DNA种类
dna分子的基本单位的种类和名称

dna分子的基本单位的种类和名称DNA分子是构成生物体遗传信息的重要分子,它由一系列基本单位组成。
下面将介绍DNA分子的基本单位的种类和名称。
1. 核苷酸(Nucleotide)核苷酸是DNA分子的基本组成单元,由糖类分子、碱基和磷酸组成。
在DNA分子中,糖类分子是脱氧核糖(deoxyribose),碱基有四种类型:腺嘌呤(adenine)、鸟嘌呤(guanine)、胸腺嘧啶(thymine)和胞嘧啶(cytosine)。
磷酸部分连接在糖类分子上,形成磷酸二酯键。
核苷酸通过碱基之间的氢键相互连接,形成DNA分子的双螺旋结构。
2. 核苷酸序列(Nucleotide Sequence)核苷酸序列是指DNA分子中核苷酸的排列顺序。
核苷酸序列决定了DNA分子中的遗传信息。
在DNA分子中,不同的核苷酸序列编码了不同的基因信息,从而决定了生物体的性状和特征。
3. 单链(Single Strand)DNA分子由两条互补的单链组成。
每条单链由核苷酸依次连接而成,单链上的碱基通过氢键与互补的碱基相互连接。
单链的碱基序列决定了另一条单链的互补碱基序列。
4. 双螺旋结构(Double Helix)DNA分子以双螺旋结构存在。
双螺旋结构由两条单链以螺旋形式相互缠绕而成。
两条单链通过碱基之间的氢键相互连接,形成稳定的双螺旋结构。
双螺旋结构使得DNA分子具有较强的稳定性和抗拉伸性,保护了其中的遗传信息。
5. 基因(Gene)基因是DNA分子的一个重要组成部分,它是遗传信息的单位。
每个基因由一段特定的核苷酸序列编码,这段序列决定了基因所编码的蛋白质的氨基酸序列。
基因通过蛋白质的合成和调控,影响生物体的性状和功能。
6. 编码区(Coding Region)编码区是基因中编码蛋白质的部分,也是基因中最重要的部分。
编码区由一段连续的核苷酸序列组成,这段序列通过三个碱基(称为密码子)对应一个氨基酸,从而确定了蛋白质的氨基酸序列。
7. 非编码区(Noncoding Region)非编码区是基因中不参与编码蛋白质的部分。
基因组dna类型 -回复

基因组dna类型-回复基因组DNA类型DNA(脱氧核糖核酸)是构成生物遗传信息的重要分子,在生物界中广泛存在。
DNA分子是由大量的核苷酸构成,其中核苷酸由磷酸基团、五碳糖(脱氧核糖)和氮碱基组成。
氮碱基主要包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧啶(C)四种。
DNA的基本结构由两条互补的链组成,通过氢键相互连接,形成通常所说的双螺旋结构。
在不同物种和个体中,基因组的DNA类型可以有所不同。
DNA的种类通常可以从不同方面进行分类。
1. 按照物种的不同,基因组的DNA类型可以分为原核生物DNA和真核生物DNA。
原核生物DNA是指细菌和蓝藻等原核生物中的DNA。
真核生物DNA则包括植物、动物、真菌等多细胞生物的DNA。
2. 按照DNA序列的不同,基因组的DNA类型可以分为基因DNA和非编码DNA。
基因DNA是指包含有编码蛋白质的基因信息的DNA序列,它们经常被转录为RNA,并最终翻译为蛋白质。
非编码DNA则是指不含有编码蛋白质的基因信息的DNA序列,它们可以参与基因调控、转录调控等生物过程。
3. 按照染色体的不同,基因组的DNA类型可以分为核染色体DNA和线粒体DNA。
核染色体DNA是指存在于真核生物的细胞核中的DNA,其中包含大部分基因组的信息。
线粒体DNA则是存在于线粒体中的DNA,它相对较小,主要编码相关的线粒体蛋白质。
4. 按照DNA重复序列的不同,基因组的DNA类型可以分为单拷贝DNA、重复DNA和跳跃DNA。
单拷贝DNA是指基因组中只存在一个拷贝的DNA序列,它们在维持基本生物过程中起着重要作用。
重复DNA则是指在基因组中存在多个拷贝的DNA序列,包括高度重复序列、低复杂度DNA序列等。
跳跃DNA是指一类可以在基因组中移动的DNA片段,它们具有突变、复制和插入到新的位点等能力。
5. 按照DNA甲基化的不同,基因组的DNA还可以分为甲基化和非甲基化DNA。
甲基化DNA是指DNA链上的某些位点发生了甲基化修饰,这种修饰可以影响基因的表达。
分子生物学

1.三股螺旋的DNA:当双链核酸的一条链为全嘌呤核苷酸链,另一条链为全嘧啶核苷酸链时,就会转化形成三链核酸的结构。
2.三股螺旋DNA的形成:在这种结构中,通常是一条同型的寡核苷酸与寡嘧啶核苷酸-寡嘌呤核苷酸双螺旋的大沟结合。
第三股链的碱基与Waston-Crick碱基对中的嘌呤碱形成Hoogsteen配对。
第三股链与寡嘌呤核苷酸之间为同向平行。
在三股螺旋中,第三个碱基以A或T 与A=T配对中的A配对;G或C与G=C配对中的G配对,C必须质子化,以提供与G的N7结合的氢键供体,它与G配对只形成两个氢键。
3.三股螺旋DNA的种类:①分子间:D.S.DNA+ D.S.DNA→T.S.DNA +S.S.DNA;S.S.DNA+D.S.DNA →T.S.DNA。
②分子内:绞链DNA:当DNA的一段多聚嘧啶核苷酸或嘌呤核苷酸序列镜像重复时,即可回折产生绞链DNA(H-DNA)。
4.三股螺旋DNA形成的条件和结构特点:①酸性条件下,C质子化,与G的配对能力增强,容易形成H-DNA。
②镜像结构,第三条单链DNA分子位于B-DNA大沟内与B-DNA以Hoogsteen 键连接5.T. S. DNA可能的功能:①可阻止调节蛋白与DNA结合, 关闭基因转录过程。
②与基因重组, 交换有关。
③加入第三条S. S. DNA 作为分子剪刀(molecular scissors),定点切割DNA分子(S1核酸酶)。
④加入反义的第三条链(anti-sence polydNt) 终止基因的表达。
6.DNA的四链结构:X-射线纤维衍射技术,发现多聚鸟苷酸采取的是四螺旋DNA的结构形式,形成鸟嘌呤四联体,4个G有序地排列在一个正方形片层中,相邻碱基之间以非正常的G-G氢键相连,形成首尾相接的环形结构,以螺旋方式堆积而成,其中每一片层包含4个鸟嘌呤碱基,分别来自4条多聚鸟苷酸链。
7.端粒:是真核生物染色体末端的结构。
通常由富含G的短的串联重复序列DNA和端粒蛋白构成,是完整染色体所不可缺少的。
DNA的分子结构和特点

碱基互补配对原则 DNA分子的多 样性和特异性
—T —T —G —G —C —C —T —A—
碱基4种、碱基对2种、排列顺序不同
DNA分子中各种碱基的数量关系
1、双链DNA分子中: A=T, G=C; 即 A+G= T+C 或 A+C=T+G, 也即是:(A+G)/(T+C) = 1
G
A
C
(3)两条链上的碱基通过氢键 T 连结起来,形成碱基对,且遵循 碱基互补配对原则。
G
C
A C A T C
T G T A G
你注意到了吗?
两条长链上的脱氧核
糖与磷酸交替排列的
顺序是稳定不变的。
G
A
C
T
碱基配对方式不变 (碱基互补配对原则)
G
C
A C A T C
T G T A G
你注意到了吗?
• 5. 有一对氢键连接的脱氧核苷酸,已查明它的结 构有一个腺嘌呤,则它的其他组成是( c ) • A.三个磷酸、三个脱氧核糖和一个胸腺嘧啶 • B.二个磷酸、二个脱氧核糖和一个胞嘧啶 • C二个磷酸、二个脱氧核糖和一个胸腺嘧啶 • D二个磷酸、二个脱氧核糖和一个鸟嘌呤
1、每个DNA片断 中,游离的磷酸基 团有 2 个。 2、DNA的一条链上 相邻的脱氧核苷酸通 过 磷酸二酯键 连接。 3、碱基之间的配对方式有 两 种,A与T配对,G与C配对 . 4、配对的碱基之间以 氢键 相连,A与T之间形成 两 个 氢键,G与C之间形成 三 个氢键。
脱氧核糖核苷酸
腺嘌呤(A) 鸟嘌呤(G) 胞嘧啶(C) 尿嘧啶(U)
RNA和DNA的区别
dna二级结构的种类-概述说明以及解释

dna二级结构的种类-概述说明以及解释1.引言1.1 概述DNA(脱氧核糖核酸)是构成生物体遗传信息的重要分子。
在DNA 的二级结构中,是由两条螺旋状的链通过氢键相互缠绕而成的。
每个DNA 链由若干个碱基组成,碱基分为四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。
这些碱基通过氢键的配对规则,形成了DNA 螺旋结构中的双螺旋。
DNA二级结构是指DNA链之间的相互作用和结合形式。
由于碱基的配对规则,DNA的二级结构通常可以分为两种类型:B型和A型。
B型DNA二级结构是最常见的DNA结构形式,也是最稳定的一种。
在B型DNA中,两条螺旋链以右手螺旋的方式缠绕在一起,每转10个碱基,螺旋上升3.4纳米,形成一个螺距。
并且在B型DNA中,两条螺旋链之间的氢键形成的连接点是平行排列的。
A型DNA二级结构在某些特定的条件下可以形成,如在溶液中高含盐浓度或在活细胞内。
与B型DNA不同,A型DNA呈右手螺旋结构,但其螺旋上升的程度比B型DNA小,只有2.6纳米。
此外,A型DNA 的碱基对之间的夹角也有所改变,呈现出更加紧密的结构。
基于这两种主要的DNA二级结构类型,我们可以更深入地了解DNA 的物理特性和生物功能。
通过研究DNA二级结构的种类和特点,我们可以更好地理解DNA的复制、转录和修复等重要的生物过程。
此外,对DNA 二级结构的研究还有助于揭示DNA与蛋白质、药物相互作用的机制,进而在基因编辑、疾病治疗等方面有着重要的应用前景。
因此,本文将分别介绍B型DNA和A型DNA二级结构的特点、形成条件和生物学意义,以期增进对DNA结构和功能的深入理解。
1.2 文章结构文章结构部分的内容可以参考以下写法:文章结构:本文主要分为引言、正文和结论三个主要部分。
引言部分首先对文章的主题进行了概述,简要介绍了DNA二级结构的种类,并说明了本文的目的。
正文部分分为两个小节,分别介绍了DNA二级结构的第一种类型和第二种类型。
DNA基本简介

基本简介单体脱氧核糖核酸聚合而成的聚合体——脱氧核糖核酸链,也被称为DNA。
在繁殖过程中,父代把它们自己DNA的一部分(通常一半,即DNA双链中的一条)复制传递到子代中,从而完成性状的传播。
因此,化学物质DNA会被称为“遗传微粒”。
原核细胞的拟核是一个长DNA分子。
真核细胞核中有不止一个染色体,每条染色体上含有一个或两个DNA。
不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。
DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应。
除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。
病毒的遗传物质也是DNA,极少数为RNA,极其特别的病毒以蛋白质为遗传物质(朊病毒)。
DNA是一种长链聚合物,组成单位称为脱氧核苷酸,而糖类与磷酸分子借由酯键相连,组成其长链骨架。
每个糖分子都与四种碱基里的其中一种相接,这些碱基沿着D NA长链所排列而成的序列,可组成遗传密码,是蛋白质氨基酸序列合成的依据。
读取密码的过程称为转录,是根据DNA序列复制出一段称为RNA的核酸分子。
多数R NA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。
四链体DNASundpuist和Klug在模拟1种原生动物棘毛虫的端粒DNA时,人工合成了1段D NA序列,发现在一定条件下模拟的富G单链DNA可形成四链体DNA结构。
由此推测染色体端粒尾的单链之间也形成了四链体。
Kang等人分别用实验证实在晶体和溶液中,富G DNA也能够形成四链体DNA结构。
四链体DNA的基本结构单位是G-四联体,即在四联体的中心有1个由4个带负电荷的羧基氧原子围成的“口袋”通过G-四联体的堆积可以形成分子内或分子间的右手螺旋,与DNA双螺旋结构比较,G-四联体螺旋有2个显著的特点:1、它的稳定性决定于口袋内所结合的阳离子种类,已知钾离子的结合使四联体螺旋最稳定;2、它的热力学和动力学性质都很稳定。
DNA分子的结构及其特点

DNA分子的结构及其特点1.基本单位DNA分子的基本单位是脱氧核苷酸。
每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成。
由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。
2.分子结构DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。
DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。
DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。
应注意以下几点:⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。
⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。
⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'~5',另一条为5'~~3'。
⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。
双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出:①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等;②A+C(G)=T+G(C):即任意两不互补碱基的数目相等;③A%+C%=T%+G%=A%+G%=T%+C%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%;④(A1+T1)/(C1+G1)=(A2+T2)/(C2+G2)=(A+T)/(C+G)=A/C=T/G:即双链DNA及其任一条链的(A+T)/(C+G)为一定值;⑤(A1+C1)/(T1+G1)=(T2+G2)/(A2+C2)=1/[(A2+C2)/(T2+G2)]:DNA分子两条链中的(A+C)/(T+G)互为倒数;双链DNA分子的(A+C)/(T+G)=1。
目前dna测序技术的种类和原理

目前dna测序技术的种类和原理DNA测序技术是指通过对DNA序列进行分析和解读,以了解DNA分子的组成、结构和功能。
随着科学技术的不断发展,目前已经出现了多种不同的DNA测序技术。
以下是其中的几种技术及其原理:1. Sanger测序技术Sanger测序技术是一种最早被广泛应用的DNA测序技术。
其原理是利用DNA聚合酶和DNA核酸酶,将DNA单链逐个扩增成双链,并在每个反应体系中加入一种ddNTP,这种ddNTP会取代普通的dNTP进入DNA链,导致DNA链的终止。
在反应结束后,用聚丙烯酰胺凝胶电泳分离出不同长度的DNA链,通过分析这些DNA链的长度就可以确定DNA的序列。
2. Illumina测序技术Illumina测序技术是一种高通量、快速的测序技术。
其原理是将DNA片段通过PCR扩增成成百万甚至数亿个同一长度的DNA片段,然后将这些片段用碱性化学方法进行固定,接着在根据DNA序列逐一加入碱基,每加入一个碱基就记录下来。
一旦所有的碱基都加入完毕,就可以得到DNA的完整序列。
3. PacBio测序技术PacBio测序技术是一种基于单分子实时测序的技术。
其原理是将DNA分子通过引物和DNA聚合酶逐一扩增成双链,然后将DNA分子引入到一个微小的孔道中,引入后DNA分子会被拉伸成一个线性结构,并利用荧光标记的DNA聚合酶对其进行逐一扩增。
在扩增的过程中,荧光标记的碱基被逐一加入,每加入一个碱基就会发出一个荧光信号。
通过监测这些信号的强度和时间,就可以得到DNA分子的序列信息。
4. Nanopore测序技术Nanopore测序技术是一种利用纳米孔测序的技术。
其原理是将DNA分子通过引物和DNA聚合酶逐一扩增成双链,然后将DNA分子引入到一个纳米孔中,孔径大小与DNA分子的直径相似。
当DNA分子通过孔道时,通过测量DNA分子对孔道的电阻变化,就可以确定DNA的序列信息。
综上所述,DNA测序技术的种类和原理多种多样,每种技术都有其独特的优势和适用范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、脱氧核糖核酸cDNA:互补DNA(Complementary DNA,cDNA)是一种利用逆转录酶,以RNA(通常是mRNA)为模板作成的复制品,经常用来将真核生物的基因(以mRNA形式)复制到原核生物细胞中。
若一个cDNA含有许多来自不同基因的mRNA,称为cDNA基因库(cDNA library)。
另外也可制成只含单一mRNA的cDNA。
(from wiki)cpDNA:叶绿体基因组也叫叶绿体DNA(cpDNA),双链环状,每个叶绿体中约含12个cpDNA 分子。
叶绿体具有独立基因组,被认为是内共生起源的细胞器。
叶绿体基因组主要用于编码与光合作用密切相关的一些蛋白和一些核糖体蛋白。
叶绿体基因表达调控是在不同水平上进行的,光和细胞分裂素对叶绿体基因的表达也起着重要的调节作用。
gDNA: Genomic DNA.是区别与染色体之外的DNA,如质粒DNA等。
gDNA可以遗传给后代。
msDNA:Multicopy single-stranded DNA (msDNA) is a type of extrachromosomal satellite DNA that consists of a single-stranded DNA molecule covalently linked via a 2'-5'phosphodiester bond to an internal guanosine of an RNA molecule. The resultant DNA/RNA chimera possesses two stem-loops joined by a branch similar to the branches found in RNA splicing intermediates. The coding region for msDNA, called a "retron", also encodes a type of reverse transcriptase, which is essential for msDNA synthesis.[2]mtDNA:Mitochondrial DNA (mtDNA or mDNA[2]) is the DNA located in organelles called mitochondria, structures within eukaryotic cells that convert the chemical energy from food into a form that cells can use, adenosine triphosphate (ATP). Most other DNA present in eukaryotic organisms is found in the cell nucleus.mtDNA是母系遗传的。
rDNA: Ribosomal DNA (rDNA) codes for ribosomal RNA. The ribosome is an intracellular macromolecule that produces proteins or polypeptide chains. The ribosome itself consists of a composite of proteins and RNA. As shown in the figure, rDNA consists of a tandem repeat of a unit segment, an operon, composed of NTS, ETS, 18S, ITS1, 5.8S, ITS2, and 28S tracts. rDNA has another gene, coding for 5S rRNA, located in the genome in most eukaryotes.[1] 5S rDNA is also present in tandem repeats as in Drosophila.[1] In the nucleus, the rDNA region of the chromosome is visualized as a nucleolus which forms expanded chromosomal loops with rDNA. These rDNA regions are also called nucleolus organizer regions, as they give rise to the nucleolus. In the human genome there are 5 chromosomes with nucleolus organizer regions: chromosomes 13,14,15,21 and 22.染色体上编码rRNA的基因。
二、核糖核酸:mRNA(前-mRNA/不均一核RNA)Messenger RNA (mRNA) is a molecule of RNA that encodes a chemical "blueprint" for a protein product. mRNA is transcribed from a DNA template, and carries coding information to the sites of protein synthesis: the ribosomes. Here, the nucleic acid polymer is translated into a polymer of amino acids: a protein. In mRNA, as in DNA, genetic information is encoded in the sequence of nucleotides arranged into codons consisting of three bases each. Each codon encodes for a specific amino acid, except the stop codons, which terminate protein synthesis. This process requires two other types of RNA: Transfer RNA (tRNA), that mediates recognition of the codon and provides the corresponding amino acid, and ribosomal RNA (rRNA), that is the central component of the ribosome's protein-manufacturing machinery.tRNATransfer RNA (tRNA) is an adaptor molecule composed of RNA, typically 73 to 93 nucleotides in length, that is used in biology to bridge the four-letter genetic code (ACGU) in messenger RNA (mRNA) with the twenty-letter code of amino acids in proteins.[1] The role of tRNA as an adaptor is best understood by considering its three-dimensional structure.rRNA:Ribosomal ribonucleic acid (rRNA) is the RNA component of the ribosome, the enzyme that is the site of protein synthesis in all living cells. Ribosomal RNA provides a mechanism for decoding mRNA into amino acids and interacts with tRNAs during translation by providing peptidyltransferase activity. The tRNAs bring the necessary amino acids corresponding to the appropriate mRNA codon.Inside the ribosomeThe ribosomal RNAs form two subunits, the large subunit (LSU) and small subunit (SSU). mRNA is sandwiched between the small and large subunits and the ribosome catalyzes the formation of a peptide bond between the 2 amino acids that are contained in the rRNA.A ribosome also has 3 binding sites called A, P, and E.The A site in the ribosome binds to an aminoacyl-tRNA (a tRNA bound to an amino acid).The amino (NH2) group of the aminoacyl-tRNA, which contains the new amino acid, attacks the ester linkage of peptidyl-tRNA (contained within the P site), which contains the last amino acid of the growing chain, forming a new peptide bond. This reaction is catalyzed by peptidyltransferase.The tRNA that was holding on the last amino acid is moved to the E site, and what used to be the aminoacyl-tRNA is the peptidyl-tRNA.A single mRNA can be translated simultaneously by multiple ribosomes.Prokaryotes vs. EukaryotesBoth prokaryotic and eukaryotic ribosomes can be broken down into two subunits (the S in 16S represents Svedberg units沉降单位):Note that the S units of the subunits cannot simply be added because they represent measures of sedimentation rate rather than of mass. The sedimentation rate of each subunit is affected by its shape, as well as by its mass.ProkaryotesIn prokaryotes a small 30S ribosomal subunit contains the 16S rRNA.The large 50S ribosomal subunit contains two rRNA species (the 5S and 23S rRNAs).Bacterial 16S, 23S, and 5S rRNA genes are typically organized as aco-transcribed operon.There may be one or more copies of the operon dispersed in the genome (for example, Escherichia coli has seven).Archaea contains either a single rDNA operon or multiple copies of the operon.The 3' end of the 16S rRNA (in a ribosome) binds to a sequence on the 5' end of mRNA called the Shine-Dalgarno sequence.Mutations in theShine-Dalgarno sequence can reduce translation. This reduction is due to a reduced mRNA-ribosome pairing efficiency, as evidenced by the fact that complementary mutations in the anti-Shine-Dalgarno sequence can restore translation.WhentheShine-Dalgarnosequenceand the anti-Shine-Dalgarno sequence pair, the translation initiation factors IF2-GTP, IF1, IF3, as well as the initiator tRNAfMet-tRNA(fMET) are recruited to the ribosome.EukaryotesSmall subunit ribosomal RNA, 5' domain taken from the Rfam database. This example is RF00177In contrast, eukaryotes generally have many copies of the rRNA genes organized in tandem repeats; in humans approximately 300–400 rDNA repeats are present in five clusters (on chromosomes 13, 14, 15, 21 and 22).The 18S rRNA in most eukaryotes is in the small ribosomal subunit, and the large subunit contains three rRNA species (the 5S, 5.8S and 28S rRNAs).Mammalian cells have 2 mitochondrial (12S and 16S) rRNA molecules and 4 types of cytoplasmic rRNA (the 28S, 5.8S, 18S, and 5S subunits). The 28S, 5.8S, and 18S rRNAs are encoded by a single transcription unit (45S) separated by 2 internally transcribed spacers. The 45S rDNA organized into 5 clusters (each has 30-40 repeats) on chromosomes 13, 14, 15, 21, and 22. These are transcribed by RNA polymerase I. 5S occurs in tandem arrays (~200-300 true 5S genes and many dispersed pseudogenes), the largest one on the chromosome 1q41-42. 5S rRNA is transcribed by RNA polymerase III.The tertiary structure of the small subunit ribosomal RNA (SSU rRNA) has been resolved by X-ray crystallography.[1] The secondary structure of SSU rRNA contains 4 distinct domains —the 5', central, 3' major and 3' minordomains. A model of the secondary structure for the 5' domain (500-800 nucleotides) is shown.tmRNA:Transfer-messenger RNA (abbreviated tmRNA, also known as 10Sa RNA and by its genetic name SsrA) is a bacterial RNA molecule with dual tRNA-like and messenger RNA-like properties. The tmRNA forms a ribonucleoprotein complex (tmRNP) together with Small Protein B (SmpB), Elongation Factor Tu (EF-Tu), and ribosomal protein S1. Intrans-translation, tmRNA and its associated proteins bind to bacterial ribosomes which have stalled in the middle of protein biosynthesis, for example when reaching the end of a messenger RNA which has lost its stop codon.snRNA:Small nuclear ribonucleic acid (snRNA) is a class of small RNA molecules that are found within the nucleus of eukaryotic cells. They are transcribed by RNA polymerase II or RNA polymerase III and are involved in a variety of important processes such as RNA splicing (removal of introns from hnRNA), regulation of transcription factors (7SK RNA) or RNA polymerase II (B2 RNA), and maintaining the telomeres. They are always associated with specific proteins, and the complexes are referred to as small nuclear ribonucleoproteins (snRNP) often pronounced "snurps". These elements are rich in uridine content.A large group of snRNAs are known as small nucleolar RNAs (snoRNAs). These are small RNA molecules that play an essential role in RNA biogenesis and guide chemical modifications of ribosomal RNAs (rRNAs) and other RNA genes (tRNA and snRNAs). They are located in the nucleolus and the Cajal bodies of eukaryotic cells (the major sites of RNA synthesis).snoRNA:Small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that primarily guide chemical modifications of other RNAs, mainly ribosomal RNAs, transfer RNAs and small nuclear RNAs. There are two main classes of snoRNA, the C/D box snoRNAs which are associated with methylation, and the H/ACA box snoRNAs which are associated with pseudouridylation. snoRNAs are commonly referred to as guide RNAs but should not be confused with the guide RNAs that direct RNA editing in trypanosomes.miRNA:A microRNA (abbreviated miRNA) is a short ribonucleic acid (RNA) molecule found in eukaryotic cells. A microRNA molecule has very few nucleotides (an average of 22) compared with other RNAs.miRNAs are post-transcriptional regulators that bind to complementary sequences on target messenger RNA transcripts (mRNAs), usually resulting in translational repression or target degradation and gene silencing.[1][2] The human genome may encode over 1000 miRNAs,[3][4] which may target about 60% of mammalian genes[5][6] and are abundant in many human cell types.[7]siRNA:Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA molecules, 20-25 nucleotides in length, that play a variety of roles in biology. The most notable role of siRNA is its involvement in the RNA interference (RNAi) pathway, where it interferes with the expression of a specific gene. In addition to its role in the RNAi pathway, siRNA also acts in RNAi-related pathways, e.g., as an antiviral mechanism or in shaping the chromatin structure of a genome; the complexity of these pathways is only now being elucidated.piRNA:Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules that is expressed in animal cells.[1][2] piRNAs form RNA-protein complexes through interactions with piwi proteins. These piRNA complexes have been linked to both epigenetic and post-transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, particularly those in spermatogenesis.[3] They are distinct from microRNA (miRNA) in size (26–31 nt rather than 21–24 nt), lack of sequence conservation, and increased complexity.[1][2]It remains unclear how piRNAs are generated, but potential methods have been suggested, and it is certain their biogenesis pathway is distinct from miRNA and siRNA, while rasiRNAs are a piRNA subspecies.The wide variation in piRNA sequences and piwi function over species contributes to the difficulty in establishing the functionality of piRNAs.[22] However, like other small RNAs, piRNAs are thought to be involved in gene silencing,[1] specifically the silencing of transposons. The majority of piRNAs are antisense to transposon sequences,[14] suggesting that transposons are the piRNA target. In mammals it appears that the activity of piRNAs in transposon silencing ismost important during the development of the embryo,[19] and in both C. elegans and humans, piRNAs are necessary for spermatogenesis.aRNA:Antisense RNA is a single-stranded RNA that is complementary to a messenger RNA (mRNA) strand transcribed within a cell. Antisense RNA may be introduced into a cell to inhibit translation of a complementary mRNA by base pairing to it and physically obstructing the translation machinery.[1] This effect is therefore stoichiometric. An example of naturally occurring mRNA antisense mechanism is the hok/sok system of the E. coli R1 plasmid. Antisense RNA has long been thought of as a promising technique for disease therapy; the only such case to have reached the market is the drug fomivirsen. One commentator has characterized antisense RNA as one of "dozens of technologies that are gorgeous in concept, but exasperating in [commercialization]".[2] Generally, antisense RNA still lack effective design, biological activity, and efficient route of administration其他/未分组: gRNA · shRNA · stRNA · ta-siRNA克隆载体:噬菌粒·质粒·λ噬菌体·黏质体·F黏粒·PAC ·BAC ·YAC ·HAC。