第二册下册第十一章第3节n次独立重复试验及概率综合(理)

合集下载

课件5:2.2.3 独立重复试验与二项分布

课件5:2.2.3 独立重复试验与二项分布
解 (1)记预报一次准确为事件 A,则 P(A)=0.8. 5 次预报相当于 5 次独立重复试验, 2 次准确的概率为 P=C25×0.82×0.23=0.051 2≈0.05, 因此 5 次预报中恰有 2 次准确的概率约为 0.05.
(2)“5 次预报中至少有 2 次准确”的对立事件为“5 次预报 全部不准确或只有 1 次准确”,
其概率为 P=C05×(0.2)5+C15×0.8×0.24=0.006 72≈0.01. 所以所求概率为 1-P=1-0.01=0.99. 所以 5 次预报中至少有 2 次准确的概率约为 0.99.
(3)说明第 1,2,4,5 次中恰有 1 次准确. 所以概率为 P=C14×0.8×0.23×0.8=0.02 048≈0.02, 所以恰有 2 次准确,且其中第 3 次预报准确的概率约为 0.02.
P(X=2)=C32(34)2·14=2674, P(X=3)=C33(34)3=2674. 所以 X 的分布列为
X0 1 2 3
P
1 64
9 64
27 64
64
类型3 二项分布的综合应用
例 3 某车间有 10 台同类型的机床,每台机床配备的电 动机功率为 10 kW,已知每台机床工作时,平均每小时实际 开动 12 min,且开动与否是相互独立的.
P(ξ=2)=P(η=1)=C13(13)(23)2=49,
P(ξ=3)=P(η=0)=C03(23)3=287. 故 ξ 的分布列是
ξ0 12 3
P
1 27
2 9
4 9
8 27
【错因分析】 (1)对事件关系判断不明确,3 人选择项 目所属类别互不相同的事件 AiBjCk(i,j,k 互不相同)共有 A33 =6 种情形,误认为只有 A1B2C3 发生,导致计数错误.

高中第二册(下A)数学独立重复试验的概率ppt

高中第二册(下A)数学独立重复试验的概率ppt

例1:某气象站天气预报的准确率为80%,计算
(1)5次预报中恰有4次准确的概率; (2)5次预报中至少有4次准确的概率。(结果保留两个有效数字): 解:记“预报1次,结果准确”为事件A,预报5次 相当于作5次独立重复试验。 (1)根据n次独立重复试验中事件发生k次的概率公式, 5次预报中恰有4次准确的概率是: P5(4)= C540.84 (1-0.8)5-4 ≈0.41 (2) 5次预报中至少有4次准确的概率,就是5次预报中恰 有4次准确的概率与5次预报都正确的概率的和。
(2)求至少几个人同时上网的概率小于 0.3。
21 (1)1 (C 0.5 C 0.5 C 0.5 ) 32
0 6 6 1 6 6 2 6 6
(2)至少4人同时上网的概率
11 C 0.5 C 0.5 C 0.5 0 .3 32
4 6 6 5 6 6 6 6 6
至少5人同时上网的概率
一般地,如果在1次试验中某事件发生的概率是P, 二项分布公 那么在n次独立重复试验中这个事件恰好发生k次的概率: 式 Pn(k) =Cnk Pk(1—P)n--k (其中 k =0,1,2……n ) 对比这个公式与前面表示二项式定理的公式有何联系? 确定n,p,k的值
注:此公式仅适用于 n 次独立重复试验,即在同样的条件下,重复地、 各次之间相互独立地进行的一种试验,且在这种试验中,每一次试验只有 两种结果,即某一事件要么发生,要么不发生,并且任何一次试验中发生 的概率都是一样的。
因5台机床需要照管相当于5次独立重复试验。 而事件A至少发生2次的概率 为: 1-[P5(1)+ P5(0)] =1-[C51(1/4)(3/4)4 + C50(1/4)0(3/4)5]

2023年高考数学(理科)一轮复习——二项分布与正态分布

2023年高考数学(理科)一轮复习——二项分布与正态分布
索引
5.(2021·天津卷)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一
方猜错,则猜对的一方获胜,否则本次平局.已知每次活动中,甲、乙猜对的
概率分别为65和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影 2
响,则一次活动中,甲获胜的概率为____3____,3 次活动中,甲至少获胜 2 次 20
1 式,得 P(B|A)=PP((AAB))=120=14.
5
索引
法二 事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个. 事件AB发生的结果只有(2,4)一种情形,即n(AB)=1. 故由古典概型概率 P(B|A)=nn((AAB))=41.
索引
2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机
②P(μ-2σ<X≤μ+2σ)=__0_._9_5_4_5____;
③P(μ-3σ<X≤μ+3σ)=___0_.9_9_7__3___.
索引
常用结论
1.相互独立事件与互斥事件的区别 相互独立事件是指两个试验中,两个事件发生的概率互不影响,计算式为 P(AB)=P(A)P(B),互斥事件是指在同一试验中,两个事件不会同时发生,计 算公式为P(A∪B)=P(A)+P(B).
次数的概率分布.( √ )
(3)n 次独立重复试验要满足:①每次试验只有两个相互对立的结果,可以分别 称为“成功”和“失败”;②每次试验“成功”的概率为 p,“失败”的概率
为 1-p;③各次试验是相互独立的.( √ )
(4)正态分布中的参数 μ 和 σ 完全确定了正态分布,参数 μ 是正态分布的期望,
2.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线关于直线x=μ对称 和曲线与x轴之间的面积为1解题.

第十一章 第三节 相互独立事件同时发生的概率

第十一章  第三节  相互独立事件同时发生的概率

解析:前两次取出的是螺口灯泡,有
取得卡口灯泡,有
种取法,第三次
种取法,根据分步计数原理,共有
种取法,所以所求概率为= 答案: D
3.在4次独立重复试验中,随机事件A恰好发生1次的概率 不大于其恰好发生两次的概率,则事件A在一次试验中 发生的概率p的取值范围是 A.[0.4,1] B.(0,0.4] ( )
∴P(Ai)=0.4,P(Bi)=0.5,P(Ci)=0.1(i=1,2).
∵两个月中,一个月被投诉2次,另一个月被投诉0次的
概率为P(A1C2+A2C1),
一、二月份均被投诉1次的概率为P(B1B2),
∴P(D)=P(A1C2+A2C1)+P(B1B2)=P(A1C2)+P(A2C1)+ P(B1B2),由事件的独立性得 P(D)=0.4×0.1+0.1×0.4+0.5×0.5=0.33.
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中
目标3次的概率;
(3)[理]假设某人连续2次未击中目标,则终止射击.问: 乙恰好射击5次后,被终止射击的概率是多少?
(1)利用对立事件求解, (2)是相互独立事件, (3)第五次乙一定未击中.
【解】
(1)记“甲连续射击4次至少有1次未击中目标”为事
(2)假设此项专业技能测试对该小组的学生而言,每个女生 通过的概率均为 每个男生通过的概率均为 现对该
小组中男生甲、男生乙和女生丙3个人进行测试,求这3人
中通过测试的人数不少于2人的概率.
解:(1)设该小组中有n个女生.根据题意,得= 解得n=6,n=4(舍去). ∴该小组中有6个女生.
(2)由题意,甲、乙、丙3人中通过测试的人数不少于2 人即通过测试的人数为3人或2人. 记甲、乙、丙通过测试分别为事件A、B、C.则 P=P( · C)+P(A· B· · C)+P(A· B· )+P(A· C). B·

知识讲解独立重复试验与二项分布

知识讲解独立重复试验与二项分布

知识讲解独立重复试验与二项分布(理)(提高)(共12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--独立重复试验与二项分布【学习目标】1.理解n 次独立重复试验模型及二项分布.2.能利用n 次独立重复试验及二项分布解决一些简单的实际问题. 【要点梳理】要点一、n 次独立重复试验每次试验只考虑两种可能结果A 与A ,并且事件A 发生的概率相同。

在相同的条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验。

要点诠释:在n 次独立重复试验中,一定要抓住四点: ①每次试验在同样的条件下进行;②每次试验只有两种结果A 与A ,即某事件要么发生,要么不发生; ③每次试验中,某事件发生的概率是相同的; ④各次试验之间相互独立。

总之,独立重复试验,是在同样的条件下重复的,各次之间相互独立地进行的一种试验,在这种试验中,每一次的试验结果只有两种,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的。

要点二、独立重复试验的概率公式1.定义如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中,事件A 恰好发生k 次的概率为:()(1)k k n kn n P k C p p -=-(k=0,1,2,…,n ). 令0k =得,在n 次独立重复试验中,事件A 没有发生的.....概率为...00(0)(1)(1)n nn n P C p p p =-=-令k n =得,在n 次独立重复试验中,事件A 全部发生的概率为........0()(1)n n n n n P n C p p p =-=。

要点诠释:1. 在公式中,n 是独立重复试验的次数,p 是一次试验中某事件A 发生的概率,k 是在n 次独立重复试验中事件A 恰好发生的次数,只有弄清公式中n ,p ,k 的意义,才能正确地运用公式.2. 独立重复试验是相互独立事件的特例,就像对立事件是互斥事件的特例一样,只是有“恰好”字样的用独立重复试验的概率公式计算更方便.要点三、n 次独立重复试验常见实例:1.反复抛掷一枚均匀硬币2.已知产品率的抽样3.有放回的抽样4.射手射击目标命中率已知的若干次射击 要点诠释:抽样问题中的独立重复试验模型:①从产品中有放回地抽样是独立事件,可按独立重复试验来处理; ②从小数量的产品中无放回地抽样不是独立事件,只能用等可能事件计算;③从大批量的产品中无放回地抽样,每次得到某种事件的概率是不一样的,但由于差别太小,相当于是独立事件,所以一般情况下仍按独立重复试验来处理。

高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布

高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布

§11.8 条件概率、n 次独立重复试验与二项分布考纲展示►1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.考点1 条件概率条件概率 (1)定义设A ,B 为两个事件,且P (A )>0,称P (B |A )=P ABP A为在事件A 发生条件下,事件B 发生的条件概率.(2)性质①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).条件概率的性质.(1)有界性:0≤P (B |A )≤1.( )(2)可加性:如果B 和C 为互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ).( )[典题1] (1)从1,2,3,4,5中任取2个不同的数,事件A :“取到的2个数之和为偶数”,事件B :“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12(2)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )A.1127B.1124C.827D.924[点石成金] 条件概率的两种求解方法 (1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A ).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.考点2 事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=________,则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 也都相互独立,P (B |A )=________,P (A |B )=________.[典题2] 为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.[点石成金] 1.利用相互独立事件的概率乘法公式直接求解;2.正面计算较繁或难以入手时,可从其对立事件入手计算.在一块耕地上种植一种作物,每季种植成本为 1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.考点3 独立重复试验与二项分布独立重复试验与二项分布(1)[教材习题改编]某人抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n=⎩⎪⎨⎪⎧第n 次出现正面,-第n 次出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为________.(2)[教材习题改编]小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是________.二项分布:P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ).设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)的值是________.[典题3] [2019·湖南长沙模拟]博彩公司对2019年NBA 总决赛做了大胆地预测和分析,预测西部冠军是老辣的马刺队,东部冠军是拥有詹姆斯的年轻的骑士队,总决赛采取7场4胜制,每场必须分出胜负,场与场之间的结果互不影响,只要有一队获胜4场就结束比赛.前4场,马刺队胜利的概率为12,第5,6场马刺队因为平均年龄大,体能下降厉害,所以胜利的概率降为25,第7场,马刺队因为有多次打第7场的经验,所以胜利的概率为35.(1)分别求马刺队以4∶0,4∶1,4∶2,4∶3胜利的概率及总决赛马刺队获得冠军的概率; (2)随机变量X 为分出总冠军时比赛的场数,求随机变量X 的分布列.[点石成金] 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P (X =k )=C k n p k(1-p )n -k的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列.[方法技巧] 1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P ABP A=n AB n A ,其中,在实际应用中P (B |A )=n ABn A是一种重要的求条件概率的方法.2.判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次.3.n次独立重复试验中,事件A恰好发生k次可看作是C k n个互斥事件的和,其中每一个事件都可看作是k个A事件与n-k个A事件同时发生,只是发生的次序不同,其发生的概率都是p k(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k.[易错防范] 1.相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).2.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A,B相互独立时,公式才成立.真题演练集训1.[2018·重庆模拟]投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432C.0.36 D.0.3122.[2018·天津模拟]某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B.0.75C.0.6 D.0.45课外拓展阅读误用“二项分布与超几何分布”二项分布和超几何分布是两类重要的概率分布模型,这两种分布存在着很多的相似之处,在应用时应注意各自的适用条件和情境,以免混用出错.[典例1] 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.现在在总共8小块地中,随机选4小块地种植品种甲,另外4小块地种植品种乙.种植完成后若随机选出4块地,其中种植品种甲的小块地的数目记为X,求X的分布列和数学期望.[思路分析]判断分布的类型→确定X的取值及其概率→列出分布列并求数学期望易错提示本题容易错误地得到X 服从二项分布,每块地种植甲的概率为12,故X ~B (4,0.5).错误的根源在于每块地种植甲或乙不是相互独立的,它们之间是相互制约的,无论怎么种植都要保证8块地中有4块种植甲,4块种植乙,事实上X 应服从超几何分布.如果将题目改为:在8块地中,每块地要么种植甲,要么种植乙,那么在选出的4块地中种植甲的数目为X ,则这时X ~B (4,0.5)(这时这8块地种植的方法总数为28,会出现所有地都种植一种作物的情况,而题目要求4块地种植甲,4块地种植乙,其方法总数为C 48).[典例2] 某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.易错提示本题容易错误地得到甲、乙两考生正确完成的题数均服从二项分布,实际上题目中已知甲、乙两考生按照题目要求独立完成全部实验操作,甲考生正确完成的题数服从超几何分布,乙考生正确完成的题数服从二项分布.。

高中数学第十一章知识点复习总结(精华版)——概率

高中数学第十一章-概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验. 考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n 次独立重复试验中恰好发生κ次的概率.§11. 概率 知识要点1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=. 3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A :“抽到老K”;B :“抽到红牌”则 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但261P(B)P(A),215226P(B),131524P(A)=⋅====.又事件AB 表示“既抽到老K 对抽到红牌”即“抽到红桃老K 或方块老K”有261522B)P(A ==⋅,因此有)B P(A P(B)P(A)⋅=⋅.推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅.注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A 与B 也都相互独立. ii. 必然事件与任何事件都是相互独立的.互斥对立iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件. ④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn k k n n P)(1P C (k)P --=. 4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+第十二章-概率与统计考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样. (2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.§12. 概率与统计 知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-. ⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1 ==-k p q k 于是得我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0CC C k)P(ξnNkn MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C rm=,则k 的范围可以写为k=0,1,…,n.〕 ⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a =⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有nb a )(+个可能结果,等可能:k)(η=含kn k k n b a C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nk n k k n =+-+=+==--,即η~)(b a a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.二、数学期望与方差.n n 2211期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1)⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1)⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =(如图阴影部分)的曲线叫ξ的密度曲线,以其作为 图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x ”是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:2221)(σσπ-=ex f . (σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).S 阴=0.5S a =0.5+S。

n次独立重复试验


例 3.
甲、乙俩队排球比赛,已知在一
局比赛中,甲队胜的概率为 2 ,没有平局.
3
若采用5局3胜制比赛,先胜三局者为胜,
甲获胜的概率是多少?

P(甲用三局取胜)


2 3
3


8, 27
P(甲用四局取胜)

C13

1 3

2 3
3

8, 27
P(甲用五局取胜)
P(B) 1 P5(0) 1 (1 P)5 0.92224.
归 纳 解决独立重复试验此类问题步骤是:
1)作出正确判断:该事件是否为独立重复试验;
2)确定在一次试验中,这个事件发生的概率P是多少;
3)确定n和k;
4)依“n次独立重复试验中这个事件恰好发生 k次的概率”的计算公式代值计算.
3. 公式: 课堂小结
如果在一次试验中某事件发生的概率是P, 那么在n次独立重复试验中,这个事件恰好 发生k次的概率计算公式:
Pn k Cnk pk 1 p nk 或 Pn k Ckn pkqnk q 1 p
判断下列试验是不是独立重复试验:
1).依次投掷四枚质地不同的硬币,3次正面
向上;
不是
2).某射击手每次击中目标的概率是0.9,他
进行了4次射击,只命中一次;

3).口袋装有5个白球,3个红球,2个黑球,从中
依次抽取5个球,恰好抽出4个白球; 不是
4).口袋装有5个白球,3个红球,2个黑球,从中
有放回的抽取5个球,恰好抽出4个白球. 是
注:独立重复试验的实际 原型是有放回的抽样试验.
2. 独立重复试验概率的计算

独立重复试验与二项分布 课件

独立重复试验与二项分布
1.n 次独立重复试验:一般地,在 相同 条件下重复做的 n 次试验称为 n 次独立重复试验.
2.在 n 次独立重复试验中,“在相同的条件下”等价于 各次试验的结果不会受其他试验的 影响 ,即 P(A1A2…An)=
P(A1)P(A2)…P(An).其中 Ai(i=1,2,…,n)是第 i 次试验的结 果.
则 P(A)=0.7,P(B)=0.6,P(C)=0.8. 所以从甲、乙、丙三台机床加工的零件中各取一件检验, 至少有一件一等品的概率为 P1=1-P(-A )P(-B )P(-C )=1-0.3×0.4×0.2=0.976. (2)将甲、乙、丙三台机床加工的零件混合到一起,从中任 意地抽取一件检验,它是一等品的概率为 P2=2×0.7+40.6+0.8=0.7.
4 243
1 729
[点评] 解此类题首先判断随机变量 X 服从二项分布,即 X~B(n,p),然后求出 P(X=k)=Cknpk(1-p)n-k(k=0,1,2,…,n), 最后列出二项分布列.
二项分布的应用
甲、乙、丙三台机床各自独立地加工同一种零 件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别 为 0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床 加工的零件数是乙机床加工的零件数的 2 倍.
4.Cknpk(1-p)n-k 是[p+(1-p)]n 的二项展开式中的第 k+1 项.
独立重复试验概率的求法
某人射击 5 次,每次中靶的概率均为 0.9,求他至 少有 2 次中靶的概率.
[分析] 至少有 2 次中靶包括恰好有 2 次中靶,恰好有 3 次 中靶,恰好有 4 次中靶和恰好有 5 次中靶四种情况,这些事件 是彼此互斥的,而每次射击中靶的概率均相等,并且相互之间 没有影响,所以每次射击又是相互独立事件,因而射击 5 次是 进行 5 次独立重复试验.

高中数学新课标人教A版选修2:n次独立重复试验及二项分布 课件


=P(A)P( B )+P( A )P(B)
=0.2×0.7+0.8×0.3
=0.38.答案:0.38ຫໍສະໝຸດ 重点三 独立重复试验与二项分布
独立重复试验
二项分布
在n次独立重复试验中,用X表示
在相同条件下重复做 定
的n次试验称为n次独 义
立重复试验
事件A发生的次数,设每次试验中 事件A发生的概率是p,此时称随 机变量X服从二项分布,记作X~
答案:B
4.(选修2-3第55页练习3题改编)天气预报,在元旦假期甲地降雨
概率是0.2,乙地降雨概率是0.3.假设在这段时间内两地是否降
雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为
________.
解析:设甲地降雨为事件A,乙地降雨为事件B,则两地恰有
一地降雨为A B + A B,
∴P(A B + A B)=P(A B )+P( A B)
都相互独立.
[逐点清]
3.(选修2-3第54页例3改编)两个实习生每人加工一个零件,加工
成一等品的概率分别为23和34,两个零件能否被加工成一等品相
互独立,则这两个零件恰好有一个一等品的概率为
()
A.12
B.152
C.14
D.16
解析:因为两人加工成一等品的概率分别为
2 3

3 4
,且相互独立,
所以两个零件恰好有一个一等品的概率为P=23×14+13×34=152.
B(n,p),并称p为成功概率
计 用Ai(i=1,2,…,n)表 在n次独立重复试验中,事件A恰
算 示第i次试验结果,则
公 P(A1A2A3…An)=
好发生k次的概率为P(X=k)=Ckn pk(1-p)n-k(k=0,1,2,…,n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本讲教育信息】
一. 教学内容:
n 次独立重复试验及概率综合
[例3] 同时抛掷15枚均匀的硬币。

(1)求至多有一枚正面向上的概率;
(2)判断正面向上为奇数枚的概率与正面向上为偶数枚的概率是否相等。

(1))1()0(P P P +=11141
1515
15)2
1()21()21()
2
1(=⋅⋅+=C C
(2)12331514
1
15)21()21()
2
1)(21()(⋅+=C C P 奇1515
152131315)21()21()21(⋅+++C C
1515
155********)2
1)((C C C C ++++=
2
1)21(21514
=⋅=
∴ )(奇P 2
1
)(==偶P
1001004
3
4
3
∴ 至少有17个人
[例6] 一次掷m 枚骰子,共掷n 次,求至少出现一次全6的概率。

解:掷m 枚骰子
全6的概率为m
)6
1(,非全6的概率为m
)6
1(1-
掷n 次,均非全6的概率为n
m
)611(- ∴ n
m P )6
11(1--=
[例7] 1000件产品中有m )10(>m 件次品,已知抽取10件产品中恰含3个次品的概率为
)3(P ,m 为何值时)3(P 最大。

)(A P 表示A 获胜 6=M k k )65
()66(-
5=M 22)64
()65(-
1=M 2)6
1
(

1]36
25
3636[
)(⋅-=A P 3)65(]36163625[⋅-+3
3)63(]364369[)64(]3693616[⋅-+⋅-+3)62(]361364[⋅-+32)6
1()61(-+ 12413544811252376+++++
【试题答案】
1.
(1)4
3636363)2()1(=⋅+=+=P P P (2)9
116262=⋅⋅=
P 2. 解:
A :三局二胜中甲胜
k
A 52
(4)k
k k A A A C C D P 52
448
313314)(--⋅= 4. 解:只研究花色 ∴ 每次抽取每种花色占4
1 第k 次抽到的花色前1-k 次没有抽到
])41()42()43[(4111312311
4---⋅-⋅-⋅⋅
k k k C C C 1
11)4
1(3)21(3)43(---+⋅-=k k k。

相关文档
最新文档