古典概型教学案
古典概型教案

古典概型教案【教案名称】:古典概型教案【教学目标】:1. 理解什么是古典概型;2. 掌握计算古典概型的方法;3. 能够运用古典概型解决实际问题。
【教学重点】:1. 理解古典概型的定义及特点;2. 掌握计算古典概型的方法。
【教学难点】:1. 运用古典概型解决实际问题;2. 培养学生的逻辑思维能力。
【教学准备】:1. 教材:教科书、课件;2. 素材:相关实例和题目;3. 工具:黑板、粉笔、计算器。
【教学过程】:一、导入(5分钟)1. 引入话题:你有没有听说过古典概型?你对它有什么了解?2. 提出问题:古典概型是指什么?它有什么特点?二、讲解古典概型(10分钟)1. 定义古典概型:古典概型是指指定的试验只有有限个可能结果,每个可能结果发生的机会相同。
2. 特点:(1)试验只有有限个可能结果;(2)每个可能结果发生的机会相同。
3. 示例:抛一枚公正的硬币,问正反面的概率各是多少?三、计算古典概型(15分钟)1. 公式:事件A发生的概率 = 事件A包含的基本结果数 ÷所有基本结果数。
2. 示例:扔一枚公正的骰子,求出出现3的概率。
3. 练习:让学生尝试计算一些实例的概率,巩固所学知识。
四、运用古典概型解决实际问题(15分钟)1. 实例1:某班有30名学生,其中20名男生、10名女生。
从中任选一人,求选中的是女生的概率。
2. 实例2:有一包装机器生产的零件,其中10%有缺陷。
从中任选一件,求选中的是有缺陷的概率。
3. 其他实例:老师根据实际情况设置更多的实例,供学生思考和解答。
五、小结(5分钟)1. 总结古典概型的定义及特点;2. 复习计算古典概型的方法;3. 提醒学生在解决实际问题时,要注意分析问题的条件和要求。
【课后作业】:1. 让学生完成课后习题,巩固所学知识;2. 指导学生通过阅读相关的教材和资料,进一步了解和掌握古典概型。
【教学反思】:通过本节课的教学,学生对古典概型有了初步的了解,并能够运用古典概型解决简单的实际问题。
古典概型的教学设计方案

一、教学目标1. 知识与技能目标:理解古典概型的定义,掌握古典概型的性质,能够运用古典概型解决实际问题。
2. 过程与方法目标:通过观察、实验、讨论等方法,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。
二、教学内容1. 古典概型的定义:在所有可能事件中,每个事件发生的概率相等,这种概率模型称为古典概型。
2. 古典概型的性质:古典概型的概率计算公式,以及如何利用古典概型解决实际问题。
三、教学过程1. 导入新课(1)回顾概率的基本概念,引导学生思考如何计算随机事件发生的概率。
(2)提出问题:如何计算在有限个等可能事件中,某个事件发生的概率?2. 探究新课(1)展示实例,引导学生观察并分析实例中的古典概型。
(2)引导学生总结古典概型的定义和性质。
(3)通过小组讨论,让学生尝试运用古典概型解决实际问题。
3. 讲解新课(1)讲解古典概型的概率计算公式,以及如何利用公式求解实际问题。
(2)通过实例讲解如何判断一个概率模型是否为古典概型。
4. 巩固练习(1)布置课后作业,让学生独立完成。
(2)课堂上进行课堂练习,巩固所学知识。
5. 总结与反思(1)回顾本节课所学内容,总结古典概型的定义、性质和计算方法。
(2)引导学生反思:在学习过程中,如何运用古典概型解决实际问题?四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、讨论积极性等。
2. 作业完成情况:检查学生课后作业的完成质量,了解学生对古典概型的掌握程度。
3. 实际应用能力:通过课堂练习和课后作业,考察学生运用古典概型解决实际问题的能力。
五、教学资源1. 教学课件:用于展示古典概型的定义、性质和计算方法。
2. 实例分析:用于引导学生观察、分析实例中的古典概型。
3. 课后作业:用于巩固学生对古典概型的掌握程度。
4. 教学评价表:用于评价学生在课堂上的表现和作业完成情况。
古典概型教案范文

古典概型教案范文教案主题:古典概型教学年级:高中一年级教学目标:1.理解古典概型的概念和基本思想;2.掌握古典概型的计算方法;3.运用古典概型解决实际问题。
教学重点:1.古典概型的概念和基本思想;2.古典概型的计算方法。
教学难点:运用古典概型解决实际问题。
教学准备:1.掷骰子、纸牌等道具;2.备有练习题。
教学过程:Step 1: 引入1.介绍概率与统计的基础知识,并与学生进行互动讨论;2.引出古典概型课题。
Step 2: 讲解古典概型的概念和基本思想1.定义古典概型:在一次试验中,所有可能结果都是等可能发生的概率模型;2.古典概型的基本思想:每个事件发生的概率都是相等的,只要求出事件的总数和有利情况的总数就可以计算出概率。
Step 3: 讲解古典概型的计算方法1.对于求概率的基本事件,使用基本概率法则:P(A)=有利情况数/总情况数;2. 对于求概率的复合事件,使用复合概率法则:P(A and B) = P(A) × P(B)。
Step 4: 运用古典概型解决实际问题1.展示一个骰子,并说明骰子有6个面,每个面的概率都相等;2.举例子进行实际计算:掷一次骰子,求出得到偶数点数的概率。
Step 5: 练习训练1.给学生发放练习题;2.学生独立完成练习题;3.学生互相讨论和核对答案;4.教师进行解答和总结。
Step 6: 小结与反思1.小结古典概型的概念和基本思想;2.总结古典概型的计算方法;3.让学生回答一个思考问题:是否所有实际问题都适用古典概型的计算方法?为什么?教学扩展:1.引导学生思考古典概型在实际问题中的应用;2.提供更多实际问题供学生练习和探究。
教学评估:1.练习题的答案和解题过程;2.学生对古典概型的理解和应用能力;3.学生的互动讨论和思考问题的回答。
教学反馈:1.对学生过程中的错误进行纠正和指导;2.回答学生的问题和疑惑;3.记录学生的参与度和反馈。
教学延伸:1.给学生布置相关作业,进一步加深对古典概型的理解和掌握;2.引导学生继续深入研究概率与统计的其他内容。
10.1.3 古典概型 教案

第十章概率10.1.3古典概型教学设计一、教学目标1.古典概型的计算方法2.运用古典概型计算概率.3. 在实际问题中建立古典概型模型.二、教学重难点1. 教学重点古典概型的概念以及利用古典概型求解随机事件的概率.2. 教学难点运用古典概型计算概率.三、教学过程(一)探索新知探究一:随机事件的概率对随机事件发生可能性大小的度量(数值)称为事件的概率,事件A的概率用P(A)表示.探究二:古典概型一般地,若试验E具有以下特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.称试验E为古典概型试验,其数学模型称为古典概率模型,简称古典概型.探究三:古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率()()(Ω)k n AP An n==.其中,()n A和(Ω)n分别表示事件A和样本空间Ω包含的样本点个数.归纳:求解古典概型问题的一般思路:(1)明确试验的条件及要观察的结果,用适当的符号(字母、数字、数组等)表示试验的可能结果(借助图表可以帮助我们不重不漏地列出所有的可能结果);(2)根据实际问题情境判断样本点的等可能性;(3)计算样本点总个数及事件A包含的样本点个数,求出事件A的概率.(二)课堂练习1.某网站登录密码由四位数字组成,某同学将四个数字0,3,2,5,编排了一个顺序作为密码.由于长时间未登录该网站,他忘记了密码.若登录时随机输入由0,3,2,5组成的一个密码,则该同学不能顺利登录的概率是( )A.124B.2324C.116D.1516答案:B解析:用事件A表示“输入由0,3,2,5组成的一个四位数字,但不是密码”,由于事件A 比较复杂,可考虑它的对立事件A,即“输入由0,3,2,5组成的一个四位数字,恰是密码”,显然它只有一种结果,四个数字0,3,2,5随机编排顺序,所有可能结果可用树状图表示,如图:从树状图可以看出,将四个数字0,3,2,5随机编排顺序,共有24种可能的结果,即样本空间共含有24个样本点,且24个样本点出现的结果是等可能的,因此可以用古典概型来解决,由1()24P A=,得23()1()24P A P A=-=.因此,随机输入由0,3,2,5组成的一个四位数字,但不是密码,即该同学不能顺利登录的概率为2324.故选B.2.在5件产品中,有3件一等品和2件二等品,从中任取2件,以710为概率的事件是( )A.恰有1件一等品B.至少有1件一等品C.至多有1件一等品D.都不是一等品答案:C解析:将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰有1件一等品的取法有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),则恰有1件一等品的概率16 10P=;恰有2件一等品的取法有(1,2),(1,3),(2,3),则恰有2件一等品的概率23 10P=,故“至多有1件一等品”的概率3237111010P P =-=-=.故选C. 3.《史记》中讲述了田忌与齐王赛马的故事:“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”若双方各自拥有上等马、中等马、下等马各1匹,从中随机选1匹进行1场比赛,则齐王的马获胜的概率为( ) A.23 B.13 C.12 D.56答案:A解析:记田忌的上等马、中等马、下等马分别为a ,b ,c ,齐王的上等马、中等马、下等马分别为A ,B ,C .由题意可知,所有的基本事件有aA ,bA ,cA ,aB ,bB ,cB ,aC ,bC ,cC ,共9种,其中田忌可以获胜的事件有aB ,aC ,bC ,共3种,则齐王的马获胜的概率32193P =-=.故选A.(三)小结作业小结:本节课我们主要学习了哪些内容?1. 随机事件的概率;2. 古典概型;3. 古典概型的概率公式.四、板书设计10.1.3古典概型1. 随机事件的概率;2. 古典概型;3. 古典概型的概率公式.。
高中教资古典概型教案模板

教学对象:高中一年级学生教学目标:1. 知识与技能:理解古典概型的概念,掌握古典概型概率的计算方法。
2. 过程与方法:通过实验和实例分析,培养学生运用数学思想解决实际问题的能力。
3. 情感与价值:激发学生的学习兴趣,培养学生的探索精神和创新思维。
教学重点:1. 理解古典概型的定义和特点。
2. 掌握古典概型概率的计算公式。
教学难点:1. 如何判断一个试验是否为古典概型。
2. 如何确定一个古典概型中基本事件的总数和某随机事件包含的基本事件的个数。
教学准备:1. 多媒体课件2. 投影仪3. 硬币、骰子等教学道具教学过程:一、导入1. 通过展示生活中的随机事件,如掷骰子、抛硬币等,引导学生回顾概率的基本概念。
2. 提出问题:如何更简单地计算这些随机事件的概率?二、新课讲授1. 引入古典概型的概念:在一定条件下,所有可能发生的结果数目有限,并且每个结果发生的可能性相等。
2. 分析古典概型的特点:有限性、等可能性。
3. 推导古典概型概率的计算公式:P(A) = n(A) / n(S),其中P(A)表示事件A的概率,n(A)表示事件A包含的基本事件数,n(S)表示样本空间中基本事件的总数。
4. 通过实例讲解古典概型概率的计算方法。
三、课堂练习1. 学生分组进行实验:抛掷硬币、掷骰子等,记录结果,计算概率。
2. 学生根据实验结果,运用古典概型概率计算公式计算事件发生的概率。
四、课堂小结1. 总结本节课所学内容:古典概型的概念、特点、计算方法。
2. 强调古典概型在实际生活中的应用。
五、课后作业1. 完成教材课后练习题,巩固所学知识。
2. 查阅相关资料,了解古典概型在其他领域的应用。
教学评价:1. 课堂提问:检查学生对古典概型概念的理解程度。
2. 课后作业:评估学生对古典概型计算方法的掌握情况。
3. 课堂练习:观察学生在实际操作中运用古典概型概率计算的能力。
古典概型优秀教学设计

古典概型优秀教学设计古典概型优秀教学设计古典概型也叫传统概率、其定义是由法国数学家拉普拉斯提出的。
古典概型优秀教学设计是小编想跟大家分享的,欢迎大家浏览。
【教学目标】1.知识与技能:1)掌握随机事件、必然事件、不可能事件的概念。
2)了解随机事件发生的不确定性和频率的稳定性,进一步认识随机现象,了解概率的意义;2.过程与方法:通过经历数学实验,观察、发现随机事件的统计规律性,了解通过大量重复试验,用频率估计概率的方法;3. 情感、态度、价值观:通过随机事件的发生既有随机性,又存在着统计规律性的发现,体会偶然性和必然性的对立统一.【教学重点】概率的意义.【教学难点】通过观察数据图表,总结出在大量重复试验的情况下,随机事件的发生所呈现出的规律性.【教学方法】教师启发引导与学生自主探索相结合.【教学手段】投影和计算机辅助教学.【教学流程】考察概括【教学过程】一、创设情境,体会随机事件发生的不确定性1.展示生活实例1:“麦蒂的35秒奇迹”从同学们都很感兴趣的篮球比赛说起,介绍比赛最后时刻的情形.为什么在那个时刻,所有人都紧张的注视着麦蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的NBA比赛中的下一个三分球投进了吗?设计意图从学生感兴趣的生活实例引入,一方面是为了激发学生的听课热情,另一方面也是让学生体会学习随机事件及概率的原因和必要性.抓住生活实例中包含数学思维的部分进行提问,引导学生用数学的眼光观察、认识我们生活的世界,对生活中的现象和感性认识进行理性思考.2.展示生活实例2:杜丽北京奥运夺金我们都曾非常关注北京2008奥运会,大家知道这名中国射击运动员的名字吗?为什么射击比赛中每一枪都如此扣人心弦呢?设计意图奥运会是社会热点话题,可以增强学生的国家自豪感.3.展示生活实例3:“石头、剪刀、布”再看发生在我们身边的实例,甲、乙两个同学想看同一本好书,于是采用“石头、剪刀、布”的方式决定谁先看.那么能够预先确定甲和乙谁获胜吗?设计意图回到学生身边.从生活体验中归纳共性,包含了综合、概括、比较等分析过程,是形成概念的有效途径.因此在这一阶段通过创设情境唤起学生的兴趣,使他们身处现实情境中,为后续的思维活动建立起感性认识基础.二、归纳共性,形成随机事件的概念从数学的角度研究事件时我们主要关注事件是否发生,结果能否预先知道,从结果能够预知的角度看,能够发现以上事件的共同点吗?设计意图有了前面的基础,此时学生能够有效的概括、抽取上述生活体验的共性.在数学上研究事件时,主要关注在相应的条件下,事件是否发生,因此在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散. 以上这些事件都是可能发生也可能不发生的事件.那么在自己的身边,还能找到此类的事件吗?有没有不属于此类的事件呢?通过以上思考,发现事件可以分为以下三类:必然事件:在一定的条件下必然要发生的事件;不可能事件:在一定的条件下不可能发生的事件;随机事件:在一定的条件下可能发生也可能不发生的事件.事件的表示:用大写字母A、B、C??表示设计意图在形成概念之前,通过主动的思考,在自己身边举例,巩固学生对随机事件的思维基础;二是通过对比,明确事件分类的标准和概念之间的差异. 巩固练习三、深入情境,体会随机事件的规律性我们看到,随机事件在生活中是广泛存在的.,时刻影响着我们的生活.正因为体育比赛中充满了随机事件,而让比赛更加刺激、精彩,让观众更加紧张投入;因为每天的校园生活充满了随机事件,而让我们走入校门的时候内心涌动着好奇与兴奋;因为人生道路上充满了随机事件,而让我们每个人的人生各有各的不同,各有各的精彩.我们生活在一个充满了随机事件的世界当中.同时,我们身边也有一些意外是随机事件,那我们是不是因此而时刻都充满着恐慌呢?实现自己的目标这也是个随机事件,我们是不是就因此而放弃了今天的努力了呢?我们没有,这就说明随着我们在每天的生活中不断地接触随机事件我们对他发生的规律性有了一些感性的认识,那么接下来我们将对此做一些理性思考设计意图这一段教学首先表现了随机事件带给人们丰富多彩的生活,体现了教师对数学、对概率的喜爱和热情,传递给学生学习数学的积极态度.其次,这段教学既是对前面内容的总结,也引出了下面研究思考的方向,起到承上启下的作用,同时也就揭示了人们认识随机事件的过程,以及随机事件随机性和规律性之间的联系.第三,通过反问,使学生意识到,生活的不断体验已经使我们积累了一些对随机事件规律性的感性认识,那么接下来就是要挖掘出这些感性认识下面的理性依据,以这种方式激发学生对生活经验的反思和探究,同时帮助学生形成正确的世界观.。
古典概型公开课教案

古典概型公开课教案一、教学目标1. 让学生了解古典概型的定义和特点。
2. 让学生掌握古典概型的计算方法。
3. 培养学生运用古典概型解决实际问题的能力。
二、教学内容1. 古典概型的定义与特点2. 古典概型的计算方法3. 实际问题中的应用案例三、教学重点与难点1. 教学重点:古典概型的定义、特点和计算方法。
2. 教学难点:古典概型的计算方法和实际问题中的应用。
四、教学方法1. 讲授法:讲解古典概型的定义、特点和计算方法。
2. 案例分析法:分析实际问题中的应用案例。
3. 互动教学法:引导学生参与课堂讨论,提高学生的思考能力。
五、教学过程1. 导入新课:通过引入古代骰子游戏,引发学生对古典概型的兴趣。
2. 讲解古典概型的定义与特点:引导学生了解古典概型的基本概念,分析其特点。
3. 讲解古典概型的计算方法:引导学生掌握古典概型的计算方法,并进行课堂练习。
4. 分析实际问题中的应用案例:通过案例分析,让学生学会将古典概型应用于实际问题。
5. 课堂小结:总结本节课所学内容,强调重点和难点。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 课后作业评价:检查学生完成的练习题,评估学生对古典概型的理解和应用能力。
3. 小组讨论评价:在小组讨论环节,评估学生的合作意识和问题解决能力。
七、教学拓展1. 引导学生思考:如何将古典概型应用于现实生活中的概率问题?2. 推荐阅读材料:让学生了解古典概型在数学发展史上的应用和重要性。
八、教学资源1. 教学PPT:展示古典概型的定义、特点、计算方法和应用案例。
2. 练习题:提供相关的练习题,帮助学生巩固所学知识。
3. 案例分析资料:提供实际问题案例,供学生分析讨论。
九、教学建议1. 注重学生基础知识的培养,确保学生掌握古典概型的基本概念和计算方法。
2. 鼓励学生积极参与课堂讨论,提高学生的思考和问题解决能力。
古典概型一等奖优秀教案汇总古典概型公开课说课稿范文

古典概型一等奖优秀教案汇总古典概型公开课说课稿范文一、教学目标【知识与技能】会判断古典概型,会用列举法计算一些随机事件所含的基本事件数和试验中基本事件的总数;能够利用概率公式求解一些简单的古典概型的概率。
【过程与方法】通过从实际问题中抽象出数学模型的过程,提升运用从具体到抽象,特殊到一般的分析问题的能力和解决问题的能力。
【情感态度与价值观】在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度,在此过程中还可以增加学习数学的学习兴趣。
二、教学重难点【重点】古典概型的概念以及概率公式。
【难点】如何判断一个试验是否是古典概型。
三、教学过程(一)导入新课提问:口袋里装2个白球和2个黑球,这4个球除颜色外完全相同,白球代表奖品,4个人按顺序依次从中摸球并记录结果,每一个人摸到白球的概率一样吗?追问:如何从理论上来计算出每个人的中奖率呢?引出课题:古典概型(二)探究新知1.探索基本事件和古典概型的概念师生活动:师生共同探讨两个概念的生成(1)抛掷一枚均匀的硬币,出现“正面朝上”和“反面朝上”的概率?(2)掷一粒均匀的骰子,出现“向上的点数为6”的概率是多少?活动:实验的结果只有6个,每种结果的可能性是相等的,每一种结果出现的概率都是(3)转动一个8等份标记的转盘,出现箭头指向4的概率为。
提问:以上三个实验都具有什么特征?预设:(1)试验的所有可能结果只有有限个,每次实验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同。
我们把具有这样两个特征的随机试验的数学模型称为古典概型。
上面三个试验中,试验的每一个可能结果称为基本事件。
如果1次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是,如果一些事件A包含了其中M个等可能基本事件,那么事件A发生的概率P(A)=思考:向一个圆面内随机地投一个点,如果该点落在园内任意一点都是等可能的,你认为这是古典概型吗?为什么?(三)巩固提高1.一只口袋内装有大小相同的5只球,其中三只白球,2只黑球,从中一次摸出2只球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2节古典概型教学案[核心必知].预习教材,问题导入根据以下提纲,预习教材P125~P130,回答下列问题.教材中的两个试验:掷一枚质地均匀的硬币的试验;掷一枚质地均匀的骰子的试验.试验中的基本事件是什么?试验中的基本事件又是什么?提示:试验的基本事件有:“正面朝上”、“反面朝上”;试验的基本事件有:“1点”、“2点”、“3点”、“4点”、“5点”、“6点”.基本事件有什么特点?提示:①任何两个基本事件是互斥的;②任何事件都可以表示成基本事件的和.古典概型的概率计算公式是什么?提示:P=A包含的基本事件的个数基本事件的总数..归纳总结,核心必记基本事①定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的随机事件称为该次试验的基本事件.②特点:一是任何两个基本事件是互斥的;二是任何事件都可以表示成基本事件的和.古典概型①定义:如果一个概率模型满足:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等.那么这样的概率模型称为古典概率模型,简称古典概型.②计算公式:对于古典概型,任何事件的概率为P=A包含的基本事件的个数基本事件的总数.[问题思考]若一次试验的结果所包含的基本事件的个数是有限个,则该试验是古典概型吗?提示:不一定是,还要看每个事件发生的可能性是否相同,若相同才是,否则不是.掷一枚不均匀的骰子,求出现点数为偶数点的概率,这个概率模型还是古典概型吗?提示:不是.因为骰子不均匀,所以每个基本事件出现的可能性不相等,不满足特点.“在区间[0,10]上任取一个数,这个数恰为2的概率是多少?”这个概率模型属于古典概型吗?提示:不是,因为在区间[0,_10]上任取一个数,其试验结果有无限个,故其基本事件有无限个,所以不是古典概.型.[课前反思]通过以上预习,必须掌握的几个知识点:基本事件的定义:;基本事件的特点:;古典概型的定义:;古典概型的计算公式: .掷一枚质地均匀的硬币两次,观察哪一面朝上.[思考1] 这个试验共有哪几种结果?基本事件总数有多少?事件A={恰有一次正面朝上}包含哪些试验结果?名师指津:共有正正、正反、反正、反反四种结果.基本事件有4个.事件A包含的结果有:正反、反正.[思考2] 基本事件有什么特点?名师指津:基本事件具有以下特点:不可能再分为更小的随机事件;两个基本事件不可能同时发生..先后抛掷3枚均匀的壹分,贰分,伍分硬币.求试验的基本事件数;求出现“2枚正面,1枚反面”的基本事件数.[尝试解答] 因为抛掷壹分,贰分,伍分硬币时,各自都会出现正面和反面2种情况,所以一共可能出现的结果有8种.可列表为:硬币种类试验结果壹分正面正面正面正面反面反面反面反面贰分正面反面正面反面正面反面正面反面伍分正面反面反面正面正面反面反面正面所以试验基本事件数为8.从中表格知,出现“2枚正面,1枚反面”的结果有3种,即,,.所以“2枚正面,1枚反面”的基本事件数为3.基本事件的两个探求方法列表法:将基本事件用表格的形式表示出来,通过表格可以清楚地弄清基本事件的总数,以及要求的事件所包含的基本事件数,列表法适合于较简单的试验的题目,基本事件较多的试验不适合用列表法.树状图法:树状图法是用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.树状图法适合于较复杂的试验的题目..从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?解:所求的基本事件共有6个:,c},{b=D,d},{a=c,c},{a=B,b},{a=A即E={b,d},F={c,d}.观察图形,思考下列问题[思考1] 某射击运动员随机地向一靶心进行射击,试验的结果有:命中10环,命中9环,…,命中1环和命中0环,你认为这是古典概型吗?名师指津:试验的所有结果只有11个,但是命中10环,命中9环,…,命中1环和命中0环的出现不是等可能的,这个试验不是古典概型.[思考2] 若一个试验是古典概型,它需要具备什么条件?名师指津:若一个试验是古典概型,需具备以下两点:有限性:首先判断试验的基本事件是否是有限个,若基本事件无限个,即不可数,则试验不是古典概型.等可能性:其次考查基本事件的发生是不是等可能的,若基本事件发生的可能性不一样,则试验不是古典概型..某校夏令营有3名男同学A,B,c和3名女同学X,y,Z,其年级情况如下表:一年级二年级三年级男同学ABc女同学XyZ现从这6名同学中随机选出2人参加知识竞赛.用表中字母列举出所有可能的结果;设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.[尝试解答] 从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,c},{A,X},{A,y},{A,Z},{B,c},{B,X},{B,y},{B,Z},{c,X},{c,y},{c,Z},{X,y},{X,Z},{y,Z},共15种.选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,y},{A,Z},{B,X},{B,Z},{c,X},{c,y},共6种.因此,事件发生的概率P=615=25.古典概型求法步骤①确定等可能基本事件总数n;②确定所求事件包含基本事件数;③P=n.使用古典概型概率公式应注意①首先确定是否为古典概型;②所求事件是什么,包含的基本事件有哪些..一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:基本事件总数;事件“摸出2个黑球”包含多少个基本事件?摸出2个黑球的概率是多少?解:由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,所有基本事件构成集合Ω={,,,,,},其中共有6个基本事件.事件“摸出2个黑球”={,,},共3个基本事件.基本事件总数n=6,事件“摸出两个黑球”包含的基本事件数=3,故P=12..袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.写出所有不同的结果;求恰好摸出1个黑球和1个红球的概率;求至少摸出1个黑球的概率.[思路点拨] 可以利用初中学过的树状图写出;找出恰好摸出1个黑球和1个红球的基本事件,利用古典概型的概率计算公式求出;找出至少摸出1个黑球的基本事件,利用古典概型的概率计算公式求出.[尝试解答] 用树状图表示所有的结果为所以所有不同的结果是ab,ac,ad,ae,bc,bd,be,cd,ce,de.记“恰好摸出1个黑球和1个红球”为事件A,则事件A包含的基本事件为ac,ad,ae,bc,bd,be,共6个基本事件,所以P=610=0.6,即恰好摸出1个黑球和1个红球的概率为0.6.记“至少摸出1个黑球”为事件B,则事件B包含的基本事件为ab,ac,ad,ae,bc,bd,be,共7个基本事件,所以P=710=0.7,即至少摸出1个黑球的概率为0.7.利用事件间的关系求概率在求解较复杂事件的概率时,可将其分解为几个互斥的简单事件的和事件,由公式P=P+P+…+P求得,或采用正难则反的原则,转化为求其对立事件,再用公式P=1-P求得..先后掷两枚大小相同的骰子.求点数之和出现7点的概率;求出现两个4点的概率;求点数之和能被3整除的概率.解:如图所示,从图中容易看出基本事件与所描点一一对应,共36个.记“点数之和出现7点”为事件A,从图中可以看出,事件A包含的基本事件共6个:,,,,,.故P=636=16.记“出现两个4点”为事件B,从图中可以看出,事件B 包含的基本事件只有1个,即.故P=136.记“点数之和能被3整除”为事件c,则事件c包含的基本事件共12个:,,,,,,,,,,,.故P=1236=13.——————————————[课堂归纳?感悟提升]———————————————.本节课的重点是了解基本事件的特点,能写出一次试验所出现的基本事件,会用列举法求古典概型的概率.难点是理解古典概型及其概率计算公式,会判断古典概型..本节课要掌握以下几类问题:基本事件的两种探求方法,见讲1.求古典概型的步骤及使用古典概型概率公式的注意点,见讲2.利用事件的关系结合古典概型求概率,见讲3..本节课的易错点有两个:列举基本事件时易漏掉或重复,如讲1;判断一个事件是否是古典概型易出错.课下能力提升[学业水平达标练]题组1 基本事件的列举问题.同时投掷两颗大小完全相同的骰子,用表示结果,记A 为“所得点数之和小于5”,则事件A包含的基本事件数是 A.3B.4c.5D.6解析:选D 事件A包含的基本事件有6个:,,,,,.故选D..做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对,x为第1次取到的数字,y为第2次取到的数字”.①写出这个试验的基本事件;②求出这个试验的基本事件的总数;③写出“第1次取出的数字是2”这一事件包含的基本事件.解:①这个试验的基本事件为,,,,,.②基本事件的总数为6.③“第1次取出的数字是2”包含以下2个基本事件:,.题组2 简单古典概型的计算.下列关于古典概型的说法中正确的是①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相.等;④基本事件的总数为n,随机事件A若包含个基本事件,则P=n.A.②④B.①③④c.①④D.③④解析:选B 根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B..下列试验中,属于古典概型的是A.种下一粒种子,观察它是否发芽B.从规格直径为250±0.6的一批合格产品中任意抽一根,测量其直径dc.抛掷一枚硬币,观察其出现正面或反面D.某人射击中靶或不中靶解析:选c 依据古典概型的特点判断,只有c项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同..设a是掷一枚骰子得到的点数,则方程x2+ax+2=0有两个不相等的实根的概率为A.23B.13c.12D.512解析:选A 基本事件总数为6,若方程有两个不相等的实根则a2-8>0,满足上述条件的a为3,4,5,6,故P=46=23..一枚硬币连掷3次,有且仅有2次出现正面向上的概率为A.38B.23c.13D.14解析:选A 所有的基本事件是,,,,,,,,共有8个,仅有2次出现正面向上的有:,,,共3个.则所求概率为38..袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:A:取出的两球都是白球;B:取出的两球1个是白球,另1个是红球.解:设4个白球的编号为1,2,3,4;2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有,,,,,,,,,,,,,,,共15种.从袋中的6个球中任取两个,所取的两球全是白球的取法共有6种,为,,,,,.∴取出的两个球全是白球的概率为P=615=25.从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括,,,,,,,共8种.∴取出的两个球一个是白球,一个是红球的概率为P=815.题组3 较复杂的古典概型的计算.某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每元.现有甲、乙两人在该地停车,两人停车都不8小时收费.超过4小时.若甲停车1小时以上且不超过2小时的概率为13,停车费多于14元的概率为512,求甲的停车费为6元的概率;若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.解:记“一次停车不超过1小时”为事件A,“一次停车1到2小时”为事件B,“一次停车2到3小时”为事件c,“一次停车3到4小时”为事件D.由已知得P=13,P=512.又事件A,B,c,D互斥,所以P=1-13-512=14.所以甲的停车费为6元的概率为14.易知甲、乙停车时间的基本事件有,,,,,,,,,,,,,,,,共16个;而“停车费之和为28元”的事件有,,,共3个,所以所求概率为316.[能力提升综合练].下列是古典概型的是A.任意掷两枚骰子,所得点数之和作为基本事件时B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时c.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币首次出现正面为止解析:选c A项中由于点数的和出现的可能性不相等,故A不是;B项中的基本事件是无限的,故B不是;c项满足古典概型的有限性和等可能性,故c是;D项中基本事件可能会是无限个,故D不是..已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为A.0.4B.0.6c.0.8D.1解析:选B 5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,有10种结果,分别是,,,,,,,,,,恰有一件次品,有6种结果,分别是,,,,,,设事件A={恰有一件次品},则P=610=0.6,故选B..如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为A.310B.15c.110D.120解析:选c 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:,,,,,,,,,,其中勾股数只有,所以概率为110.故选c..从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是A.49B.13c.29D.19解析:选D 分类讨论法求解.个位数与十位数之和为奇数,则个位数与十位数中必一个奇数一个偶数,所以可以分两类.当个位为奇数时,有5×4=20个符合条件的两位数.当个位为偶数时,有5×5=25个符合条件的两位数.因此共有20+25=45个符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P=545=19..一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13.答案:13.从三男三女共6名学生中任选2名,则2名都是女同学的概率等于________.解析:用A,B,c表示三名男同学,用a,b,c表示三名女同学,则从6名同学中选出2人的所有选法为:AB,Ac,Aa,Ab,Ac,Bc,Ba,Bb,Bc,ca,cb,cc,ab,ac,bc,2名都是女同学的选法为:ab,ac,bc,故所求的概率为315=15.答案:15.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.求应从这三个协会中分别抽取的运动员的人数.将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.解:应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共种.9.因此,事件A发生的概率P=915=35..海关对同时从A,B,c三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区ABc数量50150100求这6件样品中来自A,B,c各地区商品的数量;若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:0×150=1,150×150=3,100×150=2.所以A,B,c三个地区的商品被选取的件数分别为1,3,2.设6件来自A,B,c三个地区的样品分别为:A;B1,B2,B3;c1,c2.则从6件样品中抽取的这2件商品构成的所有基本事件为: {A,B1},{A,B2},{A,B3},{A,c1},{A,c2},{B1,B2},{B1,B3},{B1,c1},{B1,c2},{B2,B3},{B2,c1},{B2,c2},{B3,c1},{B3,c2},{c1,c2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有:{B1,B2},{B1,B3},{B2,B3},{c1,c2},共4个.所以P=415,即这2件商品来自相同地区的概率为415.。