2020最新高考模拟测试数学卷含答案

合集下载

2020高考数学模拟试卷含答案

2020高考数学模拟试卷含答案

2020⾼考数学模拟试卷含答案2020⾼考虽然延迟,但是练习⼀定要跟上,加油,少年!第1卷(选择题共60分)⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分 1.若全集U=R,集合M ={}24x x >,N =301x xx ?-?>??+??,则()U M N I e=( )A.{2}x x <-B. {23}x x x <-≥或C. {3}x x ≥D.{23}x x -≤<2.若21tan(),tan(),544παββ+=-=则tan()4πα+=()A.1318B.318C.322D.13223.条件p :“直线l 在y 轴上的截距是在x 轴上的截距的两倍” ;条件q :“直线l 的斜率为-2” ,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.⾮充分也⾮必要4.如果212nx x ??-的展开式中只有第4项的⼆项式系数最⼤,那么展开式中的所有项的系数和是()A.0B.256C.64D.1645.12,e e u r u u r 为基底向量,已知向量121212,2,3AB e ke CB e e CD e e =-=+=-u u u r u r u u r u u u r u r u u r u u u r u r u u r,若A,B,D 三点共线,则k 的值为() A.2 B.-3 C.-2 D.36.⼀个单位有职⼯160⼈,其中有业务员120⼈,管理⼈员24⼈,后勤服务⼈员16⼈.为了了解职⼯的⾝体健康状况,要从中抽取⼀定容量的样本.现⽤分层抽样的⽅法得到业务⼈员的⼈数为15⼈,那么这个样本容量为() A.19 B.20 C.21 D.227.直线1y kx =+与曲线3y x ax b =++相切于点A (1,3),则b 的值为()A.3B.-3C.5D.-58.在⼀个45o 的⼆⾯⾓的⼀平⾯内有⼀条直线与⼆⾯⾓的棱成45o ⾓,则此直线与⼆⾯⾓的另⼀个⾯所成的⾓为() A.30oB.45oC.60oD.90o9.只⽤1,2,3三个数字组成⼀个四位数,规定这三个数必须同时使⽤,且同⼀数字不能相邻出现,这样的四位数有()t A.6个 B.9个 C.18个 D.36个10.若椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,线段12F F 被22y bx =的焦点分成53?的两段,则此椭圆的离⼼率为()A.1617B. 17C. 45D. 511.对任意两实数,a b ,定义运算“*”如下:()(),,a a b a b b a b ≤??*=?>??,则函数122()log (32)log f x x x =-*的值域为()xA.(,0]-∞B.22log ,03C.22log ,3??+∞D.R 12.⼀种专门占据内存的计算机病毒,开机时占据内存2KB ,然后每3分钟⾃⾝复制⼀次,复制后所占据内存是原来的2倍,那么开机后,该病毒占据64MB (1MB =102KB )内存需经过的时间为() A.15分钟 B.30分钟 C.45分钟 D.60分钟第II 卷(⾮选择题共90分)⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分. 13.若指数函数()()x f x a x R =∈的部分对应值如下表:则不等式1()0f x -<的解集为 . 14.数列{}n a 满⾜11200613,,,1nn na a a n N a a *++==∈-则= .15.已知实数x,y 满⾜约束条件1020()1x ay x y aR x ì--+澄í??£,⽬标函数3z x y =+只有当1x y ì=??í=时取得最⼤值,则a 的取值范围是 . 16.请阅读下列命题:①直线1y kx =+与椭圆22124x y +=总有两个交点;②函数3()2sin(3)4f x x p=-的图象可由函数()2sin 3f x x =按向量(,0)4a p=-r 平移得到;③函数2()2f x x ax b =-+⼀定是偶函数;④抛物线2(0)x ay a =?的焦点坐标是1(,0)4a.回答以上四个命题中,真命题是_______________(写出所有真命题的编号).三、解答题(共6⼩题,17—21题每题12分,第22题14分,共74分)17.已知向量,cos ),(cos ,cos ),a x x b x x c ===v v v(I )若//a c v v,求sin cos x x ×的值;(II) 若0,3x p18.在⼀次历史与地理两门功课的联合考试中,备有6道历史题,4道地理题,共10道题⽬可供选择,要求学⽣从中任意选取5道作答,答对4道或5道即为良好成绩.(I )设对每道题⽬的选取是随机的,求所选的5道题中⾄少选取2道地理题的概率;(II) 若学⽣甲随机选定了5道题⽬,且答对任意⼀道题的概率均为0.6,求甲没有取得良好成绩的概率(精确到⼩数点后两位).19.已知:如图,直三棱柱111ABC A B C -中,AC BC ^,D 为AB 的中点,1AC BC BB ==(I )求证:11BC AB ^; (II) 求证:1//BC 平⾯1CA D ;(III )求异⾯直线1DC 与1AB 所成⾓的余弦值.20.设12,x x 是函数322()(0)32a b f x x x a x a =+->的两个极值点,且122x x +=.(I )求证:01a(II) 求证:9b £.21.已知数列{}n a 的前n 项和为n S ,且n S =22(1,2,3)n a n L -=,数列{}n b 中,11b =,点1(,)n n P b b +在直线20x y -+=上.(I )求数列{}{},n n a b 的通项n a 和n b ;(II) 记1122n n n S a b a b a b =+++…,求满⾜167n S <的最⼤正整数n .22.⼀条斜率为1的直线l 与离⼼率为的双曲线E:22221(0,0)x y a b a b -=>>交于 ,P Q 两点,直线l 与y 轴交于R ,且3,4OP OQPQ RQ ?-=u u u r u u u r u u u r u u u r,求直线l 与双曲线E的⽅程.⾼三联考数学(⽂科)参考答案⼀、选择题:(每⼩题5分,共60分)⼆、填空题:(每⼩题4分,共16分)13.(0,1); 14.-2; 15.a>0; 16.①④. 14.提⽰:归纳法得到{}n a 是周期为4的数列,200622a a ==- 15.提⽰:直线10x ay --=过定点(1,0),画出区域201x y x +≥??≤?后,让直线10x ay --=绕(1,0)旋转得到不等式所表⽰的平⾯区域,平移直线30x y +=观察图象可知,必须满⾜直线10x ay --=的斜率10a>才符号题意.故a 的范围是0.a > t三、解答题:17.解:(I ),,tan 23a c x x x ==r rQ L L ∥分222sin cos tan 2sin cos 6sin cos 1tan 5x x x x x x x x ∴===++L L 分(II)21(cos cos 2(1cos 2)2f x a b x x x x x ?=+=++r r )=1sin(2)926x π=++L L 分50,2,3666x x ππππ<≤<+≤Q 则x13sin(2)1,1(262x f x π∴≤+≤≤≤于是:),故函数(f x )的值域为31122??L L ,分18.解: (I )法⼀:所选的5道题中⾄少有2道地理题的概率为5041646455101011031116424242C C C C P C C -L L =-=--=分法⼆:所选的5道题中⾄少有2道地理题的概率为3223146464645551010101020131642424242C C C C C C P C C C =++=++=L L 分(II)甲答对4道题的概率为:44150.60.40.25928P C =??L L =;分甲答对5道题的概率为:550150.60.40.0777610P C =??L L =分故甲没有获得良好成绩的概率为:121()1(0.25920.07776)P P P =-+=-+ 0.6612≈L 分19.⽅法⼀:(I )证明:111,,.AC BC AC CC AC CC B B ⊥⊥⊥则平⾯四边形11CC B B 为正⽅形,连1B C ,则11C B B C ⊥由三垂线定理,得114BC AB ⊥L L 分(II )证明:连11.AC CA E DE 交于,连在△1AC B 中,由中位线定理得1DE BC ∥. ⼜11111,.8DE CA D BC CA D BC CA D ??∴L L 平⾯平⾯,∥平⾯分(III )解:取1111,.,BB F DF C F DF AB C DF ∠的中点连和则∥或它的补⾓为所求. 令1 2.,AC BC BB ===111在直⾓△FB C 中可求出C F=5在直⾓△1AB B 中可求出221123, 3.2(2) 6.AB DF DC ==+=则=在△1DFC 中,由余弦定理,得12cos 12236C DF ∠==??L L 分⽅法⼆:如图建⽴坐标系.设12,AC BC BB ===则(I )证:11(0,2,2),(2,2,2),BC AB =--=--u u u u r u u u r11110440..4BC AB BC AB ?=-+=∴⊥u u u u r u u u rL L 分(II )证:取1AC 的中点E ,连DE.E(1,0,1),则(0,1,1),ED =u u u r 1(0,2,2).BC =--u u u u r有112..ED BC ED BC =-u u u r u u u u r1⼜与不共线,则DF ∥AB⼜11111,,.8DE CA D BC CA D BC CA D ??L L 平⾯平⾯则∥平⾯分(III )()11,(1,1,2)AB DC =---u u u r u u u u r=-2,2,-2 112242cos ,12444114DC AB -+∴=++?++u u u u r u u u rL L 分<>=20.(I )证明:22(),1f x ax bx a '=+-L L 分32212,((0)32a bx x f x x x a x a +->Q 是函数)=的两个极值点,221212120,2bx x ax bx a x x x x a a∴+-=?=-L L ,是的两个根,于是+=-分212121220,0,424b a x x a x x x x a a>∴=-<∴+=-=+=Q L L ⼜分 2223244,440,016b a b a a a a+=∴=-≥∴<≤L L 即:分 111(2,0,2),(0,2,2),(0,0,2),(2,0,0),(0,2,0),(0,0,0),(1,1,2),2A B C A B C D L L L L 分(II )证明:设232()44,()8124(23)7g a a a g a a a a a '=-=-=-L L 则分220()0,()0933a g a g a '<<>∴L L 当时,在(,)上是增函数;分21()0,(),1113a g a g a ??'<≤<∴L L 2当时,在上是减函数;分3max 216()(),12327g a g b ∴==∴≤L L L 分21.解(1)*11122,22,2,)n n n n n n n S a S a S S a n n N ---=-=-≥∈Q ⼜-=,({}*1122,0,2,(2,),nn n n n n n a a a a a n n N a a --∴=-≠∴=≥∈Q 即数列是等⽐数列. 11111,22,223n n a S a a a a =∴=-∴=Q L L 即=,分11,)20n n n n P b b b b ++∴-Q 点(在直线x-y+2=0上,+={}112,1216n n n n b b b b b n +∴-=∴=-L L 即数列是等差数列,⼜=,分(II )231122123252(21)2,n n n n S a b a b a b n +++=?+?+?++-L L =23121232(23)2(21)2n n n S n n +∴=?+?++-+-L因此:23112222222)(21)2n n n S n +-=--L +(+++即:341112(222(21)2n n n S n ++-=?++++--L 1(23)2610n n S n +∴=-+L L 分111516167,23)26167,(23)21614(23)2(24321605(23)2(2532448167412n n n n n n S n n n n n n S n ++++<-+<-<=-=?=-=?""故满⾜条件的最⼤正整数为分22.解:由222222231(),2,12b x y b a a a a=+=-=L 2=e 得双曲线的⽅程设为①2L 分设直线l 的⽅程为y x m =+,代⼊①,得:2222()2x x m a -+=,即:2222(2)0x mx m a --+=221,1221212(),(,),2,25P x y Q x y x x m x x m a +=?=--L L 设则分222222212121212()()()222()6y y x m x m x x m x x m m a m m m a =++=+++=--++=-L 分2222121234,430OP OQ x x y y m a a m ∴?=+=-∴--=u u u r u u u rL -=②7L 分4,30PQ RQ R PQ R m =∴u u u r u u u r u u u rQ 点分所成的⽐为,点的坐标为(,),则:12121233()391344y y x m x m x x m m +++++===++L L 分 1212123,2,3,10x x x x m x m x m ∴=-+===-L L 代⼊得分代⼊2222222122,32,,12x x m a m m a m a =--=--∴=L L 得-分代⼊②得21,1a m ==±从⽽221,1142y l y x x ∴=±-=L L 直线的⽅程为双曲线的⽅程为分。

2020最新高考数学模拟测试卷含答案

2020最新高考数学模拟测试卷含答案

2020最新⾼考数学模拟测试卷含答案第Ⅰ卷(选择题共60分)⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.(1)化简?---160cos 120cos 20cos 20sin 212得()(A )-40sin 1(B )-?20sin 20cos 1(C )1 (D )-1(2)双曲线8822=-ky kx 的⼀个焦点是(0,-3),则k 的值是()(A )1 (B )-1(C )315(D )-315(3)已知)(1x fy -=过点(3,5),g (x )与f (x )关于直线x =2对称,则y =g (x )必过点()(A )(-1,3)(B )(5,3)(C )(-1,1)(D )(1,5)(4)已知复数3)1(i i z -?=,则=z arg()(A )4π(B )-4π(C )47π(D )4cos(=+πθρ的距离为1,则r 属于集合()(A )}97|{<(D ){9}(⽂)已知两条直线0:,:21=-=y ax l x y l ,其中a 为实数,当这两条直线的夹⾓在)12,0(π内变动时,a 的取值范围是()(A )(0,1)(B ))3,33((C ))3,1( (D ))3,1()1,33(Y 6.半径为2cm 的半圆纸⽚卷成圆锥放在桌⾯上,⼀阵风吹倒它,它的最⾼处距桌⾯()(A )4cm (B )2cm(C )cm 32 (D )cm 3 7.(理))4sin arccos(-的值等于()(A )42-π(B )234π-(C )423-π(D )4+π(⽂)函数23cos 3cos sin 2-+=x x x y 的最⼩正周期为()(A )4π(B )2π(C )π(D )2π②665646362C C C C +++③726-④26P 其中正确的结论为()(A )仅有①(B )有②和③(C )仅有②(D )仅有③ 9.正四棱锥P —ABCD 的底⾯积为3,体积为,2 2E 为侧棱PC 的中点,则PA 与BE 所成的⾓为()(A )6π(B )4π(C )3π(D )2π10.给出四个函数,分别满⾜①)()()(y f x f y x f +=+ ②)()()(y g x g y x g ?=+③)()()(y x y x +=? ④)()()(y x y x ωωω?=?⼜给出四个函数的图象则正确的配匹⽅案是()(A )①—M ②—N ③—P ④—Q (B )①—N ②—P③—M ④—Q(C )①—P ②—M ③—N ④—Q (D )①—Q ②—M③—N ④—P11.P 是双曲线)0,0(12222>>=-b a b为2c ,则21F PF ?的内切圆的圆⼼横坐标为()(A )a -(B )b -(C )c -(D )c b a -+12.某债券市场发⾏的三种值券:甲种⾯值为100元,⼀年到期本利共获103元;⼄种⾯值为50元,半年期本利共50.9元;丙种⾯值为100元,但买⼊时只付97元,⼀年到期拿回100元,这三种投资收益⽐例从⼩到⼤排列为()M QNN(A )⼄,甲,丙(B )甲、丙、⼄(C )甲、⼄、丙(D )丙、甲、⼄第Ⅱ卷 (⾮选择题)⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在题中横线上.13.⼀个球的内接长⽅体的长、宽、⾼分别为1,2,3,则这个球的表⾯积是.14.若26)1()1(ax x -+展开式中的x 3项的系数为20,则⾮零实数a = .15.△ABC 顶点在以x 轴为对称轴,原点为焦点的抛物线上,已知A (-6,8),且△ABC的重⼼在原点,则过B 、C 两点的直线⽅程为. 16.设正数数列{a n }的前n 项和为S n ,且存在正数t ,使得对于所有的⾃然数n ,有2nn a t tS +=成⽴,若t a S nn n <∞→lim ,则t 的取值范围是.三、解答题:本⼤题共6⼩题,共74分,解答应写出⽂字说明,证明过程或演算步骤. 17.(本题满分12分)设复数)23(sin cos 1πθπθθ<<+-=i z 且24arg θsin 21)4cos(2θπθ--的值.18.(理)(本题满分共12分)已知正三棱柱ABC —A 1B 1C 1的每条棱长均为,M为棱A 1C 1上的动点.(Ⅰ)当M 在何处时,BC 1//平⾯MB 1A ,并证明之;(Ⅱ)在(I )下,求平⾯MB 1A 与平⾯ABC 所成的⼆⾯⾓的⼤⼩;(Ⅲ)求B —AB 1M 体积的最⼤值. 18.(⽂)(图同理18,本题满分12分)已知正三棱柱ABC —A 1B 1C 1的每条棱长均为a ,M 为A BA 11棱A 1C 1的中点(Ⅰ)求证BC 1//平⾯MB 1A ;(Ⅱ)求平⾯MB 1A 与平⾯ABC 所成的⼆⾯⾓的正切值;(Ⅲ)求B —AMB 1的体积.19.(理)(本题满分12分)设常数,01>>>b a 不等式0)lg(>-x x b a 的解集为M (Ⅰ)当ab =1时,求解集M ;(Ⅱ)当M=(1,+∞)时,求出a ,b 应满⾜的关系. 19.(⽂)(本题满分12分)已知函数)1(log )(x a a x f -= (其中a >0,且a ≠1),解关于x 的不等式)1()1(log 1->-fa x a20.(本题满分12分)⼀家企业⽣产某种产品,为了使该产品占有更多的市场份额,拟在2001年度进⾏⼀系列的促销活动,经过市场调查和测算,该产品的年销量x 万件与年促销费⽤t 万元之间满⾜:3-x 与t +1(t ≥0)成反⽐例,如果不搞促销活动,该产品的年销量只能是1万件,已知2001年⽣产该产品的固定投资为3万tx x g 2)332(23)(++=时,则当年的产销量相等.(Ⅰ)将2001年的利润y 表⽰为促销费t 万元的函数;(Ⅱ)该企业2001年的促销费投⼊多少万元时,企业的年利润最⼤?(注:利润=收⼊-⽣产成本-促销费)21.(本题满分12分)A 、B 是两个定点,且|AB|=8,动点M 到A 点的距离是10,线段MB 的垂直平分线l 交MA 于点P ,若以AB所在直线为x 轴,AB 的中垂线为y 轴建⽴直⾓坐标系.(Ⅰ)试求P 点的轨迹c 的⽅程;(Ⅱ)直线)(04R m m y mx ∈=--与点P 所在曲线c 交于弦EF ,当m 变化时,试求△AEF 的⾯积的最⼤值.A22.(本题满分14分)已知函数f (x )在(-1,1)上有定义,1)21(-=f 且满⾜x 、y ∈(-1,1)有)1()()(xyy x f y f x f ++=+.(Ⅰ)证明:f (x )在(-1,1)上为奇函数;(Ⅱ)对数列,12,21211nn n x x x x +==+求)(n x f ;(Ⅲ)(理)求证;252)(1)(1)(121++->+++n n x f x f x f n Λ(⽂)求证.2)(1)(1)(121->+++n x f x f x f Λ数学试题参考答案⼀、选择题(理)CBACD DCBCD AB (⽂)CBACD DCBCD AB ⼆、填空题(13)14π(14)5 (15)084=-+y x (16)),22(3+∞ 三、解答题 17.解:)24(arg θπθπ+=∴+=tg z tg z (2分)即2121cos 1sin θθθθtgtg -+=- 即212121θθθtgtg tg-+=即012222=-+θθtgtg(6分)212±-=∴θtg2124322πθπtgΘ(8分))1(22cos )sin (cos 222sin 21)4cos(2θθθθθπθtg +=+=--∴2])21(1)21(21[22)21221(2222=------=-+=θθtg tg即22sin 21)4cos(2=--θπθ(12分)AA 1G18.(理)解:(I )当M 在A 1C 1中点时,BC 1//平⾯MB 1A ∵M 为A 1C 1中点,延长AM 、CC 1,使AM 与CC 1延长线交于N ,则NC 1=C 1C=a连结NB 1并延长与CB 延长线交于G ,则BG=CB ,NB 1=B 1G (2分)在△CGN 中,BC 1为中位线,BC 1//GN⼜GN ?平⾯MAB 1,∴BC 1//平⾯MAB 1 (4分)(II )∵△AGC 中, BC=BA=BG ∴∠GAC=90° 即AC ⊥AG ⼜AG ⊥AA 1 A AC AA =I 1平⾯(6分)∴∠MAC 为平⾯MB 1A 与平⾯ABC 所成⼆⾯⾓的平⾯⾓ 221==∠∴a a MAC tg ∴所求⼆⾯⾓为.2arg tg (8分)(Ⅲ)设动点M 到平⾯A 1ABB 1的距离为h M .3221232361213131111a a a h a h S V V M M ABB B AB M M AB B =?≤?=?==?--即B —AB 1M 体积最⼤值为.1233a 此时M 点与C 1重合.(12分)18.(⽂)(Ⅰ)同(理)解答,见上(Ⅱ)同理科解答:设所求⼆⾯⾓为θ,则2=θtg (Ⅲ)3224323213111a a a V V ABB M AMBB =??==--19.(理)解:(I )⾸先,0>-x x b a 即xx b a >即0,11)(>>∴>x baba x得由.1)1(1>-∴>-x x x x aa b a (3>--x x a a解得251-51+>x a251log +>∴a x ),251(log +∞+=∴a M (6分)(II )令x x b a x f -=)(,先证),0()(+∞∈x x f 在时为单调递增函数 )212112212211()()()(,0x x x x x x x x b b a a b a b a x f x f x x -+-=+--=-+∞<<<Θ0,,0,,,011212212121<-∴<<-<∴<>>>x x x x x x x xb b b b a a a a x x b a Θ).()(21x f x f <∴得证(8分)欲使解集为(1,+∞),只须f (1)=1即可,即a -b=1,∴a =b+1 (12分) 19.(⽂)解:)1(log )1().1(log )(1 1a fa x fa x a -=-=--由可知0<a <1 (4分)∴不等式)0()1(log )1(log )1()1(log即为(8分)10101110101<<<->-∴x aa a a a a a a x x xx ∴原不等式的解集为{x |0<x <1} (12分) 20.解:(I )由题意得21,0,1 3===+=-k x t t kx 代⼊得将(2分)123+-=∴t x从⽽⽣产成本为3)123(32++-t 万元,年收⼊为]2)332(23[)(xtx x x xg ++=(4分)]3)123(32[]2)332(23[]3)123(32[)(++--++?=++--=∴t x t x x t x xg y (6分))0()1(235982≥+++-=t t t t∴年利润为y )0()1(235982≥+++-=t t t t(8分)(II )y 4216250)13221(50)1(235982=-≤+++-=+++-=t t t t t (万元)当且仅当4271+y t t t 时即(12分)∴当促销费定为7万元时,利润最⼤.21.解(I )以AB 所在直线为x 轴,AB 中垂线为y 轴,则A (-4,0),B (4,0)|PA|+|PB|=|PA|+|PM|=10 (2分)∴2a =10 2c=8 ∴a =5,c=4 ∴P 点轨迹为椭圆19 2522=+y x(4分)(II )04=--m y mx 过椭圆右焦点B (4,0))0(192541925)4(2222≠=++=?=+-=m y x m yx y x x m y Θ092525)1681(9222=?-+++∴y y m y m整理得08172)259(22=-++y m y m(6分)2591814259724)(||2222122121+??+?+=-+=-∴m m m y y y y y y 2222190925m m m m +?+=*(8分)∵m 为直线的斜率,∴可令m=tg θ代⼊*得 )0sin (|sin 25cos 9sin 90|sec |25990192590||22222222221>?+=+=++=-θθθθθθθθθθθθθΘtg tg tg tg tg tg tg y y.4152490916290sin 9sin 1690sin 169sin 902==≤+=+=θθθθ当且仅当169sin sin 9sin 162==θθθ即即43sin =θ时,.415||max 21=-y y().15415821max =??=∴?AEF S (12分)22.证:(I )令,0==y x 则0)0(),0()0(2=∴=f f f令,x y -=则)()(,0)0()()(x f x f f x f x f -=-∴==-+ 为奇函数(4分)(II )1)2 1()(1-==f x f ,)(2)()()1()12()(21n n n n n nn nn n x f x f x f x x x x f x x f x f =+=?++=+=+ )}({.2)()(1n n n x f x f x f 即=∴+是以-1为⾸项,2为公⽐的等⽐数列.1xf (4分)(III )(理))2121211()(1)(1)(11221-++++-=+++n n x f x f x f ΛΛ2212)212(21121111->+-=--=---=--n n n⽽.2212)212(252-<+--=++-=++-n n n n 252)(1)(1)(121++->+++∴n n x f x f x f n Λ(6分)(III )(⽂))2121211()(1)(1)(11221-++++-=+++n n x f x f x f ΛΛ .2212)212(2 1121111->+-=--=---=--n n n。

2020年全国高考数学模拟真题含答案(理)

2020年全国高考数学模拟真题含答案(理)

22.(10 分)【选修 4-4:坐标系与参数方程】
[2020·安徽联考]已知在极坐标系中,曲线 C1 的极坐标方程为
2 cos
π 4
m
0 .以极点为原
点,极轴所在直线为
x
轴建立平面直角坐标系,曲线
C2
的参数方程为
x
1
2 cos ( 为参数).
y 2 sin
(1)求曲线 C1 的直角坐标方程以及曲线 C2 的极坐标方程;
且 AB CD 6 2 ,求 k1k2 的值.
21.(12 分)[2020·安徽联考]已知函数 f x xlnx x2 , R .
(1)若 1,求曲线 f x 在点 1, f 1 处的切线方程; (2)若关于 x 的不等式 f x 在 1, 上恒成立,求实数 的取值范围.
故选 B. 2.【答案】B
【解析】命题
p
表示的集合
A
为x
2
x
3
;命题
q
表示的集合
B

x
x
a 2

因为命题 q 是 p 的必要不充分条件,所以 A 是 B 的真子集,则 a 2 ,即 a 4 .故选 B. 2
3.【答案】D
【解析】双曲线 C
:
x2 a2
y2
1a
0
的焦距为 2
5,
可得 c 5 ,即 a2 1 5 ,解得 a 2 ,
附: K 2
nad bc2
,nabcd .
a bc da cb d
P K2 k0
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0

2020年高考数学模拟试题带答案

2020年高考数学模拟试题带答案

2020 年高考模拟试题 理科数学一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的1、若集合 A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数 为A.5B.4C.3D.22、复数在复平面上对应的点位于A 第一象限B 第二象限C 第三象限D 第四象限3、小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于 ,则周末去看电影;若此点到圆心的距离小于 ,则去打篮球; 否则,在家看书.则小波周末不在家看书的概率为A.B.C.D.JPA.B.C.8、已知数列 为等比数列, 是是它的前 n 项和,若D. ,且 与 2 的等差中项为 ,则A.35B.33C.31D.299、某大学的 8 名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐 4 名同学(乘同一辆车的 4 名同学不考虑位置), 其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的 4 名同学中恰有 2 名同学是来自同一年级的乘坐方式共有A.24 种B.18 种C.48 种D.36 种10 如图,在矩形 OABC 中,点 E、F 分别在线段 AB、BC上,且满足,,若(),则4、函数如图示,则将 图象解析式为的部分图象 的图象向右平移 个单位后,得到的A.B.5、已知,A.B.C.,,则C.D. D.6、函数的最小正周期是A.B.C.D.11、如图,F1,F2 分别是双曲线 C:(a,b>0)的左右焦点,B 是虚轴的端点,直线 F1B 与 C 的两条渐近线分别交于 P,Q 两点,线段 PQ 的垂直平分线与 x 轴交于点 M,若|MF2|=|F1F2|,则 C 的离心率是A.B.C.D.12、函数 f(x)=2x|log0.5x|-1 的零点个数为A.1B.2C.3D.4二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.请把正确答案填在题中横线上A.πB.C.7、函数 y=的图象大致是D.2π13、设θ为第二象限角,若,则 sin θ+cos θ=__________14、(a+x)4 的展开式中 x3 的系数等于 8,则实数 a=_________15、已知曲线 y x ln x 在点 1,1 处的切线与曲线 y ax2 a 2 x 1 相切,则 a=16、若 x ,则函数 y tan 2x tan3 x 的最大值为42三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必须作答;第 22、23 题为选考题,考生依据要求作答.17、已知数列 的前 项和为 ,且,对任意 N ,都有.(1)求数列 的通项公式;(2)若数列 满足,求数列 的前 项和 .18、如图,四棱锥 P-ABCD 中,PA⊥底面 ABCD,BC=CD=2,AC=4,∠ACB=∠ACD= ,F 为 PC 的中点,AF⊥PB。

2020年江苏省高考数学模拟试卷含答案解析

2020年江苏省高考数学模拟试卷含答案解析

2020年江苏省高考数学模拟试卷一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=.2.已知复数,则z的共轭复数的模为.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.4.运行如图所示的伪代码,其结果为.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为.7.若函数是偶函数,则实数a的值为.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为.11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是.12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为.14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?2020年江苏省高考数学模拟试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=(﹣1,0] .【考点】交、并、补集的混合运算.【分析】求出集合B中的一元二次不等式的解集,确定出集合B,由全集R,求出集合B的补集,求出集合A与集合B的补集的交集即可【解答】解:由A={x|﹣1<x<1}=(﹣1,1),B={x|x2﹣2x<0}=(0,2),∴C u B=(﹣∞,0]∪[2,+∞),∴A∩∁U B=(﹣1,0],故答案为:(﹣1,0].2.已知复数,则z的共轭复数的模为.【考点】复数求模.【分析】根据复数与它的共轭复数的模相等,即可求出结果.【解答】解:复数,则z的共轭复数的模为||=|z|====.故答案为:.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.【考点】等可能事件的概率.【分析】求出所有基本事件,两数之积为偶数的基本事件,即可求两数之积为偶数的概率.【解答】解:从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,基本事件共有4×4=16个,∵两数之积为偶数,∴两数中至少有一个是偶数,A中取偶数,B中有4种取法;A中取奇数,B中必须取偶数,故基本事件共有2×4+2×2=12个,∴两数之积为偶数的概率是=.故答案为:.4.运行如图所示的伪代码,其结果为.【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,用裂项法即可求值得解.【解答】解:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,所以S=S=++…+=×(1﹣+﹣…+﹣)=(1﹣)=.故答案为:.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为﹣=1.【考点】双曲线的简单性质.【分析】求得已知双曲线的渐近线方程,设出所求双曲线的方程为﹣=1(a,b>0),求出渐近线方程和准线方程,由题意可得=,=,结合a,b,c的关系,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线的渐近线为y=±x,设所求双曲线的方程为﹣=1(a,b>0),渐近线方程为y=±x,准线方程为y=±,由题意可得=,=,又a2+b2=c2,解得a=2,b=,即有所求双曲线的方程为﹣=1.故答案为:﹣=1.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为﹣2.【考点】函数恒成立问题.【分析】由题意可得a≤f(x)的最小值,运用单调性,可得f(0)取得最小值,即可得到a的范围,进而得到a的最大值.【解答】解:由,可得0≤x≤4,由f(x)=﹣,其中y=在[0,4]递增,y=﹣在[0,4]递增,可得f(x)在[0,4]递增,可得f(0)取得最小值﹣2,可得a≤﹣2,即a的最大值为﹣2.故答案为:﹣2.7.若函数是偶函数,则实数a的值为﹣.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】由题意可得,f(﹣)=f(),从而可求得实数a的值.【解答】解:∵f(x)=asin(x+)+sin(x﹣)为偶函数,∴f(﹣x)=f(x),∴f(﹣)=f(),即﹣=a,∴a=﹣.故答案为:﹣.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为20.【考点】棱柱、棱锥、棱台的体积.【分析】求出底面中心到边的距离,棱锥的高,然后求解棱锥的体积.【解答】解:设正五棱锥高为h,底面正五边形的角为108°,底面正五边形中心到边距离为:tan54°,h=,则此正五棱锥体积为:×=20.故答案为:20.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是(1,3).【考点】分段函数的应用.【分析】判断f(x)在R上递增,由f(x2﹣2x)<f(3x﹣4),可得或,解不等式即可得到所求解集.【解答】解:当x<3时,f(x)=﹣x2+6x=﹣(x﹣3)2+9,即有f(x)递增;故f(x)在R上单调递增.由f(x2﹣2x)<f(3x﹣4),可得或,解得或,即为1<x≤或<x<3,即1<x<3.即有解集为(1,3).故答案为:(1,3).10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为[,1).【考点】余弦定理.【分析】设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.由于⊥,可得•=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).利用函数的单调性即可得出.【解答】解:设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.∴•=(t﹣)•(﹣)=﹣t2+(+1)•﹣2.∵⊥,∴•=﹣t2+(+1)•﹣2=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).由于f(t)是[0,1]是的单调递增函数,∴f(0)≤f(t)≤f(1),即:≤f(t)≤,即:≤cosA≤,∵A∈(0,π),∴cosA<1,∴cosA的取值范围是:[,1).故答案为:[,1).11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是(0,1)∪[3,+∞).【考点】简单线性规划的应用.【分析】由题意作平面区域,从而结合图象可知y=a x的图象过点(3,1)时为临界值a=3,从而解得.【解答】解:由题意作平面区域如下,,结合图象可知,y=a x的图象过点(3,1)时为临界值a=3,且当0<a<1时,一定成立;故答案为:(0,1)∪[3,+∞).12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是{a|a≤﹣4或a≥0} .【考点】利用导数研究函数的极值.【分析】函数f(x)=x2+2x+alnx在区间(0,1)内无极值点⇔函数f(x)在(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(01,)内恒成立.再利用导数的运算法则、分离参数法、函数的单调性即可得出.【解答】解:函数f(x)=x2+2x+alnx在区间(0,1)内无极值⇔函数f(x)=x2+2x+alnx 在区间(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(0,1)内恒成立.由f′(x)=2x+2≥0在(0,1)内恒成立⇔a≥(﹣2x﹣2x2)max,x∈(0,1).即a≥0,由f′(x)=2x+2≤0在(0,1)内恒成立⇔a≤(﹣2x﹣2x2)min,x∈(0,1).即a≤﹣4,故答案为:a≤﹣4或a≥0.故答案为:{a|a≤﹣4或a≥0}.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为(2,4).【考点】全称命题;特称命题.【分析】由①可得当x≤﹣1时,g(x)<0,根据②可得g(1)=a(1﹣a+3)>0,由此解得实数a的取值范围.【解答】解:∵已知函数,根据①∀x∈R,f(x)<0,或g(x)<0,即函数f(x)和函数g(x)不能同时取非负值.由f(x)≥0,求得x≤﹣1,即当x≤﹣1时,g(x)<0恒成立,故,解得:a>2;根据②∃x∈(﹣1,1),使f(x)•g(x)<0成立,∴g(1)=a(1﹣a+3)>0,解得:0<a<4,综上可得:a∈(2,4),故答案为:(2,4)14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为64或65.【考点】数列递推式.【分析】由题意可得:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,则2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得d<4,d为正整数,得出d=1,2,3,分类讨论后求得满足条件的正整数A的值.【解答】解:依题意:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,∴2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得:2t≤A<2t+1,2t+d﹣3≤A<2t+d﹣2,,故max{}≤A<min{},由以下关系:2t+d﹣3<2t+1,,得d<4,∵d为正整数,∴d=1,2,3.当d=1时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=2时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=3时,max{}=max{}=2t,min{}=min{}=>2t,适合题意.此时2t≤A<,b1=t,b2=t+3,b5=t+6,∴t+3≤b3≤t+6.∵b3=10,∴4≤t≤7,∵t为整数,∴t=4,t=5,t=6或t=7.∵f(3)=27A,b3=10,∴210≤27A<211,∴≤A<.当t=4时,24≤A<,∴无解.当t=5时,25≤A<,∴无解.当t=6时,26≤A<,∴64≤A<.当t=7时,27≤A<,∴无解.则26≤A<.∵A∈N*,∴A=64或A=65.综上:A=64或65.故答案为:64或65.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】(1)利用已知条件求出sin()与cos(),然后利用二倍角公式以及两角和的正弦函数化简求解即可.(2)求出正切函数的二倍角的值,利用两角和的正切函数化简求解即可.【解答】解:(1)角α终边逆时针旋转与单位圆交于点,可得sin()=,cos()=,sin(2)=2sin()cos()==,cos(2)=2×=.=sin(2﹣)=sin(2)cos﹣sin cos(2)==.(2)∵,∴tan(2α+2β)===.sin(2)=,cos(2)=.tan(2)=.tan(2α+2β)=tan[()+(2)]==,解得=.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)由已知得PA⊥AB,PA⊥AD,从而BD⊥PA,由四边形ABCD是菱形,得AC ⊥BD,由此能证明BD⊥平面PAC.(2)由四边形ABCD是梯形,且平面PAB∩平面PCD=l,得CD与AB有交点P,从而直线l∩平面ABCD=P,由此得到直线l不能与平面ABCD平行.【解答】证明:(1)∵在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角,∴PA⊥AB,PA⊥AD,又AB∩AD=A,∴PA⊥平面ABCD,∵BD⊥PA,∵四边形ABCD是菱形,∴AC⊥BD,∵AC∩PA=A,∴BD⊥平面PAC.解:(2)直线l不能与平面ABCD平行.理由如下:∵四边形ABCD是梯形,且平面PAB∩平面PCD=l,∴CD与AB有交点P,∴P∈l,∴直线l∩平面ABCD=P,∴直线l不能与平面ABCD平行.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.【考点】椭圆的简单性质.【分析】(1)设P(x,y),由题意可得k PD•k PE=﹣,运用直线的斜率公式,化简即可得到所求轨迹方程;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,设A(x1,y1),B(x2,y2),运用韦达定理,点满足直线方程,再由过O的直线x=﹣my交椭圆C于M,N两点,求得M,N的坐标,运用直线的斜率公式,化简整理,即可得到直线AM与直线BN斜率之和为定值0.【解答】解:(1)设P(x,y),由题意可得k PD•k PE=﹣,即有•=﹣,化为+=1;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,可得(2+m2)y2+2my﹣2=0,设A(x1,y1),B(x2,y2),即有y1+y2=﹣,y1y2=﹣,x1=my1+,x2=my2+,由题意可得,过O的直线x=﹣my交椭圆C于M,N两点,解得M(﹣,),N(,﹣),可得k AM+k BN=+,通分后的分子=x2y1﹣x2﹣y1+x1y2+x1+y2+=2my1y2+(y1+y2)+(x1﹣x2)+(y2﹣y1)+=﹣﹣+(y1﹣y2)+(y2﹣y1)+=0.即有直线AM与直线BN斜率之和为定值0.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.【考点】旋转体(圆柱、圆锥、圆台);基本不等式在最值问题中的应用.【分析】(1)根据面积得出圆锥的底面半径,利用勾股定理求出圆锥的高,代入体积公式即可;(2)利用基本不等式得出体积的最值及取得最值得条件;(3)求出圆锥内切球的半径,与0.5比较大小.【解答】解:(1)由题意知圆锥的母线l=3,设圆锥的底面半径为r,则2πr=3α,∴r=,∴圆锥的高h===.∴V==.(2)V==≤=2.当且仅当4π2﹣α2=即α=时,取等号.∴当α=时,体积V取得最大值.(3)当圆锥体积最大时,圆锥的底面半径r=.设圆锥轴截面△ABC的内切圆⊙O半径为R,如图所示,则OD=R,CD=CE=,AC=3,∴AE=,AD=3﹣.由△AOD∽△ACE得,∴,解得R=3≈0.8.∵0.8>0.5,∴容积最大的圆锥形容器能完全盖住桌面上一个半径为0.5分米的球.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.【考点】数列的求和;等比关系的确定.=1作差可知a n+1=3a n(n≥2),进而可知数列{a n}【分析】(1)通过S n+1﹣3S n=1与S n﹣3S n﹣1是首项为1、公比为3的等比数列;(2)通过(1)可知a n=3n﹣1、S n=(3n﹣1),假设存在满足题意的项a k,则3k﹣1=S r+t﹣S t,进而化简可知不存在r满足3r﹣x﹣=2,进而可得结论;(3)通过(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,通过化简可知q=3q﹣p(2p﹣3p﹣1),利用当p≥3时2p﹣3p﹣1<0可知当p≥3时不满足题意,进而验证当p=2时是否满足题意即可.【解答】(1)证明:∵S n+1﹣3S n=1,=1,∴当n≥2时,S n﹣3S n﹣1两式相减得:a n+1=3a n,又∵S n+1﹣3S n=1,a1=1,∴a2=S2﹣S1=2a1+1=3满足上式,∴数列{a n}是首项为1、公比为3的等比数列;(2)解:结论:不存在满足题意的项a k;理由如下:由(1)可知a n=3n﹣1,S n==(3n﹣1),假设数列{a n}中存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和,则3k﹣1=S r+t﹣S t=(3r+t﹣1)﹣(3t﹣1)=(3r+t﹣3t)=•3t(3r﹣1),于是(3r﹣1)=3x(其中x为大于1的自然数),整理得:3r﹣x﹣=2,显然r无解,故假设不成立,于是不存在满足题意的项a k;(3)解:结论:存在唯一的数组(p,q)=(2,3)满足题意;理由如下:由(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,则2b p=b1+b q,即2=+,整理得:2p•3q﹣p=3q﹣1+q,∴q=2p•3q﹣p﹣3q﹣1=3q﹣p(2p﹣3p﹣1),∵当p≥3时2p﹣3p﹣1<0,∴当p≥3时不满足题意,当p=2时,2=+即为:=+,整理得:=,解得:q=3,综上所述,存在唯一的数组(p,q)=(2,3)满足题意.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.【考点】函数恒成立问题.【分析】(1)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,(2)先求出当直线和y=lnx相切时a的取值,然后进行讨论求解即可.【解答】解:(1)若ax>lnx恒成立,则a>,在x>0时恒成立,设h(x)=,则h′(x)==,由h′(x)>0得1﹣lnx>0,即lnx<1,得0<x<e,由h′(x)<0得1﹣lnx<0,即lnx>1,得x>e,即当x=e时,函数h(x)取得极大值同时也是最大值h(e)==.即a>.(2)设f(x)=lnx,g(x)=ax,(x>0),则f′(x)=,当g(x)与f(x)相切时,设切点为(m,lnm),则切线斜率k=,则过原点且与f(x)相切的切线方程为y﹣lnm=(x﹣m)=x﹣1,即y=x﹣1+lnm,∵g(x)=ax,∴,得m=e,a=.即当a>时,ax>lnx恒成立.当a=时,当x0≥时,要使ax>lnx恒成立.得当x>x0时,ax>lnx恒成立.当0<a<时,f(x)与g(x)有两个不同的交点,不妨设较大的根为x1,当x0≥x1时,当x>x0时,ax>lnx恒成立.∴∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.【考点】与圆有关的比例线段.【分析】连结OD、AD,证出△ADB≌△ODC,得到AB=CO,从而证出结论.【解答】证明:如图示:,连结OD、AD,∵AB是圆O的直径,∴∠ADB=90°,AB=2AO,∵DC是⊙O的切线,∴∠CDO=90°,∵DB=DC,∴∠B=∠C,∴△ADB≌△ODC,∴AB=CO,即2OA=OA+CA,∴CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.【考点】几种特殊的矩阵变换.【分析】设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论.【解答】解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.【考点】简单曲线的极坐标方程.【分析】求出点A,B的直角坐标,利用点斜式方程得出直线l的直角坐标方程,再求出曲线C的普通方程,求出圆心和半径,利用d=r构建出a的方程,解出a的值.【解答】解:由直线l过点,可得A,B的直角坐标为A(,),B(0,3),直线AB的斜率k==,即有直线l的方程为:y﹣3=x,即y=x+3,由曲线C:ρ=asinθ(a>0),可得曲线C的普通方程为x2+y2﹣ay=0,即有圆心C(0,),r==,直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点即直线和圆相切,可得,解得a=2或﹣6,由a>0,可得a=2.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.【考点】函数的最值及其几何意义.【分析】根据条件利用平方关系结合一元二次函数的性质进行求解即可.【解答】解:由得,即5≤x≤7,由平方得y2=x﹣5+7﹣x+2=2+2,∵5≤x≤7,∴当x=6时,函数y2=2+2取得最大值为y2=2+2=4,当x=5或7时,函数y2=2+2取得最小值为y2=2,即2≤y2≤4,则≤y≤2,即函数的最大值为2.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PC与BD所成角的余弦值.(2)求出平面PBC的法向量和平面PCD的法向量,利用向量法能求出钝二面角B﹣PC﹣D的大小.【解答】解:(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设AP=AB=AD=2BC=2,则P(0,0,2),C(2,1,0),B(2,0,0),D(0,2,0),=(2,1,﹣2),=(﹣2,2,0),设异面直线PC与BD所成角为θ,则cosθ===.∴异面直线PC与BD所成角的余弦值为.(2)=(2,0,﹣2),=(2,1,﹣2),=(0,2,﹣2),设平面PBC的法向量=(x,y,z),则,取x=1,得=(1,0,1),设平面PCD的法向量=(a,b,c),则,取b=1,得=(1,2,2),设钝二面角B﹣PC﹣D的平面角为θ,cosθ=﹣|cos<>|=﹣||=﹣,∴θ=135°,∴钝二面角B﹣PC﹣D的大小为135°.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?【考点】归纳推理.【分析】(1)若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得a7,a10中一个为1,一个为0,进而得到答案;(2)若第十一层十一个数为0或1,a1为5的倍数,则a56,a66中一个为1,一个为0,且a57+a58+…+a65=2,或a57+a58+…+a65=7,进而得到答案.【解答】解:(1)若第二层的两个数为0或1,则a1=a2+a3,由a1为奇数,可得第二层的两个数有2种不同的取法;若第三层的三个数为0或1,则a1=a4+2a5+a6,由a1为奇数,可得第三层的三个数有4种不同的取法;若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得第四层的四个数有8种不同的取法;(2)根据(1)中结论,若第十一层十一个数为0或1,则a1=a56+2(a57+a58+…+a65)+a66,若a1为5的倍数,则a56,a66中一个为1,一个为0,a57+a58+…+a65=2,或a57+a58+…+a65=7,即a57,a58,…,a65中有2个1或2个0,则第十一层十一个数共有=144种不同取法.2020年8月12日。

2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)

2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)

A. 210
B. 120
C. 120
D. 210
4.B 【解析 】由二项 展开式, 知其通项 为 Tr1
C1r0
(
1 x
)10r
(
x)r
(1)r C1r0 x2r10
,令
2r 10 4 ,解得 r 7 .所以 x4 的系数为 (1)7 C170 120. 选 B.
5.已知三棱锥 S ABC 中, SAB ABC π , SB 4, SC 2 13, AB 2, BC 6 , 2
,得
x
2.
由 0 x 2 时, g(x) 0 , g(x) 单调递闰;
当 x 2 时, g(x) 0 , g(x) 单调递增.
从 而 g(x) 在 x 2 时 取 得 最 小 值 为 g(2) 16 , 从 而 点 A 到 圆 心 C 的 最 小 值 为
g(2) 16 4 ,所以| AB | 的最小值为 4 1 3. 选 A.
C. {(1,1), (2, 4)}
D.
x y 2
x 1
1.C【解析】
首先注意到集合 A 与集合 B 均为点集,联立 y
x2
,解得
y
1
,或
x 2
y
4
பைடு நூலகம்
,从而集合
A
B
{(1,1),
(2,
4)}
,选
C.
2.已知 a bi(a, b R) 是 1 i 的共轭复数,则 a b 1 i
A. 1
2
2
SA AC
.所以
SA
平面
ABC
.又由于
SABC
1 26 2
6
,从而

2020高考模拟考试试卷数学理科数学含答案

2020高考模拟考试试卷数学理科数学含答案

a为.y y⎪数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两分部.共 150 分,考试时间 120 分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若 z = 2 - bi (b ∈R )为纯虚数,则 b 的值为.2 + iA .- 1B .1C .- 2D .4 2. 在等差数列 { }中, a + a = 16, a = 1 ,则 a 的值是. n5739A .15B .30C . - 31D .643.给出下列命题:① 若平面 α 内的直线 l 垂直于平面 β 内的任意直线,则α ⊥ β ; ② 若平面 α 内的任一直线都平行于平面 β ,则 α // β ; ③ 若平面 α 垂直于平面 β ,直线 l 在平面内 α ,则 l ⊥ β ; ④ 若平面 α 平行于平面 β ,直线 l 在平面内 α ,则 l // β .其中正确命题的个数是.A .4B .3C .2D .14.已知函数 f ( x ) = ⎛ 1 ⎫ x -1 - 1 ,则 f ( x ) 的反函数 f -1 ( x ) 的图像大致 ⎝ 2 ⎭y y-1ox -1 ox -1 ox -1oxABCD5.定义集合 M 与 N 的运算: M * N = {x x ∈ M 或x ∈ N , 且x ∉ M I N } ,⎪4C . π - αD . 3π - α4 B . α +π则 (M * N ) * M = A . M I NB . M Y NC . MD . N6.已知 cos(α + π ) = 1 ,其中 α ∈ (0, π ) ,则 sin α 的值为.432A . 4 - 2B . 4 + 2C . 2 2 - 1D . 2 2 - 166 6 37.已 知 平 面 上 不 同 的 四 点 A 、 B 、 C 、 D , 若DB ·DC + CD ·DC + DA ·BC = 0 ,则三角形 ABC 一定是.A .直角或等腰三角形B .等腰三角形C .等腰三角形但不一定是直角三角形D .直角三角形但不一定是等腰三角形8.直线: x + y + 1 = 0 与直线: x sin α + y cos α - 2 = 0⎛ π < α < π ⎫ 的夹⎝ 4 2 ⎭角为.A . α - π4 49.设函数 f ( x ) 是定义在 R 上的以 5 为周期的奇函数,若f (2) > 1, f (3) = a 2 + a + 3,则 a 的取值范围是.a - 3A . (-∞,-2) Y (0,3)B . (-2,0) Y (3,+∞)C . (-∞,-2) Y (0,+∞)D . (-∞,0) Y (3,+∞)10. 若 log x = log x = log 21a2a系为.(a +1)x > 0 (0 < a < 1) ,则 x 、x 、x 的大小关3 1 2 3A . x < x < x32 1D . x < x < x231B . x < x < x2 13C . x < x < x1 3211. 点 P 是双曲线 y 2 - x 2 = 1 的上支上一点,F 1、F 2 分别为双曲线9 16的上、下焦点,则∆PF F 的内切圆圆心 M 的坐标一定适合的方程是.1 2A . y = -3B . y = 3C . x 2 + y 2 = 5D . y = 3x 2 - 212. 一个三棱椎的四个顶点均在直径为 6 的球面上,它的三条侧棱两两垂直,若其中一条⎨ ⎪5 - bx, x > 1.侧棱长是另一条侧棱长的 2 倍,则这三条侧棱长之和的最大值为.A .3B . 4 3C . 2 105D . 2 21555第Ⅱ卷(非选择题,共 90 分)二、填空题:本大题共四小题,每小题4 分,共 16 分,把答案填在题中横线上.⎧2 x , 13 .设函数 f ( x ) = ⎪a,x < 1,x = 1, 在 x = 1 处连续,则实数 a, b 的值分别⎩为.14.以椭圆 x 2 + y 2 = 1 的右焦点为焦点,左准线为准线的抛物线方程 5 4为.15.如图,路灯距地面 8m ,一个身高 1.6m过路A的人沿穿灯的直路以 84m/min 的速度行走,人影1.6O NC M B长度变化速率是m/min .16.在直三棱柱 ABC - A B C 中,有下列三个条件:1 1 1① A B ⊥ AC ;② A B ⊥ B C ;③ B C = A C .11111 11 1以其中的两个为条件,其余一个为结论,可以构成的真命题是(填上所有成立的真命题,用条件的序号表示即可).三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分 12 分)已知函数 f ( x ) = cos x( 3 sin x - cos x), x ∈ R . (Ⅰ)求函数 f ( x ) 的最大值;(Ⅱ)试说明该函数的图像经过怎样的平移和伸缩变换,可以得到y=sin x,x∈R的图像?18.(本小题满分12分)已知数列{a}的首项a=2,且2a=a+1(n∈N*).n1n+1n(Ⅰ)设b=na,求数列{b}的前n项和T;n n n n(Ⅱ)求使不等式a-a<10-9成立的最小正整数n.(已知n+1nlg2=0.3010)19.(本小题满分12分)甲、乙两人进行投篮比赛,每人投三次,规定:投中次数多者获胜,投中次数相同则成平局.若甲、乙两人的投篮命中的概率分别为2和1,且两人每次投篮是否命中是相互独立的.32(Ⅰ)求甲、乙成平局的概率;P(Ⅱ)求甲获胜的概率.D C 20.(本小题满分12分)A B如图,四棱锥P—ABCD中,底面ABCD为直角梯形,且AB//CD,AB⊥AD,AD=CD=2A B=2,侧面∆APD为等边三角形,且平面APD⊥平面ABCD.(Ⅰ)若M为PC上一动点,当M在何位置时,PC⊥平面MDB,并证明之;(Ⅱ)求直线AB到平面PDC的距离;(Ⅲ)若点G为∆PBC的重心,求二面角G-BD-C的大小.21.(本小题满分12分)y M B 1A 1o A2xB2如图,已知 A 1、A 2 为双曲线 C : x 2 - y 2 = 1(a > 0, b > 0) a 2b 2的两个顶点,过双曲线上一点 B 1 作 x 轴的垂线,交双 曲线于另一点 B 2,直线 A 1B 1、A 2B 2 相交于点 M . (Ⅰ)求点 M 的轨迹 E 的方程;(Ⅱ)若 P 、Q 分别为双曲线 C 与曲线 E 上不同于A 1、A 2 的动点,且 A P + A P = m ( A Q + A Q ) ( m ∈ R ,且 m > 1),1212设直线 A 1P 、A 2P 、A 1Q 、A 2Q 的斜率分别为 k 1、k 2、k 3、k 4, 试问 k 1+k 2+k 3+k 4 是否为定值?说明理由.22.(本小题满分 14 分)已知函数 f ( x ) = 1 x 3 + ax 2 - bx + 1 ( x ∈ R, a ,b 为实数)有极值,且3x = 1 在处的切线与直线 x - y + 1 = 0 平行.(Ⅰ)求实数 a 的取值范围;(Ⅱ)是否存在实数 a ,使得函数 f ( x ) 的极小值为 1,若存在,求出实数 a 的值;若不存在,请说明理由;(Ⅲ)设 a = 1 , f ( x ) 的导数为 f '( x ) ,令 g ( x ) = f '( x + 1) - 3, x ∈ (0,+∞) ,2 x求证:g n ( x ) - x n- 1≥ 2 n - 2 (n ∈ N * ) .x n=3sin2x-………………………………………(2=sin(2x-)-…………………………………………(46)有最大值1.此时函数f(x)的值最大,最大值为数学(理科)参考答案一、选择题:DABCD ADAAD BC二、填空题:13.a=2,b=3;14.y2=12(x+2);15.21;16.①②⇒③;①③⇒②;②③⇒①.三、解答题:17.(Ⅰ)f(x)=3sin x cos x-cos2x1+cos2x22分)π162分)当2x-π=2kπ+π,(k∈Z),即x=kπ+π,(k∈Z)时,623sin(2x-π1.……(6分)2(Ⅱ)将y=sin(2x-π)-1的图像依次进行如下变换:62①把函数y=sin(2x-π)-1的图像向上平移1个单位长度,得到622函数y=sin(2x-π6)的图像;…………………………………………(8分)②把得到的函数图像上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin(x-π)6的图像;…………………………………………(10分)③将函数y=sin(x-π)的图像向左平移π个单位长度,就得到66函数y=sin x的图2 ∴ a = ⎪⎝2⎭⎝ 2 ⎭ ⎪ ∴T = 1· ⎪ + 2· ⎪ + 3· ⎪ + Λ + n · ⎪⎝2⎭ ⎝2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭∴ T = 1· ⎪ + 2· ⎪ + Λ + (n - 1) ⎪ 1 n (n + 1) ………+ n · ⎪ + ·T = 4 - (4 + 2n) ⎪ + ⎝ 2 ⎭ - a = ⎪ < 10 -9⎝2⎭C ⨯ ⎪ ⨯ ⨯ C 2 ⨯ ⎪ =⎝3⎭ 3⎝ 2 ⎭像.…………………………………………(12 分)(注:如考生按向量进行变换,或改变变换顺序,只要正确,可给相应分数)18.(Ⅰ)由 2an +1= a + 1得 ann +1 - 1 = 1 2(a - 1) n可知数列{a - 1} 是以 a - 1 = 1 为首项,公比为 1 的等比数列. n 1n⎛ 1 ⎫ n -1+ 1 (n ∈ N * ) . …………………………………………(4分)从而有 b = na = n ·⎛ 1 ⎫n -1+ n .n nT = b + b +Λ + b n 1 2n n⎛ 1 ⎫ 0 ⎛ 1 ⎫1 ⎛ 1 ⎫ 2 ⎛ 1 ⎫ n -1 + (1 + 2 + Λ + n) ………①1 ⎛ 1 ⎫1 ⎛ 1 ⎫2 ⎛ 1 ⎫ n -12 n ⎝ 2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭ ⎛ 1 ⎫ n⎝ 2 ⎭ 2 2②n ①⎛1⎫ n- ② 并 整 理 得n(n + 1) . ………………(8 分)2(Ⅱ) a n +1n⎛ 1 ⎫ n两边取常用对数得: n > 9 ≈ 29.9lg 2∴ 使 不 等 式 成 立 的 最 小 正 整 数30. ………………………………(12 分)19.(Ⅰ) 甲、乙各投中三次的概率:n 为⎛ 2 ⎫ 3 ⎛ 1 ⎫ 3 ⎪ ⨯ ⎪ =⎝ 3 ⎭ ⎝ 2 ⎭ 1 , …………………………………………(1 分) 27甲、 乙各投中两次的概率:23 3 ⎛ 2 ⎫ 2 1 ⎛ 1 ⎫ 3 1 , …………………………………( 2 61 ,…………………………( 3C 1 ⨯ ⎪ ⨯ ⎪ ⨯ C 1 ⨯ ⎪ = ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭ 12⎪ ⨯ 1 - ⎪ =2 ,………( 9C ⨯ ⎪ ⨯ ⨯ ⎢C 0 ⨯ ⎪ + C 1 ⨯ ⎪ ⎥=⎝ 3 ⎭ 3 ⎢ 3 ⎝ 2 ⎭ ⎝ 2 ⎭ ⎥ 9C 1 ⨯ ⎪ ⨯ ⎪ ⨯ ⎪ = ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭分)甲、 乙各投中一次的概率:⎛ 2 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ 333 分)甲、 乙两人均投三次,三次都不中的概率:⎛ 1 ⎫ 3 ⎛ 1 ⎫ 3⎪ ⨯ ⎪ =⎝ 3 ⎭ ⎝ 2 ⎭ 1 , …………………………………………(4 216分)∴甲、乙平局的概率是: 1 + 1 + 1 + 1 = 7 . ……………27 6 12 216 24(6 分)(Ⅱ) 甲投中三球获胜的概率:⎛ 2 ⎫ 3 ⎛ 1 ⎫ 7 , …………………………………⎝ 3 ⎭ ⎝ 8 ⎭ 27(8 分)甲投中两球获胜的概率:⎛ 2 ⎫ 2 1 ⎡ ⎛ 1 ⎫ 3 ⎛ 1 ⎫ 3 ⎤ 2 3 3分)甲投中一球获胜的概率:3⎛ 2 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ 31 , (36)(10 分)甲获胜的概率为: 7 + 2 + 1 = 55 .………………………27 9 36 108(12 分)20.(Ⅰ) 当 M 在中点时,PC ⊥ 平面 MDB ………………………………(1 分)连结 BM 、DM ,取 AD 的中点 N ,连结 PN 、NB . ∵ PN ⊥ AD 且面 P AD ⊥ 面 ABCD , ∴ PN ⊥ 面 ABCD . 在 Rt ∆PNB 中, PN = 3, NB = 2, ∴ PB = 5,CM =又 BC = 5 . ∴ BM ⊥ PC……………………………………(3分)又 PD = DC = 2, 又 DM I BM = M ,∴ DM ⊥ PC ,∴ PC ⊥ 面 MDB . ……………………(4分)(Ⅱ) AB // CD, C D ⊂ 面 PDC , AB ⊄ 面 PDC ,∴ AB // 面 PDC .∴AB 到面 PDC 的距离即 A 到面 PDC 的距离. ………………(6 分)Θ CD ⊥ DA, C D ⊥ PN , DA I PN = N , ∴ CD ⊥ 面 PAD ,又 DC ⊂ 面 PDC ,∴面 P AD ⊥ 面 PDC .作 AE ⊥ PD ,AE 就是 A 到面 PDC 的距离,∴ AE = 3 , 即 AB 到平面 PDC 的距离为 3 .………………(8 分)(Ⅲ)过 M 作 MF ⊥ BD 于 F ,连结 CF .Θ PC ⊥ 面 MBD ,∴ ∠MFC 就是二面角 G - BD - C 的平面角. ………………(10分)在 ∆BDC 中, BD = 5, DC = 2, BC = 5,∴ CF = 4 5, 又 CM = 2,5∴ s in ∠MFC = 10 . CF 4即二面角 G - BD - C 的大小是 arcsin 10 .4……………(12分)21.(Ⅰ) 设 B ( x , y ) 、 B ( x ,- y ) 且 y ≠ 0 ,由题意 A (-a,0) 、 A (a,0) ,1212则直线 A 1B 1 的方程为: y = x + a ………①y x + a0 0直线 A 2B 2 的方程为: - y = x - a ………②…………(2y x - a0 0分)x , 由①、②可得 ⎪⎪⎨ 0⎩a 2 b 2b 2 x + a x - a x 2 - a 2 a 2 y a 2 y∴O 、P 、Q 三点共线,………………………………yy⎧ a 2 x = ⎪ y = ay . ⎪ 0 x………………………………( 4分)a 4 a 2 y 2又点 B ( x , y ) 在双曲线上,所以有 x 2 - x 2 = 1 ,1 0 0 整理得 x2 + y 2 = 1 ,a 2b 2所以点 M 的轨迹 E 的方程为 x 2 + y 2 = 1( x ≠ 0 且 y ≠ 0 ).……a 2b 2(6 分)(Ⅱ) k 1+k 2+k 3+k 4 为定值.设 P ( x , y ) ,则 x 2 - a 2 = a 2 y 12 ,1 1 1分)则 k + k = y 1 + y 1 = 2 x 1 y 1 = 2b 2 · x 1 ……③ 1 2 1 1 1 1设 Q ( x , y ) ,则同理可得 k + k = - 2b 2 · x 2 ……④ ………(82 234 2设 O 为原点,则 A P + A P = 2OP , A Q + A Q = 2OQ .1212Θ A P + A P = m ( A Q + A Q)∴ O P = mOQ1 212(10 分)∴ x 1 = x 2 , 再由③、④可得,k 1+k 2+k 3+k 4 = 0 yy12∴k 1+k 2+k 3+k 4 为定值 0.………………………………(12 分)另解:由 A P + A P = m ( A Q + A Q ) ,1212得 ( x + a , y ) + ( x - a , y ) = m [( x + a , y ) + ( x - a , y )] 111122 2 2即 ( x , y ) = m ( x , y )∴ x1 = x2 ,112212再由③、④可得,k 1+k 2+k 3+k 4 = 022.(Ⅰ) ∵ f ( x ) = 1 x 3 + ax 2 - bx + 13xx 10 0 3∴ -a + a 2 + 2a = 4∴ a = - < -2 ,- 3 = x 2 + 1= x +∴ f '( x ) = x 2 + 2ax - b由题意 f '(1) = 1 + 2a - b = 1∴ b = 2a……①………………………………………(2 分)∵ f ( x ) 有极值,∴方程 f '( x ) = x 2 + 2ax - b = 0 有两个不等实根.∴ ∆ = 4a 2 + 4b > 0∴ a 2 + b > 0 ……②由①、②可得, a 2 + 2a > 0∴ a < -2 或a > 0 .故实数 a 的取值范围是 a ∈ (-∞,-2) Y (0,+∞)…………(4 分)(Ⅱ)存在 a = - 8 ,………………………………………(5 分)3由(Ⅰ)可知 f '( x ) = x 2 + 2ax - b ,令 f '( x ) = 0 ,∴ x = -a + a 2 + 2a , x = -a - a 2 + 2a12(-∞, x )( x , x )1 12x 2( x ,+∞)2f '( x )f ( x )+ - +单调增 极大值 单调减 极小值 单调增(7 分)(8 分)∴ x = x 时, f ( x ) 取极小值, ………………………………………2则 f ( x ) = 1 x 3 + ax 2 - 2ax + 1 = 1, ∴ x = 0 或 x 2 + 3ax - 6a = 0 , 2 2 2 2 2 2若 x = 0 ,即 - a + a 2 + 2a = 0 ,则 a = 0 (舍) ………………2若 x 2 + 3ax - 6a = 0 ,又 f '( x ) = 0 ,∴ x 2 + 2ax - 2a = 0 ,22222∴ ax - 4a = 0 ,Θ a ≠ 0∴ x = 4 , 2283∴存在实数 a = - 8 , 使 得 函 数 f ( x ) 的 极 小 值 为31.…………(9 分)(Ⅲ) Θ a = 1 , f '( x ) = x 2 + x - 12 ∴ f '( x + 1) = x 2 + 3x + 1 ,∴ f '( x + 1)1 , x x x∴ g ( x ) = x + ,x ∈ (0,+∞) .…………………………………( 10= x + ⎪ - x n - = C x ⎪+ C2 x n -2 ⎪ +Λ + C n -2 x 2 ⎪ + C n -1 x ⎪ x ⎭ ⎝ x ⎭ ⎝ x ⎭ ⎝ x ⎭ ⎝ 2 ⎢⎣ n ⎝ x n -2 ⎭ ⎝ ⎝ x n -2 + x n -2 ⎪⎥ 2 ⎣ x n -2 x n -4⎢1 x分)g n ( x ) - x n -1 ⎛ 1 ⎫ nx n ⎝ x ⎭ 1 x n⎛ 1 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ n -2 ⎛ 1 ⎫ n -1 1 n -1 n n n n= 1 ⎡ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 C 1 x n -2 + ⎪ + C 2 x n -4 + ⎪ + Λ + C n -1 n n ⎫⎤ ⎭⎦≥ 1 ⎡C 1 2 x n -2 · 1 + C 2 2 x n -4 · 1 + Λ + C n -1 2 n n n 1 x n -2 ⎤·x n -2 ⎥ ⎦= C 1 + C 2 + Λ + C n -1 = 2 n - 2n n n∴其中等号成立的条件为 x = 1 .…………………………………(13 分)∴ g n ( x ) - x n - 1 ≥ 2 n - 2 (n ∈ N * )…………………………( 14x n分)。

2020年高考数学模拟试题(附答案)

2020年高考数学模拟试题(附答案)

2020年高考数学模拟试题(附答案)姓名:__________ 班级:__________考号:__________一、选择题:本卷共8小题,每小题5分,共40分。

(共8题;共40分)1.设集合,则()A. B. C. D.2.若实数满足则的最小值是()A. B. C. D.3.设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4.执行如图所示的程序框图,则输出的值为()A. 5B. 12C. 27D. 585.已知奇函数是定义在上的减函数,且,,,则的大小关系为()A. B. C. D.6.已知P为双曲线上一点,为双曲线C的左、右焦点,若,且直线与以C的实轴为直径的圆相切,则C的渐近线方程为()A. B. C. D.7.将函数的图像向右平移个单位长度后,得到函数的图像,则函数的单调增区间为()A. B.C. D.8.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。

(共6题;共30分)9.已知复数,其中为虚数单位,则复数的模是________.10.集合A={x|x2﹣3x﹣4<0,x∈Z}用列举法表示为________11.已知为奇函数,当时,,则曲线在点处的切线方程为________.12.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.13.若,,,则的最小值为________.14.在△ABC中,tanA=﹣3,△ABC的面积S△ABC=1,P0为线段BC上一定点,且满足CP0=BC,若P为线段BC上任意一点,且恒有,则线段BC的长为________.三、解答题:本大题共6小题,共80分.(共6题;共80分)15.某单位开展“党员在线学习” 活动,统计党员某周周一至周日(共天)学习得分情况,下表是党员甲和党员乙学习得分情况:党员甲学习得分情况党员乙学习得分情况(1)求本周党员乙周一至周日(共天)学习得分的平均数和方差;(2)从本周周一至周日中任选一天,求这一天党员甲和党员乙学习得分都不低于分的概率;(3)根据本周某一天的数据,将全单位名党员的学习得分按照,, ,,进行分组、绘制成频率分布直方图(如图)已知这一天甲和乙学习得分在名党员中排名分别为第和第名,请确定这是根据哪一天的数据制作的频率分布直方图.(直接写结果,不需要过程)16.如图四边形中,分别为的内角的对边,且满足.(1)证明:;(2)若,设, 求四边形面积的最大值.17.如图,平面ABCD⊥平面ABE,四边形ABCD是边长为2的正方形,AE=1,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)线段AD上是否存在一点M,使平面ABE与平面MCE所成二面角的余弦值为?若存在,试确定点M的位置;若不存在,请说明理由.18.已知数列满足.(Ⅰ)若成等差数列,求的值;(Ⅱ)是否存在,使数列为等比数列?若存在,求出所有这样的;若不存在,说明理由.19.已知函数f(x)=x-1+ (a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)相切,求l的直线方程.20.已知函数f(x)=kx,(1)求函数的单调递增区间;(2)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求k的取值范围;(3)求证:.答案一、选择题:本卷共8小题,每小题5分,共40分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.若x>0,则由33332,,|,||,|,,x x x x x x x ----组成的集合中的元素有 ( )A .1个B .2个C .3个D .7个2.极坐标系中,圆)6sin(2πθρ+=的圆心坐标是 ( )A .)6,1(πB .)3,1(πC .)32,1(π D .)65,1(π 3.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=,)31(x 那么)21(f 的值是 ( ) A .33 B .-33 C .3 D .-3 4.若αα2cos ),53arcsin(则-=的值是 ( )A .257B .-257C .2516D .-25165.在正方体ABCD —A 1B 1C 1D 1中,E 是AD 的中点,则异面直线C 1E 与BC 所成的角的余弦值是( ) A .510B .1010C .31D .3226.若椭圆两焦点为)0,4(),0,4(21F F -点P 在椭圆上,且△PF 1F 2的面积的最大值为12,则此椭圆的方程是( )A .1203622=+y xB .1122822=+y x C.192522=+y xA 11D .142022=+y x7.地球半径为R ,北纬45。

圈上A 、B 两点分别在东经130。

和西经140。

,并且北纬45。

圈小圆的圆心为O ,,则在四面体O —ABO ,中,直角三角形有 ( )A .0个B .2个C .3个D .4个8.设a ,b 是两个实数,给出下列条件:①a+b >1; ②a+b >2 ; ③a 2+b 2>2 ;④ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是( )A .①和④B .②和④C .②和③D .只有②9.设矩形OABC 的顶点O (坐标原点),A 、B 、C 按逆时针方向排列,点A 对应的复数为4-2i ,且,2||||=OC OA 那么向量AC 对应的复数是 ( )A .3+4iB .-3+4iC .-3-4iD .3-4i10.圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,圆心为P ,若∠APB =90°,则c 的值是( )A .-3B .3C .225-D .2211.某工厂8年来某种产品的总产量c 与时间t (年)的函数关系如右图,下列四种说法:①前三年中产品增长的速度越来越快;②前三年中产品增长的速度越来越慢;③第三年后,这种产品停止生产;④第三年后,年产量保持不变,其中正确的说法是( ) A .②和③ B .①和④C .①和③D .②和④12.一组实验数据如下:则下列四个关系中,最接近实验数据的表达式(所谓最接近实验数据的表达式是指,将表中各组数据代入表达式后,等式左右两边值的差绝对值均不超过1)为 ( )A .t y 2log =B .t y -=2C .21212-=t yD .22-=t y第Ⅱ卷 (非选择题)二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上.13.直线l 经过点A (2,1)和点B (1,m )(m ∈R ),那么直线l 的倾斜角的取值范围是 .14.对于定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.若二次函数f(x)=x 2+ax +1没有不动点,则实数a 的取值范围是 .15.设正数数列{a n }前n 项和为S n ,且存在正数t ,使得对所有自然数n ,有2nn a t tS +=,则通过归纳猜测可得到S n = . 16.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,这人把这种特殊要求的号买全,至少要化 元.(用数学作答)三、解答题:本大题有6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,已知,31,21==tgB tgA 且最长边为1. (1)证明角π43=C ;(2)求△ABC 最短边的长.18.(本小题满分12分)已知四面体ABCD 沿AB ,AC ,AD 剪开展成的平面图形正好是下图所示的直角梯形A 1A 2A 3D (梯形中的三点A 1,A 2,A 3重合于四面体中的点A ).(1)证明:AB ⊥CD ;(2)当A 1D=10,A 1A 2=8时,求二面角A —CD —B 的平面角;(3)在(2)的条件下,求四面体ABCD 的体积.)3A ⇓A 2A 3A1B C19.(本小题满分14分)已知等差数列{a n}的前四项和为60,第二项与第四项和为34;等比数列{b n}的前四项和为120,第二项与第四项和为90.(1)求数列{a n},{b n}的通项公式;(2)是否存在正整数p.使得a p=b2 n对一切n∈N均成立?若存在请给出证明;若不存在,请说明理由.20.(本小题满分12分)已知函数.f-x-=g=x)(x,21mx)(m(1)当m=1时,解不等式);(f<x)(xg(2)如果对满足|m|<1的一切实数m,都有f(x)>g(x)求x的取值范围.21.(本小题满分12分)椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa.(1)用半焦距c表示椭圆的方程及tgα;(2)若2<tgα<3,求椭圆率心率e的取值范围.22.(本小题满分12分)以一年为一个周期调查某商品出厂价格及该商品在商店销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8元,7月份出厂价格最低为4元;而该商品在商店内的销售价格是在8元基础上按月份也是随正弦曲线波动的,并已知5月份销售价最高为10元,9月份销售价最低为6元.假设某商店每月购进这种商品m件,且当月能售完,请估计哪个月盈利最大?并说明理由.数学参考答案及标分标准一、 选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题4分,共16分. 13.)),2(2,0[πππ⋃ 14.(-1,3) 15.n 2t 16. 8640三、解答题:本大题共6小题,共74分. 17.(本题满分12分) (1) 由)3(,11)(分Λ=-+=+tgAtgBtgBtgA B A tg 而在△ABC 中,0<A+B <π,所以)3(;43,4分则Λππ==+C B A (2)从而知∠C 所对边最长,∠B 所对边最短且为锐角,由tgB=.1010sin ,31=B 得;……3分 由正弦定理,sin sin CcB b =得最短边)3(.55分Λ=b18.(本题满分12分)(1)依题意得,分从而平面则4;,,,ΛAC AB ACD AB AD AB AC AB ⊥⊥⊥⊥ (2) 由条件可得,8,4,10322131======C A C A B A B A D A D A ;那么在直角梯形A 1A 2CD 中,求得CD =,172在△ACD 中由余弦定理求得AHBCD BH H CD AH ADC ADC ∠⊥⊥=∠=∠,,;17516sin ,17513cos 则于作则为二面角的平面角;因为);817(817,1732sin arctg AH AB AHB tg ADC AD AH ===∠=∠⋅=α所以4分(3).3128)173217221(43131=⋅⋅⋅⋅=⋅⋅=∆ACD ABCDS AB V 4分 19.(本题满分14分)(1) 由等差等比数列的通项及求和公式,可求得a 1=9,d =4,q =3 (4)分 所以通项为分2.3,54Λn n n b n a =+=(2)假设存在正整数P ,使得a p =b 2 n,则4P+5=(3n )2,即4P =9n -5 ……2分由归纳猜测可得对一切自然数,9n -5均是4的正整数倍,故存在正整数P ,使得a p =b 2 n.……2分 用数学归纳法或二项式定理证明以上结论.……4分 20.(本题满分12分)(1)m =1时,不等式121-<-x x ,等价于不等式组分3)12(1012012Λ⎪⎩⎪⎨⎧-<->-≥-x x x x 解得原不等式的解集为{143|≤<x x }.……3分 (2)由f(x)>g(x),即要对满足|m |<1的一切实数,不等式01)12(<---x m x 恒成立.……2分 令,01)12()(<---=x m x m p 必需且只需分且2.0)1(0)1(Λ≤-≤p p 解这两个不等式,等价于解|12|1-≥-x x ,解得x 的取值范围为分2.430Λ≤≤x 21.(本题满分12分)(1)由题意可知,,,1222222c c a b c c a c ca =-=+==-则所以椭圆方程为分41222Λ=++cy c c x 设),(),,(2211y x B y x A ,将其代入椭圆方程相减,将212121211x x y y k x x y y OM ++==--与代入 可化得 c c c c tg c k OM2|111111|,11+=+-++=∴+-=α (4)分(2)若2<tg α<3,则)36,22(111,21,3222∈+=+==<<∴<+<c cc c ac e c cc 则…4分22.(本题满分12分)由条件可得:出厂价格函数为分3,6)44sin(21Λ+-=ππx y 销售价格函数为)3(,8)434sin(22分Λ+-=ππx y则利润函数)4sin 222(]6)44sin(28)434sin(2[)(12x m x x m y y m y πππππ-=---+-=-=…3分所以,当x =6时,y =(2+22)m ,即6月份盈利最大.……3分。

相关文档
最新文档