阵的积c 亠5 刘=2x3 X44x3, x4任意取值。

X2 二-2x^ --x4、(10分)令f(x),g(x)是两个多项式。

求证 当且仅当(f(x)g(x), f(x)g(x))=1。

证:必要性.设(f(x)g(x), f (x)g(x)) =1。

(1%令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知p(x)| f (x)或 p(x) |g(x) o (1%)不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。

故 p(x) |1 矛盾。

(2%)充分性.由(f (x)g(x), f (x)g(x)^1知存在多项式u(x), v(x)使u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%)从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%)故(f (x), g(x)) =1 o (1%)ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1有唯一解、没有解、有无穷解?在有解情况下求其解。

高代期末考试试卷

高代期末考试试卷

高代期末考试试卷一、选择题(每题4分,共40分)1. 以下哪个矩阵是可逆的?A. [1 2; 3 4]B. [1 0; 0 0]C. [2 0; 0 2]D. [1 1; 1 1]2. 矩阵A的特征值是λ1和λ2,那么矩阵A^2的特征值是?A. λ1^2, λ2^2B. 2λ1, 2λ2C. λ1, λ2D. λ1+λ2, λ2+λ13. 线性方程组有非零解的条件是?A. 系数矩阵的行列式不等于0B. 系数矩阵的行列式等于0C. 增广矩阵的秩等于系数矩阵的秩D. 增广矩阵的秩不等于系数矩阵的秩4. 以下哪个向量组是线性无关的?A. [1, 0], [0, 1]B. [1, 1], [1, 2]C. [1, 2], [2, 4]D. [1, 2, 3], [4, 5, 6]5. 矩阵A的秩是3,那么矩阵A的零空间的维数是?A. 0B. 1C. 2D. 36. 以下哪个矩阵是对称矩阵?A. [1 2; 3 4]B. [1 3; 3 1]C. [2 1; 1 2]D. [1 0; 0 1]7. 以下哪个矩阵是正交矩阵?A. [1 0; 0 1]B. [1/√2 1/√2; -1/√2 1/√2]C. [1 1; 1 1]D. [1 2; 3 4]8. 以下哪个矩阵是幂等矩阵?A. [1 0; 0 1]B. [1 1; 1 1]C. [0 1; 1 0]D. [1 2; 3 4]9. 以下哪个矩阵是投影矩阵?A. [1 0; 0 0]B. [1 1; 1 1]C. [1 0; 0 1]D. [0 1; 1 0]10. 以下哪个矩阵是单位矩阵?A. [1 0; 0 1]B. [1 1; 1 1]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题(每题4分,共20分)1. 矩阵的迹是其对角线元素的______。

2. 矩阵的转置是将矩阵的行和列进行______。

3. 矩阵的行列式可以通过______展开来计算。

《高等代数》期末考试卷

《高等代数》期末考试卷

[ ϑ1 2 3 | | 22高等代数期末考试卷一、 单选题(32 分. 共 8 题, 每题 4 分)1)设 b 为 3 维行向量, V = {(x 1 , x 2 , x 3 ) | ( x 1 , x 2 , x 3 ) = b },则。

CA) 对任意的 b ,V 均是线性空间; B) 对任意的 b ,V 均不是线性空间; C) 只有当 b = 0 时,V 是线性空间;D) 只有当 b σ 0 时,V 是线性空间。

2)已知向量组 I :α1 ,α2 ,...,α s 可以由向量组 II : ⎭1 , ⎭2 ,..., ⎭t 线性表示,则下列叙述正确的是。

AA) 若向量组 I 线性无关,则 s t ; B) 若向量组 I 线性相关,则 s > t ; C) 若向量组 II 线性无关,则 s t ;D) 若向量组 II 线性相关,则 s > t 。

3)设非齐次线性方程组 AX = ⎭ 中未定元个数为 n ,方程个数为 m ,系数矩阵 A 的秩为 r ,则。

DA) 当 r < n 时,方程组 AX = ⎭ 有无穷多解; B) 当 r = n 时,方程组 AX = ⎭ 有唯一解;C) 当 r < m 时,方程组 AX = ⎭ 有解;D) 当 r = m 时,方程组 AX = ⎭ 有解。

4)设 A 是 m n 阶矩阵, B 是 n m 阶矩阵,且 AB = I ,则。

AA) r ( A ) = m , r (B ) = m ;B) r ( A ) = m , r (B ) = n ;C) r ( A ) = n , r (B ) = m ;D) r ( A ) = n , r (B ) = n 。

{1 1 1[5)设 K 上 3 维线性空间 V 上的线性变换ϕ 在基 ⋂ ,⋂ ,⋂ 下的表示矩阵是|1 0 1|,则 ϕ 在基|1 1 1|⋂1 , 2⋂2 ,⋂3 下的表示矩阵是。

2020-2021大学《高等代数》期末课程考试试卷A(含答案)

2020-2021大学《高等代数》期末课程考试试卷A(含答案)

2020-2021《高等代数》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、填空(共40分,每小题4分)1.向量空间n P 的子空间12112{(,,,,0)0,}n k W x x x x x x P -=+=∈的维数为____________,它的一组基为__________________.2.已知111α⎛⎫ ⎪= ⎪ ⎪-⎝⎭是矩阵2125312A a b -⎛⎫⎪= ⎪ ⎪--⎝⎭的一个特征向量,则_______,_______a b ==特征向量α对应的特征值0___________λ=.3.k 满足___________时,二次型22212312132(1)22f x x k x kx x x x =--+---是负定的。

4.设矩阵20022311A x -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000B y -⎛⎫⎪= ⎪ ⎪⎝⎭相似,则_________,________x y ==.5.在空间[]n P x 中,设变换σ为()(1)()f x f x f x →+-,则σ在基0(1)(1)1,(1,2,1)!i x x x i i n i εε--+===-下的矩阵为____________________.6.相似矩阵的特征值__________.7.向量)1,3,2,4(),4,3,2,1(==βα,则内积=),(βα___________. 8.若A 是实对称矩阵,则 A 的特征值为____________.9.n 元实二次型),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于___________________.10.对于线性空间V 中向量)1(,,,21≥r r ααα ,若在数域P 中有r 个不全为零的数r k k k ,,,21 ,使02211=+++r r k k k ααα ,则向量r ααα,,,21 称为_________.二、(15分)设V 是实数域上由矩阵A 的全体实系数多项式组成的空间,其中2100100,200A ωωω⎛⎫- ⎪== ⎪ ⎪⎝⎭,求V 的维数和一组基.三、(15分)用非退化线性替换化二次型22212312132322448x x x x x x x x x ---++为标准形.四、(15分)在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在基1234,,,ηηηη下的坐标,设(1,0,1,0)ξ=1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩; 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩.五、(15分)设1234,,,εεεε是四维线性空间V 的一组基,已知线性变换σ在这组基下的矩阵为1021121312552212⎛⎫⎪- ⎪⎪⎪--⎝⎭ 1)求σ在基11242234334442,3,,2ηεεεηεεεηεεηε=-+=--=+=下的矩阵; 2)求σ的核与值域.2020-2021《高等代数》期末课程考试试卷A 答案一、填空(共40分,每小题4分)1、向量空间n P 的子空间12112{(,,,,0)0,}n k W x x x x x x P -=+=∈的维数为__2n -__________,它的一组基为122(1,1,0,,0,0),(0,0,1,,0,0),,(0,0,0,,1,0)n εεε-=-==_。

高等代数上期末复习题

高等代数上期末复习题

高等代数(1)复习题一、判断题1、四阶行列式中含因子2311a a 的项为42342311a a a a 和44322311a a a a 。

( )2、设D 为六阶行列式,则162534435261a a a a a a 是D 中带负号的项。

( )3、对任一排列施行偶数次对换后,排列的奇偶性不变。

( )4、排列()3211 -n n 的逆序数为n 。

( )5、排列()3211 -n n 为偶排列。

( )6、若行列式中所有元素都是整数,且有一行中元素全为偶数,则行列式的值一定是偶数。

( )7、若22B A =,则B A =或B A -=。

( )8、若AC AB =,0≠A ,则C B =。

( )9、若矩阵A 满足A A =2,则0=A 或E A =。

( ) 10、设A 是n 阶方阵,若0≠A ,则必有A 可逆。

( ) 11、若矩阵A 满足02=A ,则0=A 。

( )12、若矩阵B A ,满足0AB =,且0A ≠,则0B =。

( ) 13、对n 阶可逆方阵A ,B ,必有()111---=B A AB 。

( )14、对n 阶可逆方阵A ,B ,必有()111---+=+B A B A 。

( )15、设A ,B 为n 阶方阵,则必有B A B A +=+。

( ) 16、设A ,B 为n 阶方阵,则必有BA AB =。

( ) 17、若矩阵A 与B 等价,则B A =。

( )18、若A 与B 都是对称矩阵,则AB 也是对称矩阵。

( )19、若矩阵A 的所有1r +级的子式全为零,则A 的秩为r 。

( ) 20、设n m A ⨯,n m B ⨯为矩阵,则()()()B R A R B A R +≤+。

( ) 21、设A =0,则()0=A R 。

( )22、线性方程组0=⨯X A n n 只有零解,则0≠A 。

( ) 23、若b AX =有无穷多解,则0=AX 有非零解。

( )24、设n 级方阵C B A ,,满足ABC E =,E 为单位矩阵,则CAB E =。

高等代数2009-2010第一学期期末试卷答案

高等代数2009-2010第一学期期末试卷答案

高等代数(北大版)第一学期考试卷答案一、选择题(每小题3分,共24分)1.D2.C3.B4.D5.A6.B7.C8.A二、填空题(每小题3分,共18分)1.322(1)5(1)7(1)1x x x -+-+-- 2.2x + 3.1()2n n +- 4.)1,,1,1( c x = 5.d6.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=-3/13/1003/23/100005200211A三、计算题(本大题共3个小题,共22分.请写出必要的推演步骤和文字说明)1.(6分)设b ax x x x x f +++-=23463)(,1)(2-=x x g ,a 与b 是什么数时,)(x f 能被)(x g 整除?解:方法一、利用辗转相除法,得余式:7)3()(++-=b x a x r ,………………………………………..4分由已知, 7,3-==b a ……………………………………………..2分方法二、由于)(x f 能被)(x g 整除,而1)(2-=x x g 的零点为1和-1,所以1和-1也应是)(x f 的零点,即04)1(=++=b a f 和 010)1(=+-=-b a f …………5分 故7,3-==b a …………………………………………………...….1分2.(8分)已知B AX X +=,其中⎪⎪⎪⎭⎫ ⎝⎛---=101111010A ,⎪⎪⎪⎭⎫ ⎝⎛--=350211B ,求矩阵X 。

解:由 B AX X += 得 B X A E =-)(而 ⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛=-201101011101111010100010001A E 可逆…………….2分可以求得 ⎪⎪⎪⎭⎫ ⎝⎛--=--11012312031)(1A E ……………………………………….. .3分 所以 ⎪⎪⎪⎭⎫ ⎝⎛--=-=-11012312031)(1B A E X ⎪⎪⎪⎭⎫ ⎝⎛--350211=⎪⎪⎪⎭⎫ ⎝⎛--110213………………3分3.(8)b a ,取什么值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 5432154325432154321334536223231有解?在有解的情形求一般解。

厦门大学参考答案--08-09学年第一学期《高等代数》期末考试卷

厦门大学参考答案--08-09学年第一学期《高等代数》期末考试卷

厦门⼤学参考答案--08-09学年第⼀学期《⾼等代数》期末考试卷特别说明:答案写在答题纸上⼀、单选题(32分. 共8题, 每题4分)1.下列说法错误的是A) 若向量组123,,ααα线性⽆关,则其中任意两个向量线性⽆关; B) 若向量组123,,ααα中任意两个向量线性⽆关,则123,,ααα线性⽆关; C) 向量组122331,,αααααα---线性相关;D) 若向量组123,,ααα线性⽆关,则112123,,αααααα+++线性⽆关.2. 设n 维列向量12,,...,m ααα()m n <线性⽆关, 则n 维列向量12,,...,m βββ线性⽆关的充要条件是A) 向量组12,,...,m ααα可由向量组12,,...,m βββ线性表⽰; B) 向量组12,,...,m βββ可由向量组12,,...,m ααα线性表⽰; C) 向量组12,,...,m ααα与向量组12,,...,m βββ等价; D) 矩阵12(,,...,)m A ααα=与矩阵12(,,...,)m B βββ=相抵.3.设线性⽅程组0Ax =的解都是线性⽅程组0Bx =的解,则A) ()()r A r B <; B) ()()r A r B >; C) ()()r A r B ≥;D) ()()r A r B ≤.4.设n 阶⽅阵A 的伴随矩阵*0A ≠,⾮齐次线性⽅程组Ax b =有⽆穷多组解,则对应的齐次线性⽅程组0Ax =的基础解系 A) 不存在;B) 仅含⼀个⾮零解向量;C) 含有两个线性⽆关的解向量; D) 含有三个线性⽆关的解向量.5.下列⼦集能构成22R的⼦空间的是A) 221{|||0,}V A A A R ?==∈;B) 222{|()0,}V A tr A A R==∈;C) 2223{|,}V A A A A R ?==∈;D) 224{|,}V A A A A A R ?'==-∈或.6.设V 是数域K 上的线性空间, V 上的线性变换?在基12,,...,n ααα下的矩阵为A 且||2A =,若?在基11,,...,n n ααα-下的矩阵为B , 则||B =A) 2n; B) 2; C)12; D) 不能确定.7.设V 是n 维向量空间,?和ψ是V 上的线性变换,则dimIm dimIm ?ψ=的充分必要条件是A) ?和ψ都是可逆变换;B) Ker ?=Ker ψ;C) Im Im ?ψ=; D) ?和ψ在任⼀组基下的表⽰矩阵的秩相同. 8.设?是线性空间V 到U 的同构映射, 则下列命题中正确的有个. (Ⅰ) ?为可逆线性映射;(Ⅱ) 若W 是V 的s 维⼦空间, 则()?W 是U 的s 维⼦空间; (Ⅲ) ?在给定基下的表⽰矩阵为可逆阵;(Ⅳ) 若12V=V V ⊕, 则1212)))⊕=⊕(V V (V (V . A) 1B) 2C) 3D) 4⼆、填空题(32分. 共8题,每题4分)1. 若矩阵1234(,,,)A αααα=经过⾏初等变换化为1003002401050000-??-, 那么向量组1234,,,αααα的⼀个极⼤⽆关组是其余向量由此极⼤⽆关组线性表⽰的表⽰式为.2. 设3维向量空间的⼀组基为123(1,1,0),(1,0,1),(0,1,1)ααα===,则向量(2,0,0)β=在这组基.3. 设1V ,2V 均为线性空间V 的⼦空间,则12()L V V ?4. 数域K 上所有三阶反对称矩阵构成的线性空间的维数是的⼀组基. 5. 已知12K上的线性变换?定义如下:((,))(0,)ab a ?=-,则Ker ?=Im ?6. 设?是数域K 上n 维线性空间V 到m 维线性空间U 的线性映射, 则?为满射的充分必要条件是(请写出两个)7. 设12,,...,n ααα和12,,...,n βββ是线性空间V 的两组基,从12,,...,n ααα到12,,...,n βββ的过渡矩阵为P . 若?是V 上的线性变换且,()i i ?αβ=1,2,...,i n =,则?在基12,,...,n βββ下的表⽰矩阵是8. 设?是线性空间V 上的线性变换,?在基12,,...,n ααα下的表⽰矩阵为0A B C ??,其中A 为r r ?矩阵,则存在V 的⼀个⾮平凡?-,,)r α.三、(8分) 设线性空间V 的向量组12,,...,m ααα线性⽆关,V β∈,考虑向量组12,,,...,m βααα.求证:或者该向量组线性⽆关,或者β可由12,,...,m ααα线性表⽰. ,,m α线性相关,则存在不全为,,k m 使得+k m m α+=.事实上,若k +k m m α+=12,,...,ααα线性⽆关知1m k ==k =0.m ==k =0.,,k m 不全为0相⽭盾.mm k k α--从⽽,或者该向量组线性⽆关,或者β可由α四、(10分) 设1V ,2V 分别是数域K 上的齐次线性⽅程组12n x x x == =与120n x x x +++=的解空间. 证明112n KV V ?=⊕.1n V V a ?∈n n a a ==++=,则0n a ===1n n K a ??∈,11i V a n∈∑, 21n i i V a n =??∈?∑n a =1n i i a n =?∑+n a1n V V a ∈n n a a ==++=,则0n a ===(1)000011n n-?,1,1,,1)n ?,所以1.故1dim V (1)000011n n-? ?,1,1,,1)n ?,1dim 1,dim V =1n n K a ??∈,11i n V a n ?∈∑, 21n i i n V a n =??∈?∑n a =1n i i n a n =?∑+n n a五、(10分) 设m n A K ?∈. 证明:()r A r =的充分必要条件是存在m r B K ?∈,r n C K ?∈,使得()()r B r C r ==且A BC =.证明:充分性:由于m rB K∈,r nC K∈满⾜()()r B r C r ==且A BC =,所以()()()()()r r B r C r r A r BC r B r =+-≤=≤=故()r A r =.必要性:由于()r A r =,所以存在m 阶可逆矩阵P 及n 阶可逆矩阵Q 使得000rI A P Q ??=.令,(,0)0r r I B P C I Q ??==,则m r B K ?∈,r n C K ?∈满⾜()()r B r C r ==且A BC =.六、(8分) 设V , U, W 是有限维线性空间,:V U ?→,:W U ψ→是线性映射. 求证:存在线性映射:V W σ→使得?ψσ=的充分必要条件是Im Im ?ψ?.证明:充分性:法⼀:取V 的⼀组基12,,,n ααα,由于Im Im ?ψ?,所以()Im i ?αψ∈,1i n ?≤≤,即存在i W β∈使得()()i i ?αψβ=.定义线性映射:V W σ→满⾜(),1i i i n σαβ=?≤≤,则()()(),1i i i i n ψσαψβ?α==?≤≤.因此,ψσ?=.法⼆:取V 的⼀组基12,,,n ξξξ,U 的⼀组基12,,,m ηηη,W 的⼀组基12,,,s γγγ.设1212(,,,)(,,,)n m m n A ?ξξξηηη?= 1212(,,,)(,,,)s m m s B ψγγγηηη?=其中1212(,,,),(,,,)n s A B αααβββ==.由于I m I m ?ψ?,所以1212(,,,)(,,,)n s L L αααβββ?,即11,sj ij i i j n c αβ=?≤≤=∑.取()ij s n C c ?=,则A B C =.定义线性映射:V W σ→满⾜1212(,,,)(,,,)n s C σξξξγγγ=,则?ψσ=.必要性:对任意Im β?∈,存在V α∈使得()β?α=.由于?ψσ=,所以()β?α=(())Im ψ?αψ=∈从⽽,Im Im ?ψ?.附加题: (本部分不计⼊总分)设V , U, W 是有限维线性空间且dim dim V W =,:V U ?→,:W U ψ→是线性映射. 证明:存在可逆线性映射:V W σ→使得?ψσ=的充分必要条件是Im Im ?ψ=.证明:充分性:法⼀:由于d i m d i m V W =且Im Im ?ψ=,所以由维数公式知:d i m d i m Ke r K e r ?ψ=.取Ker ψ的⼀组基12,,,r ηηη;Ker ?的⼀组基12,,,r ξξξ,将其扩充为V的⼀组基121,,,,,r r n ξξξξξ+,则1(),()r n ?ξ?ξ+是Im ?的⼀组基.由于Im Im ?ψ=,所以1(),()r n ?ξ?ξ+是Im ψ的⼀组基.设()(),1i i r i n ?ξψη=?+≤≤,由于1(),,()r n ψηψη+线性⽆关,所以1,,r n ηη+线性⽆关.我们断⾔,121,,,,,,r r n ηηηηη+线性⽆关.事实上,若1122110r r r r n n k k k k k ηηηηη++++++++=,则将ψ作⽤于上式得11()()0r r n n k k ψηψη++++=.由于1(),,()r n ψηψη+线性⽆关,所以10r n k k +===.于是1122r r k k k ηηη+++=0.⼜12,,,r ηηη是Ker ψ的⼀组基,故10r k k ===从⽽,121,,,,,,r r n ηηηηη+线性⽆关.注意到dim W n =,故121,,,,,,r r n ηηηηη+是W 的⼀组基.定义线性映射:V W σ→满⾜(),1i i i n σξη=?≤≤.由于12,,,n ξξξ是V 的⼀组基,12,,,n ηηη是W的⼀组基,故σ可逆.⼜()()(),1i i i i n ψσξψη?ξ==?≤≤,从⽽?ψσ=.法⼆:取V 的⼀组基12,,,n ξξξ,U 的⼀组基12,,,s γγγ,W 的⼀组基12,,,n ηηη.设1212(,,,)(,,,)n s s n A ?ξξξγγγ?=1212(,,,)(,,,)n s s n B ψηηηγγγ?=且dimIm dimIm r ?ψ==,则()()r A r B r ==.于是,存在n 阶可逆矩阵,P Q 使得1(,0),AP A =1(,0)BQ B =,其中11,s r A B K ?∈列满秩.由于Im Im ?ψ=,所以同上题证明可知存在n 阶矩阵C 使得A BC =,则11(,0)()A AP BQ Q CP -==.设111212122X X Q CP X X -??=,其中11X 是r 阶⽅阵,则1112112122(,0)(,0)X X A B X X ??=.从⽽,1111A B X =.⼜1A 列满秩,所以存在2r sA K ?∈使得21r A A I =.于是,212111()r I A A AB X ==,即11X 是可逆矩阵.因此,存在可逆矩阵11100n r X X Q P I --??=使得()111111111111100(,0),0(,0)00n r n r X X BX BQ P B P B X P A P A I I ------=====定义线性映射:V W σ→满⾜1212(,,,)(,,,)n n X σξξξηηη=由于X 可逆且A BX =,故σ可逆且?ψσ=.必要性:由于?ψσ=,所以同上题证明可知Im Im ?ψ?.⼜由:V W σ→可逆可知1ψ?σ-=,所以Im Im ψ??.从⽽,Im Im ?ψ=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等代数》(上)期末试卷(A )
一、填空题(每空3分,共15分)
1.设方阵1112223
3
3b x c A b x c b x c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1
112
223
3
3b y c B b y c b y c ⎡⎤
⎢⎥=⎢
⎥⎢⎥⎣⎦
,且2,3A B =-=, 则行列式2A B += .
2.已知A 是一个34⨯矩阵,且秩()2A =,而102020103B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
,则秩()BA = . 3. 多项式2005
20042
322006()(54)31(8112)f x x x x x x ⎡⎤=--+-+⎣⎦
的所有系数之和
= ,常数项= .
4. ()f x 为多项式,用1x -除时余式为3,用3x -除时余式为5,则用(1)(3)x x --除时余式为 .
二、选择题(每题3分,共12分)
1.设n 维向量组12345,,,,ααααα的秩为3,且满足135230,ααα+-=
242,αα=则向量组的一个极大无关组为( )
A . 125,,ααα;
B . 124,,ααα; C. 245,,ααα; D. 135,,ααα. 2. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则( )
A . 当m n >时,必有行列式0A
B ≠; B . 当m n >时,必有行列式0AB =;
C . 当n m >时,必有行列式0AB ≠;
D . 当n m >时,必有行列式0AB =.
3.设,A B 都是可逆矩阵,则矩阵0A C B ⎡⎤⎢⎥⎣⎦的逆矩阵为( )
A . 1
1
10A C
B ---⎡⎤
⎢⎥⎣⎦; B . 1110B C A ---⎡⎤⎢⎥⎣⎦

C . 1
11
10A A CB B ----⎡⎤
⎢⎥-⎣⎦; D .11110A B CA B ----⎡⎤
⎢⎥-⎣⎦
. 4.已知()p x 是数域P 上的不可约多项式,(),()[],f x g x P x ∈ 则下列命题中错误的是( )
A .若()|(),p x f x 则((),())1p x f x =;
B .若((),())1,p x f x =则()|()p x f x ;
C .若()()(),p x f x g x 且()|(),p x f x 则((),())1p x g x ≠;
D .若()()(),p x f x g x 则((),())1f x g x =.
三、计算题(共51分)
1. (12分)计算行列式111212122212
n n n n n n
a b a b a b a b a b a b D a b a b a b ------=
---.
2. (15分),a b 取什么值时,线性方程组1234512345
234512345132322635433x x x x x x x x x x a x x x x x x x x x b
++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩
有解?在有解的情形,求一般解.
3.(12分)已知AX B X =+,其中012114210A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 112341B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
,求矩阵.X 4.(12)设 5
4
3
2
()2101616146f x x x x x x =-+-+-,
分别求()f x 在复数域、实数域和有理数域上的标准分解式. 四、证明题(共22分)
1. (12分)设*η 是非齐次线性方程组AX β=的一个解,12,,,n r ξξξ-是对应的齐
次线性方程组0AX =的一个基础解系,证明:
(1)12*,,,,n r ηξξξ-线性无关;
(2)12*,*,*,
,*n r ηηξηξηξ-+++线性无关.
(2、3题任意选作一题,10分)
2.设,A B 为n 阶矩阵,2
2
,,A A B B ==证明:2
()A B A B +=+当且仅当
0.AB BA ==
3.设(),()f x g x 是数域P 上的多项式,()f x 与()g x 的最小公倍式指的是[]P x 中满足以下条件的一个多项式():m x (a )()()f x m x 且()()g x m x ;
(b )如果[][]h x P x ∈且()()f x h x ,()()g x h x ,那么()()m x h x .
(1)证明:[]P x 中任意两个多项式都有最小公倍式,并且除了可能的零次因式的差别外,是唯一的;
(2)设(),()f x g x 都是最高次项系数是1的多项式,令[(),()]f x g x 表示()f x 与
()g x 最高次项系数是1的那个最小公倍式,证明:
()()()(),()[(),()].f x g x f x g x f x g x =。

相关文档
最新文档