考点13 数列及等差数列

合集下载

考点巩固卷12 等差、等比数列(七大考点)(学生版) 2025年高考数学一轮复习考点通关卷(新高考

考点巩固卷12  等差、等比数列(七大考点)(学生版) 2025年高考数学一轮复习考点通关卷(新高考

考点巩固卷12 等差等比数列(七大考点)考点01:单一变量的秒解当数列的选择填空题中只有一个条件时,可将数列看成常数列,即每一项均设为x ,(注意:如果题目中出现公差不为0或公比不为1,则慎用此法)1.已知等差数列{}n a 的前n 项和为123456,6,12n S a a a a a a ++=++=,则12S =( )A .18B .36C .54D .602.已知等差数列{}n a 满足12318a a a ++=,则2a =( )A .5B .6C .7D .83.若{}n a 是正项无穷的等差数列,且396a a +=,则{}n a 的公差d 的取值范围是( )A .[)12,B .305æöç÷èø,C .35¥æö+ç÷èø,D .305éö÷êëø,4.等差数列{}n a 前n 项和为7,4n S a =,则13S =( )A .44B .48C .52D .565.已知等差数列{}n a 满足25815a a a ++=,记{}n a 的前n 项和为n S ,则9S =( )A .18B .24C .27D .456.在等差数列{}n a 中,若354a a +=,则其前7项和为( )A .7B .9C .14D .187.已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( )A .2-B .73C .1D .298.在等比数列{}n a 中,25,a a 是方程2780x x --=的两个根,则16a a =( )A .7B .8C .8-或8D .8-9.已知等差数列{}n a 的前n 项和为S n ,若5414a a a +=+,则15S =( )A .4B .60C .68D .13610.设等差数列{}n a 的前n 项和为n S ,已知2410268a a a ++=,则9S =( )A .272B .270C .157D .153考点02:秒解等差数列的前n 项和等差数列中,有()⇒-=-n n a n S 1212奇偶有适用.()()()()nn n n an n a n a a 12212221212112-=-=-+=--⇒将12-n 换为n 11.在等差数列{}n a 中,公差3d =,n S 为其前n 项和,若89S S =,则17S =( )A .2-B .0C .2D .412.已知n S 是等差数列{}n a 的前n 项和,且7287026S a a =+=,,则{}n a 的公差d =( )A .1B .2C .3D .4.13.已知等差数列{}n a 的公差为d ,前n 项和为n S ,若12413,22a a S +==,则d =( )A .7B .3C .1D .1-14.等差数列 {}n a 中,n S 是其前 n 项和,53253S S -=,则公差 d 的值为( )A .12B .1C .2D .315.记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( )A .72B .73C .13-D .711-16.已知等差数列{}n a 的前15项之和为60,则313a a +=( )A .4B .6C .8D .1017.已知等差数列{}n a 的前n 项和为n S ,23a =,221n n a a =+,若1100n n S a ++=,则n =( )A .8B .9C .10D .1118.n S 是等差数列{}n a 的前n 项和,若1236a a a ++=,7916+=a a ,则9S =( )A .43B .44C .45D .4619.已知n S 是等差数列{}n a 的前n 项和,若23a =,525S =,则442S a a =-( )A .1B .2C .3D .420.已知n S 为等差数列{}n a 的前n 项和,已知848,16S S =-=,则56223839a a a a a ++++=( )A .215B .185C .155D .135考点03:数列片段和问题k k k k k S S S S S 232,,--这样的形式称之为“片段和”①当}{n a 是等差数列时:k k k k k S S S S S 232,,--也为等差数列,且公差为d k 2.②当}{n a 是等比数列时:k k k k k S S S S S 232,,--也为等比数列,且公比为kq .21.已知等差数列{}n a 的前n 项和为n S ,36S =,()*3164,n S n n -=³ÎN ,20n S =,则n 的值为( )A .16B .12C .10D .822.已知等差数列{}n a 的前n 项和为n S ,若330S =,651S =,则9S =( )A .54B .63C .72D .13523.已知等差数列{}n a 的前n 项和为n S ,且365,15S S ==,则9S =( )A .35B .30C .20D .1524.记n S 为等差数列{}n a 的前n 项和,若4127,45S S ==.则8S =( )A .28B .26C .24D .2225.已知等差数列{}n a 的前n 项和为n S ,若42S =,812S =,则20S =( )A .30B .58C .60D .9026.在等差数列{}n a 中,若363,24S S ==,则12S =( )A .100B .120C .57D .1827.等差数列{}n a 的前n 项和为n S .若10111012101310148a a a a +++=,则2024S =( )A .8096B .4048C .4046D .202428.若正项等比数列{}n a 的前n 项和为n S ,且8426S S -=,则9101112a a a a +++的最小值为( )A .22B .24C .26D .2829.设n S 是等比数列{}n a 的前n 项和,若23S =,346a a +=,则108S S =( )A .157B .3115C .2D .633130.在正项等比数列{}n a 中,n S 为其前n 项和,若301010303,80S S S S =+=,则20S 的值为( )A .10B .20C .30D .40考点04:秒杀和比与项比结论1:若两个等差数列}{n a 与}{n b 的前n 项和分别为n n T S ,,若DCn B An T S n n ++=,则()()Dn C B n A T S b a n n n n +-+-==--12121212结论2:若两个等差数列}{n a 与}{n b 的前n 项和分别为n n T S ,,若DCn B An T S n n ++=,则()()Dm C B n A b a m n +-+-=121231.已知等差数列{}n a 与{}n b 的前n 项和分别为,n n S T ,且231n n S n T n +=+,则19119a ab b ++的值为( )A .1311B .2110C .1322D .212032.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且335n n S n T n +=+,则526a b b =+( )A .1417B .417C .313D .1533.已知数列{}{}n n a b ,均为等差数列,其前n 项和分别为n n S T ,,满足(23)(31)n n n S n T +=-,则789610a a ab b ++=+( )A .2B .3C .5D .634.设数列{}n a 和{}n b 都为等差数列,记它们的前n 项和分别为n S 和n T ,满足21n n n a b n =+,则55S T =( )A .12B .37C .59D .3535.已知等差数列{}n a 和{}n b 的前n 项和分别为,n n S T ,若342n n S n T n +=+,则58211a a b b +=+( )A .1713B .3713C .207D .37736.等差数列{}{},n n a b 的前n 项和分别是,n n S T ,若542n n S n T n +=+,则44a b = .37.设等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若对任意正整数n 都有2343n n S n T n -=-,则839457a ab b b b +=++ .38.已知n S ,n T 分别是等差数列{}n a ,{}n b 的前n 项和,且2131n n S n T n +=-,那么44a b = .39.两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T,且523n n S n T n +=+,则220715a a b b ++等于40.已知等差数列{}n a , {}n b 的前n 项和分别为n S ,n T ,且214n nS n T n +=,则537a b b =+ .考点05:等差数列奇偶规律结论()*ÎNn n 2则1,+==-n n a aS S nd S S 偶奇奇偶n 2,则它的奇数项分别为135721,,,......n a a a a a -则它的偶数项分别为24682,,,......na a a a a 则奇数项之和()1212=22n nnn a a n a S na -+×==奇则偶数项之和()22+1+12=22n n n n a a n a S na +×==偶代入公式得1-S =n( )n n S a a nd +-=奇偶,11=S n n n n S na ana a ++=奇偶()*Î+Nn n 12则()()111,11,+++=+=+==-n n n na S a n S nn S S a S S 偶奇偶奇偶奇∵12-n 项,则它的奇数项为127531,,,+n a a a a a 则它的偶数项分别为na a a a 2642,, 则奇数项之和()()()1121112+++=+×+=n n an n a a S 奇则偶数项之和()1222+=×+=n n nan a a S 偶代入公式得()1111+++=-+=-n n n a na a n S S 偶奇()nn na a n S S n n 1111+=+=++偶奇说明:偶奇,S S 分别表示所有奇数项与所有偶数项的和41.已知等差数列{}n a 的项数为()21Ν,m m *+Î其中奇数项之和为140, 偶数项之和为 120,则m =( )A .6B .7C .12D .1342.一个等差数列共100项,其和为80,奇数项和为30,则该数列的公差为( )A .14B .2C .13D .2543.已知等差数列{}n a 的前30项中奇数项的和为A ,偶数项的和为B ,且45B A -=,2615A B =+,则n a =( )A .32n -B .31n -C .31n +D .32n +44.已知数列{}n a 的前n 项和为n S ,且11a =,22a =,13++=n n a a n ,则( )A .45a =B .20300S =C .31720S =D .n 为奇数时,2314+=n n S 45.已知等差数列{}n a 共有21n -项,奇数项之和为60,偶数项之和为54,则n =.46.已知数列{}n a 满足11a =,12,3,n n na n a a n ++ì=í+î为奇数为偶数,则{}n a 的前40项和为.47.已知等差数列{}n a 的项数为21m +()*m ÎN ,其中奇数项之和为140,偶数项之和为120,则数列{}n a 的项数是 .48.数列{}n a 满足:2212212121,2,2n n n na a a a a a ++-==-==,数列{}n a 的前n 项和记为n S ,则23S = .49.在等差数列{}n a 中,已知公差12d =,且1359960+++×××+=a a a a ,求12399100a a a a a +++×××++的值.50.已知{}n a 是等差数列,其中222a =,610a =.(1)求{}n a 的通项公式;(2)求24620a a a a ++++ 的值.考点06: 等差数列前n 项和最值规律方法一:函数法⇒利用等差数列前n 项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解.bn an S n +=2模型演练()n d a n d S d n n na S n n ×÷øöçèæ-+=⇒×-+=222112121122222÷÷÷÷øöççççèæ--÷÷÷÷øöççççèæ-+=⇒d d a d d d a n d S n 2121212212÷øöçèæ--⎥⎦⎤êëé÷øöçèæ--=⇒d a d d a n d S n 由二次函数的最大值、最小值可知,当n 取最接近da 121-的正整数时,n S 取到最大值(或最小值)注意:最接近da 121-的正整数有时1个,有时2个51.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则n S 取最大值时,n =( ).A .9B .10C .9或10D .10或1152.已知等差数列{}n a 的前n 项和为n S ,若50a <,380a a +>,则当n S 取得最小值时,n =( )A .4B .5C .6D .753.设数列{}n a 的前n 项和为11,1,321n nn S S S S n n+-=-=+,则下列说法正确的是( )A .{}n a 是等比数列B .36396,,S S S S S --成等差数列,公差为9-C .当且仅当17n =时,n S 取得最大值D .0n S ³时,n 的最大值为3354.数列{}n a 的前n 项和211n S n n =-,则( )A .110a =B .32a a >C .数列{}n S 有最小项D .n S n ìüíýîþ是等差数列55.已知等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S ,若1089S S S <<,则下列说法正确的是( )A .1a d>B .使得0n S >成立的最大正整数18n =C .891011a a a a +<+D .n n S a ìüíýîþ中最小项为1100S a 56.等差数列 {}n a 的前 n 项和为 1214,0,0n S a a a >+=,则( )A .80a =B .1n na a +<C .79S S <D .当 0n S < 时, n 的最小值为 1657.已知无穷数列{}n a 满足:110a =-,12n n a a +=+()*N n Î.则数列{}n a 的前n 项和最小值时n 的值为 .58.设等差数列{}n a 的公差为d ,其前n 项和为n S ,且满足991,27a S =-=.(1)求d 的值;(2)当n 为何值时n S 最大,并求出此最大值.59.已知数列{}n a 是公差不为零的等差数列,111a =-,且256,,a a a 成等比数列.(1)求{}n a 的通项公式;(2)设n S 为{}n a 的前n 项和,求n S 的最小值.60.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.考点07:等比数列奇偶规律结论()*ÎNn n 2则qS S =奇偶n 2,则它的奇数项分别为135721,,,......n a a a a a -则它的偶数项分别为24682,,,......na a a a aq a a q a a q a a ×=×=×=342312,,∵()q a a a a a a a a a a q a a a a a a a a a a n n n n n n n n =++++++++=++++++++∴-------123253112325311232531222642()*Î+Nn n 12则q S a S =-偶奇112+n ,则它的奇数项分别为13572+1,,,......n a a a a a 则它的偶数项分别为24682,,,......na a a a a q a a q a a q a a ×=×=×=453423,,∵q S a S q a a a a a a a a a a a a a a a a a a a n n n n n n n n =-⇒=+++++++=++++++++∴-+--+-偶奇12226421212532226421212531 说明:偶奇,S S 分别表示所有奇数项与所有偶数项的和61.已知等比数列{}n a 有21n +项,11a =,所有奇数项的和为85,所有偶数项的和为42,则n =( )A .2B .3C .4D .562.已知等比数列{}n a 的前n 项和为n S ,其中10a >,则“31a a >”是“n S 无最大值”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件63.已知一个等比数列的项数是是偶数,其奇数项之和1011,偶数项之和为2022,则这个数列的公比为( ).A .8B .2-C .4D .264.已知等比数列{}n a 的公比为13-,其前n 项和为n S ,且1a ,243a +,3a 成等差数列,若对任意的*n ÎN ,均有2nnA SB S £-£恒成立,则B A -的最小值为( )A .2B .76C .103D .5365.已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( )A .1B .4C .12D .3666.已知数列}{n a 的前n 项和121n n S -=+,则数列}{n a 的前10项中所有奇数项之和与所有偶数项之和的比为( )A .12B .2C .172341D .34117267.等比数列{}n a 的首项为2,项数为奇数,其奇数项之和为8532,偶数项之和为2116,则这个等比数列的公比q = .68.等比数列的性质已知{}n a 为等比数列,公比为q ,n S 为其前n 项和.(1)若()0,0,1n n S Aq B A q q =+¹¹¹,则A B += ;(2)当0n S ¹时,n S , ,32,n n S S - 为等比数列;(3)若等比数列{}n a 共2k 项,记S 奇为诸奇数项和,S 偶为诸偶数项和,则S S =奇偶 ;69.已知首项均为32的等差数列{}n a 与等比数列{}n b 满足32a b =-,43a b =,且{}n a 的各项均不相等,设n S 为数列{}n b 的前n 项和,则n S 的最大值与最小值之差为 .70.(1)在等比数列{}n a 中,已知248,60n n S S ==,求3n S ;(2)一个等比数列的首项是1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.。

高中数学 知识梳理 (13)

高中数学 知识梳理 (13)

+等差数列【考纲要求】1.理解等差数列概念.2.能在具体的问题情境中识别数列的等差关系并能用有关知识解决相应的问题.3.了解等差数列与一次函数的关系.4.灵活应用等差数列的定义、公式和性质解决数列问题 认识和理解数列与其它数学知识之间的内 在联系.5.掌握常见的求等差数列通项的一般方法;6.用数列知识解决带有实际意义的或生活、工作中遇到的数学问题【知识网络】【考点梳理】【高清课堂:等差数列 382420 知识要点】考点一、等差数列的定义如果一个数列从第 2 项起每一项与它的前一项的差等于同一个常数那么这个数列叫做等差数列 这个常数叫做等差数列的公差.要点诠释:(1){ a n }为等差数列 ⇔ a n +1 - a n = d (n∈N ※) ⇔ a n - a n -1 =d (n ≥ 2, n∈N ※)( d 为常数) (2)等差中项:若三个数 a x b 成等差则 x 称为数 a b 的等差中项。

任意实数 a b 的等差中项存a +b 在且唯一为 . 2(3)证数列{ a n }是等差数列的方法:① a n - a n -1 = d (n≥2) ( d 为常数);② a n 为 a n -1 和 a n +1 的等差中项。

考点二、通项公式a n = a 1 + (n - 1)d (归纳法和迭加法)要点诠释:①{ a n }为等差数列 ⇔ a n 为 n 的一次函数或 a n 为常数 ⇔ a n =kn+b (n ∈ N ) 等差数列定义等差数列的通项公式及应用等差中项 等差数列*②式中 a n 、 a 1 、n 、d 只要有三个就可以利用方程(组)求出第四个。

③公式特征:等差数列{ a n }中 a n =kn+b 是关于 n 的一次函数(或常数函数) 一次项系数 k 为公差 d 。

④几何意义:点(n a n )共线; a n =kn+b 中当 k=d>0 时 { a n }为递增数列;当 k=d<0 时 { a n }为递减数列;当 k=d=0 时 { a n }为常数列。

高考数学复习:等差数列与等比数列

高考数学复习:等差数列与等比数列

Sn=an2+bn(a,b为 常数)
Sn=kqn-k(k≠0,q≠0,1)
证明数列为等差(比)数列一般使用定义法.
例3 (2019·全国Ⅱ)已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an- bn+4,4bn+1=3bn-an-4. (1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)已知函数 f(x)=1+2 x2(x∈R),若等比数列{an}满足 a1a2 020=1,则 f(a1)
+f(a2)+f(a3)+…+f(a2 020)等于
√A.1 D.2
解析 ∵a1a2 020=1,
∴f(a1)+f(a2 020)=1+2 a21+1+2a22 ∵{an}为等比数列,
a3+a4=2,则a6+a7+a8等于
A.12
B.24
√ C.30
D.32
解析 设等比数列{an}的公比为q, 则 q=aa21++aa32++aa43=21=2,
所以a6+a7+a8=(a1+a2+a3)·q5=1×25=32.
(2)已知正项等比数列{an}的前n项和为Sn,且S10=10,S30=130,则S40等于
∴an=2×2n-1=2n. 又∵ak+1+ak+2+…+ak+10=215-25,
∴2k+111--2210=215-25,
即2k+1(210-1)=25(210-1),
∴2k+1=25,∴k+1=5,∴k=4.
(2)(多选)(2020·威海模拟)等差数列{an}的前n项和记为Sn,若a1>0,S10=
证明 由题设得4(an+1+bn+1)=2(an+bn),
即 an+1+bn+1=12(an+bn). 因为a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得4(an+1-bn+1)=4(an-bn)+8, 即an+1-bn+1=an-bn+2. 又a1-b1=1, 所以{an-bn}是首项为1,公差为2的等差数列.

三年高考(2015-2017)高考数学试题解析13数列小题理

三年高考(2015-2017)高考数学试题解析13数列小题理

专题13数列小题1。

【2017课标1,理4】记nS 为等差数列{}na 的前项和.若4524a a +=,648S =,则{}na 的公差为A .1B .2C .4D .8 【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S ad a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416aa +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C 。

【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}na 为等差数列,若m np q +=+,则mnpqa a a a +=+。

2。

【2017课标3,理9】等差数列{}na 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}na 前6项的和为A .24-B .3-C .3D .8 【答案】A 【解析】故选A 。

【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.3。

【2017课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】试题分析:设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:()712381 12x⨯-=-,解得3x=,即塔的顶层共有灯3盏,故选B。

省考行测核心考点手册(通版)-数量关系-答案版

省考行测核心考点手册(通版)-数量关系-答案版

核心考点三 利用整除解题
1.【答案】A。解析:由“机械学院实际参加考试的人数是建筑学院实际参加考试
人数的 13 ”可知,建筑学院实际参加考试人数为 8 的整数倍,即建筑学院总人数减去 8
缺考人数为 8 的整数倍,代入选项只有 A 项满足。
2.【答案】A。解析:根据题意可知,后来小敏的藏书册数应该是 4 的倍数,即小
宜的书价格相差为 6 倍的公差,也即正确答案与 32 的差为 6 的倍数,排除 B、D。将 A
选项带入验证。根据等差数列求和公式,这 7 本书的价格总和为 2 32 7 =119。题
2
干中说小明最开始花去 120 元,之后补了若干元换了另外一本书,则这 7 本书的价格之
和应该超过 120 元,119 元不超过 120 元,与题干矛盾,排除 A 选项,故本题选择 C
敏原来的藏书册数加 65 后能被 4 整除,选项中只有 A 符合。
3.【答案】A。解析:已知甲派出所的刑事案件占 17%= 17 ,乙派出所的刑事案 100
件占 20%= 1 。甲、乙两派出所共受理案件 160 起,根据整除特性可知甲派出所受理案 5
件总数是 100 的倍数,故只能为 100,所以乙派出所受理案件总数为 60,则乙派出所在
方法二,第 10 名的工号最后一位一定是 0,则 1-9 名的工号最后一位恰好就是 1-9,
则 1-9 名工号前三位能被 9 整除,则第 3 名的工号各位数字之和一定是 9n+3,选项中
只有 B 符合。
核心考点四 利润问题
1.【答案】B。解析:卖 2 元一份时每份盈利 2-1.4=0.6 元,半价促销时每份亏损
3.【答案】D。解析:K 是第 11 个字母,则 K 班有学生 15+(11-1)=25 人,那么

2013届高考数学考点回归总复习《第二十八讲 等差数列》课件

2013届高考数学考点回归总复习《第二十八讲 等差数列》课件

(2)a1+a2+a3+a4=124,an+an-1+an-2+an-3=156,Sn=210,
求项数n; (3)S4=1,S8=4,求a17+a18+a19+a20的值.
(a1 a19 ) 19 ( a3 a17 ) 19 10 19 [解] 1 S19 95. 2 2 2 2 a1 a 2 a 3 a 4 a n a n 1 a n 2 a n 3 a1 a n a 2 a n 1 a 3 a n 2 a 4 a n 3 4 a1 a n 280 a1 a n 70. (a1 an )n 而 Sn 210 n 6. 2
类型三
等差数列的性质及应用
解题准备:若m+n=p+q(m,n,p,q∈N*),则
am+an=ap+aq,Sk,S2k-Sk,S3k-S2k,…构成的是公差为k2d
的等差数列,从中我们可以体会运用性质解决问题的方便 不简捷,应注意运用.
【典例3】在等差数列中,Sn表示{an}的前n项和, (1)a3+a17=10,求S19的值;
第二十八讲等差数列
回归课本
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项不前一项的差都等亍同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数
列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
(2)对亍正整数m、n、p、q,若m+n=p+q,则等差数列中 am、an、ap、aq的关系为am+an=ap+aq;如果a,A,b成等

等差数列知识点解读

等差数列一、学习目标:等差数列的概念、性质及前n 项和求法。

1.设数列{}n a 的前n 项和为n S .已知5a 1=,13n n n a S +=+,*n ∈N .设3n n n b S =-,求数列{}n b 的通项公式;解:依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+, 由此得1132(3)n n n n S S ++-=-.因此,所求通项公式为n n n n 23-S b ==。

2.设数列{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 2 . 3.已知等差数列{}n a 的公差0d ≠,且139,,a a a 成等比数列,则1392410a a a a a a ++++=1316.【考点梳理】1.在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。

2.补充的一条性质1)项数为奇数21n -的等差数列有:1s ns n =-奇偶n s s a a -==奇偶中,21(21)n n s n a -=-2)项数为偶数2n 的等差数列有:1n n s as a +=奇偶,s s nd -=偶奇 21()n n n s n a a +=+3.等差数列的判定:{a n }为等差数列⎪⎪⎩⎪⎪⎨⎧+=+=+==-⇔+++数”)(缺常数项的“二次函的“一次函数”)(关于(定义)Bn An S n B An a a a a d a a nn n n n n n 22112 即:*),2(2(11n 1n N n n a a a d d a a a n n n n ∈≥+=⇔=-⇔-++为常数)}{Bn An s b kn a n n +=⇔+=⇔2;4.三个数成等差可设:a ,a +d ,a +2d 或a -d ,a ,a +d ; 四个数成等差可设:a -3d ,a -d ,a +d ,a +3d .5.等差数列与函数:1)等差数列通项公式与一次函数的关系:从函数的角度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的一次式;从图像上看,表示等差数列的各点(n,n a )均匀排列在一条直线上,由两点确定一条直线的性质,不难得出,任两项可以确定一个等差数列.k=d=11--n a a n ,d=m n a a mn --,由此联想点列(n ,a n )所在直线的斜率.2)点)S (n,n 在没有常数项的二次函数2n S pn qn =+上。

2023考点专题复习——等差数列及其性质(原卷版)

2023考点专题复习——等差数列及其性质考法一、 等差数列的基本运算⑴等差数列的通项公式:⑴等差数列的前和的求和公式:例1、在等差数列{}n a 中,若3930a a +=,411a =,则{}n a 的公差为( ) A .-2B .2C .-3D .3例2、已知等差数列{}n a 的前n 项和为n S ,8100S =,724a a =,则4a =( ). A .10B .11C .12D .13例3、记n S 为等差数列{}n a 的前n 项和.已知55S =,55a =,则( ) A .25n a n =-B .n a n =C .229n S n n =-D .21322n S n n =- 练习1、等差数列1、2a 、24a 、的第五项等于( )A .12B .1C .5D .16练习2、设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________. 练习3、在等差数列{a n }中,a 1+a 2+a 3=21,a 2a 3=70,若a n =61,则n =( ) A .18B .19C .20D .21练习4、已知等差数列{}n a 的前n 项和为n S ,若111152S S S =-,则611a a =( )A .65B .56C .1110D .1011练习5、设n S 是某个等差数列的前n 项和,若201920202020S S ==,则2021S =( ) A .220202019-B .220202019+C .120201010-D .120201010+练习6、已知n S 是数列{}n a 的前n 项和,则“2n S n n =-”是“数列{}n a 是公差为2的等差数列”的( )1(1)n a a n d=+-n 11()(1)22n n n a a n n S na d +-==+A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件练习7、已知数列{}n a 中各项为非负数,21a =,516a =,若数列为等差数列,则13a=( )A .169B .144C .12D .13练习8、已知公差不为0的等差数列{}n a 中,246a a a +=,296a a =,则10a =______.练习9、已知等差数列{}n a 的前n 项和为n S ,若171251,0S a ==,则{}n a 的通项公式为_____________ 练习10、已知等差数列{}n a 满足13248,14a a a a +=+=,则它的前8项的和8S =( ) A .70B .82C .92D .105练习11、已知等差数列{}n a 的前n 项和为n S ,若312S =,410a =,则{}n a 的公差为( ) A .4B .3C .2D .1练习12、等差数列{}n a 中,前n 项和为n S ,且131,9S S ==,则5S =( ) A .17 B .25C .5D .81考法二、 等差数列的性质⑴在等差数列中,对任意,,,;⑴在等差数列中,若,,,且,则,特殊地,时,则,是的等差中项.⑴等差数列被均匀分段求和后,得到的数列仍是等差数列,即成等差数列.⑴设数列是等差数列,且公差为,(⑴)若项数为偶数,设共有项,则①;② ;⑴若项数为奇数,设共有项,则①(中间项);②.⑴若与为等差数列,且前项和分别为与,则.{}n a m n N +∈()n m a a n m d =+-n ma a d n m-=-()m n ≠{}n a m n p q N +∈m n p q +=+m n p q a a a a +=+{}n a d 2n -S S nd =奇偶1n n S aS a +=奇偶21n -S S -偶奇n a a ==中1S n S n =-奇偶{}n a {}n b n nS 'n S 2121'm m m m a S b S --=例1、在等差数列{}n a 中,若34567750a a a a a ++++=,则28a a +=( ) A .360B .300C .240D .200例2、已知数列{a n }为等差数列,n S 为其前n 项和,4252a a a +=+,则5S =( ) A .2B .14C .50D .10例3、在等差数列{}n a 中,11826a a =+,则267a a a ++=( ) A .18-B .6-C .8D .12例4、已知数列{}n a 是等差数列,若1231a a a ++=,4563a a a ++=,则789a a a ++=( ) A .5B .4C .9D .7例5、设等差数列{}n a 的前n 项和为n S ,其中23S =,415S =,则6S =( ) A .9B .18C .27D .36例6、已知数列{}n a 、{}n b 都是等差数列,设{}n a 的前n 项和为n S ,{}n b 的前n 项和为n T .若2132n n S n T n +=+,则55a b =( ) A .1929B .1125C .1117D .23练习1、已知数列{}n a 为等差数列,且31a =,则12345a a a a a ++++=( ) A .3B .4C .5D .6练习2、n S 是等差数列{}n a 的前n 项和,1233a a a ,7910a a +=,则9S =( )A .9B .16C .20D .27练习3、已知公差不为0的等差数列{}n a 满足22225678a a a a +=+,则( ) A .60a =B .70a =C .120S =D .130S =练习4、已知等差数列{}n a 的前n 项和为n S ,等差数列{}n b 的前n 项和为n T .若211n n S n T n -=+,则55a b =( ) A .1911B .1710C .32D .75练习5、已知数列{}n a ,{}n b 为等差数列,其前n 项和分别为n S ,n T ,422n n S n T n +=+,则59a b =( ) A .3811B .109C .1110D .2练习6、等差数列{}n a 的前()m m N +∈项和为30,前2m 项和为100,则前3m 项和为( )A .130B .170C .210D .260练习7、等差数列{a n }的前n 项和为S n ,且S 10=20,S 20=15,则S 30=( )A .10B .30-C .15-D .25练习8、两等差数列{}n a 和{}n b 的前n 项和分别是n n S T 、,已知73n n S n T n =+,则55a b = A .7 B .23C .278D .214练习9、设等差数列{}n a 的前n 项和为n S ,若1254a a a +=+,则11S =( )A .28B .34C .40D .44练习10、已知等差数列{}n a 的前n 项和为n S ,若39S =,663S =,则789a a a ++等于( )A .63B .71C .99D .117练习11、已知等差数列{}n a 的前n 项和为n S ,若1122S =,则378a a a ++=( )A .18B .12C .9D .6练习12、已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有481n n S n T n -=+,则3153111572a a a b b b b ++=++( )A .3B .6C .327D .8013练习13、已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( )A .67B .1211C .1825D .1621练习14、设等差数列{}n a 的前n 项和为n S ,若1020S =,2030S =,则30S =( )A .20B .30C .40D .50练习15、已知等差数列{}n a 的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为( )A .28B .29C .30D .31练习16、等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=12,则S 13=_____.练习17、已知等差数列{}n a 的前n 项和为n S ,若246820a a a a +++=,则9S =___________.练习18、已知数列{}n a 和{}n b 均为等差数列,前n 项和分别为n S ,n T ,且满足:*n ∀∈N ,321n n S n T n +=+,则161419581215a a a ab b b b +++=+++____________.练习19、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,且523n n S n T n +=+,则220715a a b b ++等于( )A .10724B .724C .14912D .1493考法三、 等差数列的最值问题⑴.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当,时,有最大值;,时,有最小值;若已知,则最值时的值()则当,,满足的项数使得取最大值,(2)当,时,满足的项数使得取最小值.⑴利用等差数列的前n 项和:(为常数, )为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(,递增;,递减);⑴. 利用数列中最大项和最小项的求法:求最大项的方法:设为最大项,则有;求最小项的方法:设为最小项,则有.只需将等差数列的前n 项和依次看成数列,利用数列中最大项和最小项的求法即可.10a >0d <n S 10a <0d >n S n a n S n n N +∈10a >0d <100n n a a +≥⎧⎨≤⎩n n S 10a <0d >10n n a a +≤⎧⎨≥⎩n n S 2n S An Bn =+,A B n N ∈*0d >0d <n a 11n n nn a a a a -+≥⎧⎨≥⎩n a 11n n nn a a a a -+≤⎧⎨≤⎩1,2,3,n ={}n S例1、等差数列{}n a 的前n 项和为n S ,73649,3S a a ==,则n S 取最大值时的n 为( ) A .7B .8C .14D .15例2、在等差数列{}n a 中,若981a a <-,且它的前n 项和n S 有最小值,则当0n S >时,n 的最小值为 A .B .C .D .例3、等差数列{}n a 中,3716,8,n a a S ==是数列{}n a 的前n 项和,则n S 最大时,n =( ) A .10B .11C .10或11D .11或12练习1、若公差为负的等差数列{}n a 中的两项39,a a 是方程21090x x -+=的两个根,设数列{}n a 的前n 项和为n S ,则当n S 最大时,n 的值为( ) A .5B .9或10C .10D .9练习2、已知等差数列{}n a 的前n 项和为n S ,且78S S >,8910S S S =<,则下面结论错误的是( ) A .90a = B .1514S S >C .0 d <D .8S 与9S 均为n S 的最小值练习3、等差数列{}n a 的前n 项和为n S ,若n N *∀∈,7n S S ≤,则数列{}n a 的通项公式可能是( )A .315n a n =-B .173n a n =-C .7n a n =-D .152n a n =-练习4、等差数列{}n a 的前n 项和记为n S ,若10a >,1020S S =,则不成立是( )A .0d <B .160a <C .15n S SD .当且仅当0nS <时32n练习5、已知等差数列{}n a 的前n 项和为n S ,且满足54a ≤,540S ≥,则该数列的公差d 可取的值是( )A .3B .1C .-1D .-3练习6、等差数列{}n a 的前n 项和为n S ,若7,n n S S *∀∈≤N ,则数列{}n a 的通项公式可能是( )A .163n a n =-B .152n a n =-C .214n a n =-D .215n a n =-练习7、等差数列{}n a 中,3716,8,n a a S ==是数列{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和最大时,n =( )A .20B .21C .20或21D .21或22练习8、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则下列结论正确的是( ) A .当且仅当6n =时n S 取最小值 B .当且仅当6n =时n S 取最大值 C .当且仅当7n =时n S 取最小值 D .当且仅当7n =时n S 取最大值练习9、已知数列{}n a 的通项公式为3n a n =-,*n ∈N ,n S 为其前n 项和,则当0n n a S ≤时,正整数n 的最大值为( )A .3B .4C .5D .6练习10、若数列{a n }满足:a 1=19,a n +1=a n -3,则数列{a n }的前n 项和数值最大时,n 的值为A .6B .7C .8D .9练习11、设n S 为等差数列{}n a 的前n 项和,()()11n n n S nS n N *++<∈.若871a a <-,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S练习12、已知数列{}n a 是首项为a ,公差为1的等差数列,数列{}n b 满足1.nn na b a +=若对任意的*n ∈N ,都有6n b b ≥成立,则实数a 的取值范围是( )A .[]6,5--B .()6,5--C .[]5,4--D .()5,4--练习13、已知等差数列{}n a 的前n 项和记为1234,24n S a a a S ++=+,则“11a <”是“{}n S 为单调数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件练习14、已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a <. 其中正确命题的是___________.练习15、设1a ,d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足:30a <,且56160S S +=,则11S 的最小值为_________.练习16、已知n S 为等差数列{}n a 的前n 项和,且235S =,23439a a a ++=,则当n S 取最大值时,n 的值为___________.考法四、 等差数列的证明与判断例1、已知数列{}n a 满足12a =,121n n n a a a +-=,证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列;例2、已知数列{}12,13n a a a ==,,且满足11212n n n a a a +-+=+(2n ≥且*n N ∈),证明新数列{}1n n a a +-是等差数列,并求出n a 的通项公式.例3、已知数列{}n b 首项13b =,且满足()*1212123n n n b b n n n +-=+-∈-N ,令23n n b c n =-. (1)求证:数列{}n c 为等差数列; (2)求数列{}n b 中的最小项.练习1、已知在数列{}n a 中,112a =,12n n a a n ++=,求证:{}n a 为等差数列;练习2、在正项数列{}n a 中,11a =,0=,*N n ∈,求证:数列为等差数列;练习3、已知数列{}n a 满足12a =,1210n n n a a a +-+=,N n *∈,证明:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;练习4、已知数列{}n a 满足112a =,()()11110n n n n n n a a n a na --+++-=,2n ≥,n N ∈,求证:数列()11n n a ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭为等差数列;练习5、已知数列{}n a 满足()*143n n n a a n N a +-=∈-,且14a =,证明:数列12n a ⎧⎫⎨⎬-⎩⎭是等差数列;练习6、已知数列{}n a 中,13a =,且满足()2*122,n n n n a a n b a n n N +=++=-∈,证明:数列{}n b 是等差数列,并求{}n b 的通项公式;练习7、记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}na 是等差数列.练习8、在数列{}n a 中,12a =,n a 是1与1n n a a +的等差中项,求证:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求{}n a 的通项公式;练习9、已知正项数列{}n a 满足121,2a a ==,且对任意的正整数n ,211n a ++是2n a 和22n a +的等差中项,证明:{}221n n aa +-是等差数列,并求{}n a 的通项公式;练习10、已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.考法五、实际生活中的等差数列例1、在古印度的数学著作《丽拉沃蒂》中,有这样一个问题:某人给一个人布施,初日施3德拉玛(古印度货币单位),其后日增2德拉玛,共布施360德拉玛,请快告诉我,他布施了几日?这个问题的答案是( ) A .9B .18C .20D .24例2、《九章算术》是我国古代的数学名著,书中有如下题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种质量单位)在这个问题中,戊所得为( ) A .14钱 B .12钱 C .23钱 D .35钱练习1、《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问小满日影长为()(1丈=10 尺=100寸)A.四尺五寸B.三尺五寸C.二尺五寸D.一尺五寸练习2、《孙子算经》是中国古代重要的数学著作,据书中记载,中国古代诸侯的等级从低到高分为五级:男、子、伯、侯、公.现有每个级别的诸侯各一人,共5人,要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m个(m为正整数),若按这种方法分橘子,“子”恰好分得13个橘子的概率是()A.18B.17C.16D.15练习3、《张丘建算经》是我国古代的一部数学著作,现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算、各种等差数列问题的解决、某些不定方程问题求解等.书中记载如下问题:“今有女子善织,日增等尺,初日织五尺,三十日共织390尺,问日增几何?”那么此女子每日织布增长()A.47尺B.1631尺C.1629尺D.815尺练习4、我国明代数学家程大位的《算法统宗》中有这样一个问题:今有钞二百三十八贯,令五等人从上作互和减半分之,只云戊不及甲三十三贯六百文,问:各该钞若干?其意思是:现有钱238贯,采用等差数列的方法依次分给甲、乙、丙、丁、戊五个人,现在只知道戊所得钱比甲少33贯600文(1贯=1000文),问各人各得钱多少?在这个问题中,戊所得钱数为()A.30.8贯B.39.2贯C.47.6贯D.64.4贯练习5、中国古代数学著作《算法统宗》中有这样一个问题:“九百九十六斤棉,赠分八子作盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.”其意思为:“996斤棉花,分别赠送给8个子女作旅费,从第一个开始,以后每人依次多17斤,使孝顺子女的美德外传,试求各人应分得多少斤.”则第3个子女分得棉花()A.65斤B.82斤C.99斤D.106斤练习6、《九章算术》卷七“盈不足”有这样一段话:“今有良马与弩马发长安至齐.齐去长安三千里,良马初日行一百九十三里.日增十三里,驽马初日行九十七里,日减半里.”意思是:今有良马与弩马从长安出发到齐国,齐国与长安相距3000里,良马第一日走193里,以后逐日增加13里,弩马第一日走97里,以后逐日减少0.5里.则8天后两马之间的距离为___________里.练习7、我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第1个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要按照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第8个孩子分到的棉花为()A.184斤B.176斤C.65斤D.60斤练习8、明朝程大位的《算法统宗》中有首依等算钞歌:“甲乙丙丁戊已庚,七人钱本不均分,甲乙念三七钱钞,念六一钱戊已庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”大意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、已、庚三人共261钱,求各人钱数.”根据题目的已知条件,乙有()A.122钱B.115钱C.108钱D.107钱练习9、中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是A.174斤B.184斤C.191斤D.201斤练习10、2022北京冬奥会开幕式将我国二十四节气融入倒计时,尽显中国人之浪漫.倒计时依次为:大寒、小寒、冬至、大雪、小雪、立冬、霜降、寒露、秋分、白露、处暑、立秋、大暑、小暑、夏至、芒种、小满、立夏、谷雨、清明、春分、惊蛰、雨水、立春,已知从冬至到夏至的日影长等量减少,若冬至、立冬、秋分三个节气的日影长之和为31.5寸,冬至到处暑等九个节气的日影长之和为85.5寸,问大暑的日影长为()A.4.5寸B.3.5寸C.2.5寸D.1.5寸。

等差等比数列知识点梳理及经典例题

A 、等差数列知识点及经典例题 一、数列由n a 与n S 的关系求n a由n S 求n a 时,要分n=1和n ≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的形式表示为11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩。

〖例〗根据下列条件,确定数列{}n a 的通项公式。

分析:(1)可用构造等比数列法求解; (2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用n a 与n S 的关系求解。

解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和 (一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。

2、解选择题、填空题时,亦可用通项或前n 项和直接判断。

(1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列;(2)前n 项和法:若数列{n a }的前n 项和n S 是2n S An Bn =+的形式(A ,B 是常数),则{n a }是等差数列。

注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。

〖例〗已知数列{n a }的前n 项和为n S ,且满足111120(2),2n n n n S S S S n a ---+=≥= (1)求证:{1nS }是等差数列; (2)求n a 的表达式。

分析:(1)1120n n n n S S S S ---+=→1n S 与11n S -的关系→结论; (2)由1nS 的关系式→n S 的关系式→n a 解答:(1)等式两边同除以1n n S S -得11n S --1n S +2=0,即1n S -11n S -=2(n ≥2).∴{1n S }是以11S =11a =2为首项,以2为公差的等差数列。

2021年小学奥数1211,等差数列认识与公式运用.教师版

小学奥数1211,等差数列认识与公式运用.教师版等差数列的认识与公式运用教学目标本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。

要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。

知识点拨一、等差数列的定义⑴先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵首项:一个数列的第一项,通常用表示末项:一个数列的最后一项,通常用表示,它也可表示数列的第项。

项数:一个数列全部项的个数,通常用来表示;公差:等差数列每两项之间固定不变的差,通常用来表示;和:一个数列的前项的和,常用来表示.二、等差数列的相关公式 (1)三个重要的公式①通项公式:递增数列:末项首项(项数)公差,递减数列:末项首项(项数)公差,回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:,②项数公式:项数(末项首项)公差+1 由通项公式可以得到:(若);(若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有项,每组3个数,所以共组,原数列有15组.当然还可以有其他的配组方法.③求和公式:和=(首项末项)项数÷2 对于这个公式的得到可以从两个方面入手:(思路1) (思路2)这道题目,还可以这样理解:即,和(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:①,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于;②,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:
高考题库为word 版,请按住ctrl,滑动鼠标滚轴,调节合适的 观看比例,点击右上角的关闭按钮可返回目录。

考点13 数列及等差数列
1.(2010·安徽高考文科·T5)设数列{}n a 的前n 项和2
n S n =,则8a 的值为( )
(A ) 15 (B) 16 (C) 49 (D )64
【命题立意】本题主要考查数列中前n 项和n S 与通项n a 的关系,考查考生的分析推理能力。

【思路点拨】直接根据1(2)n n n a S S n -=-≥即可得出结论。

【规范解答】选A ,887644915a S S =-=-=.,故A 正确。

2.(2010·福建高考理科·T3)设等差数列{}n a 的前n 项和为n S 。

若111a =-,466a a +=-,则当n
S 取最小值时,n 等于( )
A.6
B.7
C.8
D.9
【命题立意】本题考查学生对等差数列公式、求和公式的掌握程度,以及一元二次方程最值问题的求解。

【思路点拨】 d n n na S d n a a n n 2
)
1(,)1(11-+
=-+=。

【规范解答】选A ,由61199164-=+-=+=+a a a a a ,得到59=a ,从而2=d ,所以
n n n n n S n 12)1(112-=-+-=,因此当n S 取得最小值时,6=n .=
32
<,又a b >,故A B >,从
而00
(0,60)B ∈,cos 3
B =
. 3.(2010·广东高考理科·T4)已知{}n a 为等比数列,S n 是它的前n 项和。

若2312a a a ⋅=, 且4a 与27a 的等差中项为
5
4
,则5S =( ) A .35 B.33 C.31 D.29
【命题立意】本题考察等比数列的性质、等差数列的性质以及等比数列的前n 项和公式 【思路点拨】由等比数列的性质及已知条件2312a a a ⋅= 得出
4
a ,由等差数列的性质及已知条件得出
7
a ,
从而求出q

1
a 。

【规范解答】选 C
由2311414222a a a a a a a ⋅=⇒⋅=⇒=,又475224a a +=⨯
得 714
a = 所以,37411428a q a =
==,∴ 12q =,41321618a a q ===, 5
5116[1()]231112
S -==- 4.(2010·辽宁高考文科·T14)设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6 =24,则a 9= . 【命题立意】本题考查了等差数列的通项公式,考查了等差数列的前n 项和公式
【思路点拨】根据等差数列前n 项和公式,列出关于首项a 1和公差d 的方程组,求出a 1和d ,再求出9a
【规范解答】记首项a 1公差d,则有111
32332
1,2656242
a d a d a d ⨯⎧
+=⎪⎪⇒=-=⎨
⨯⎪+=⎪⎩。

91(91)18215a a d =+-=-+⨯=。

【答案】15
5.(2010·浙江高考理科·T15)设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ .
【命题立意】本题考查数列的相关知识,考查等差数列的通项,前n 项和公式。

【思路点拨】利用等差数列的前n 项和公式,列出1,a d 的关系式,再利用一元二次方程的判别式 求d 的范围。

【规范解答】d
≤-d
≥5611(510)(615)150S S a d a d =+++=,
即22
116273030a da d +++=,把它看成是关于1a 的一元二次方程,因为有根,
所以22
(27)24(303)0d d ∆=-+≥,即2
80d -≥,解得d
≤-或d

【答案】d
≤-或d

6.(2010·辽宁高考理科·T16)已知数列{}n a 满足1133,2,n n a a a n +=-=则n
a n
的最小值为________. 【命题立意】考查了数列的通项公式,考查数列数列与函数的关系 【思路点拨】先求出n
n a a n
再求出,然后利用单调性求最小值。

【规范解答】
(][)11221156()()) 22(1)2133 (1)33
33331133
()6563321
515523321
1662212n n n n n n n n a a a a a a a a n n n n a n n n n n
f x x x
a
n n n
a a a n ---=-++++-+=+-++⨯+=-+∴
=-+=+-=++∞∴==+-+-……(……函数在0,5上单调减少,在,上单调增加。

在或时最小,当n=5时==
当n=6时=6=
所以的最小值是。

【方法技巧】
1、形如1n n a a pn --=,求n a 常用迭加法。

2
、函数()(0)0a
f x x a x
=+
>+∞在()上单调增加。

7.(2010·浙江高考文科·T14)在如下数表中,已知每行、每列中的数都成等差数列,那么,位于下表中的第n 行第n+1列的数是 。

【命题立意】本题主要考察了等差数列的概念和通项公式,以及运用等差关系解决问题的能力,属中档题。

【思路点拨】解决本题要先观察表格,找出表中各等差数列的特点。

【规范解答】第n 行第一列的数为n ,观察得,第n 行的公差为n ,所以第n 0行的通项公式为
()001n n n a n -+=,又因为为第n+1列,故可得答案为n n +2。

【答案】n n +2
8.(2010·湖南高考理科·T4)若数列{}n a 满足:对任意的n N *
∈,只有有限个正整数m 使得m a n

成立,记这样的m 的个数为()n a *
,则得到一个新数列{
}()n a *
.例如,若数列{}n
a 是1,2,3,n …,…,
则数列{
}()
n a *
是0,1,2,1,n -…,….已知对任意的N n *
∈,2n
a
n =,则5()a *= ,
123… 246… 369… …



第1列 第2列 第3列 ……
第1行 第2行 第3行
(())n a **= .
【命题立意】以数列为依托,产生新定义考查学生的接受能力,信息迁移能力,归纳能力. 【思路点拨】罗列数列,归纳总结.
【规范解答】由2
n a n
=得到数列是:1,4,9,16,25,…,则满足
m a n
<的m 是1和2,因此是2个.

*)(n a =
n
b ,则
n
b 是:0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,…,∴目标数列是:1,4,9,…,∴
(())n a **=2
n .
【方法技巧】对于新定义题,常常利用特殊代替一般对定义进行充分理解,只有在完全理解问题的基础 上才能解题.
9.(2010·浙江高考文科·T19)设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足56S S +15=0。

(Ⅰ)若5S =5,求6S 及a 1; (Ⅱ)求d 的取值范围。

【命题立意】本题主要考查等差数列概念、求和公式等基础知识,同时考查运算求解能力及分析问题解决问题的能力。

【思路点拨】本题直接利用等差数列的通项公式和前n 项和求解即可。

【规范解答】(Ⅰ)由题意知S 6=5-15
S =-3, 6a =S 6-S 5=-8。

所以115105,58.
a d a d +=⎧⎨+=-⎩ 解得a 1=7,所以S 6= -3,a 1=7
(Ⅱ)方法一:因为S 5S 6+15=0, 所以(5a 1+10d )(6a 1+15d )+15=0,即2a 12
+9da 1+10d 2
+1=0. 故(4a 1+9d )2
=d 2
-8. 所以d 2
≥8.[ 故d 的取值范围为d ≤
d ≥
.
方法二:因为S 5S 6+15=0, 所以(5a 1+10d )(6a 1+15d )+15=0,即2a 12+9da 1+10d 2
+1=0. 看成关于1a 的一元二次方程,因为有根,所以2
2
2
818(101)80d d d ∆=-+=-≥,
解得d ≤-
d ≥。

相关文档
最新文档