平面向量及其线性运算

合集下载

平面向量的线性运算知识点总结

平面向量的线性运算知识点总结

平面向量的线性运算知识点总结平面向量是数学中的重要概念之一,它们具有方向和大小,并且可以进行线性运算。

本文将对平面向量的线性运算相关知识进行总结,包括加法、数乘和线性组合三个方面。

一、平面向量的加法平面向量的加法是指将两个向量合成为一个新向量的运算。

具体而言,设有两个向量A和B,它们的加法运算符号为"+",则其加法公式为:A +B = (Aₓ + Bₓ, Aᵧ + Bᵧ)其中,Aₓ和Aᵧ分别表示向量A在坐标系中的x轴和y轴上的分量,Bₓ和Bᵧ分别表示向量B在坐标系中的x轴和y轴上的分量。

需要注意的是,向量的加法满足交换律和结合律。

即:A +B = B + A(A + B) + C = A + (B + C)二、平面向量的数乘数乘是指将向量与一个实数相乘得到一个新向量的运算。

具体而言,设有一个向量A和一个实数k,它们的数乘运算符号为"·",则其数乘公式为:k·A = (k·Aₓ, k·Aᵧ)其中,Aₓ和Aᵧ分别表示向量A在坐标系中的x轴和y轴上的分量。

数乘的运算法则如下:1. 若k>0,则k·A的方向与A的方向相同。

2. 若k<0,则k·A的方向与A的方向相反。

3. 若k=0,则k·A的方向为零向量。

4. |k·A| = |k|·|A|三、平面向量的线性组合线性组合是指将多个向量按一定比例相加得到一个新向量的运算。

具体而言,设有n个向量A₁、A₂、...、Aₙ和n个实数k₁、k₂、...、kₙ,它们的线性组合公式为:k₁A₁ + k₂A₂ + ... + kₙAₙ线性组合的运算法则如下:1. 线性组合的次序不影响结果,即k₁A₁ + k₂A₂ + ... + kₙAₙ =kₙAₙ + ... + k₂A₂ + k₁A₁。

2. 向量的线性组合满足数乘与加法的结合律,即k₁(A₁ + A₂) =k₁A₁ + k₁A₂。

第1讲 平面向量的概念及线性运算

第1讲 平面向量的概念及线性运算
第五章 平面向量、复数
第1讲 平面向量的概念及线性运算
1
2
必备知识
核心考点
自主排查
师生共研
3
高 考 总 复 习
课标要求
考情分析
1.了解向量的实际背景,理解平面向量
的概念和两个向量相等的含义,理解向 虽然近两年在本讲没有直接命
量的几何表示.
题,但在考查其他知识点时,
2.掌握向量加法、减法的运算,理解其
形为(
A.平行四边形
)
B.菱形
C.矩形

D.梯形
解析:选C.因为 = −,可得 = ,所以四边形是平行四
边形.
又 − = + ,可得 = ,
所以平行四边形的对角线相等,
因此四边形是矩形.故选C.
37
高 考 总 复 习
A. +
B. −
C. −

)
D. +
解析:选C. = + = + = + ( − ) = − .
故选C.
高 考 总 复 习
3.(人教A版必修第二册P22T4改编)化简:

(1) − + + =____;
经常涉及向量的加法、减法及
几何意义.
数乘运算以及它们的几何意义.
3.掌握向量的数乘运算及其几何意义,
预计2025年高考仍会考查线性
理解两个向量共线的含义.
运算,题型以选择题、填空题
4.了解向量线性运算的性质及其几何意
为主,难度属中、低档.
义.
PART
1
必备知识
第五章
自主排查
5

2024届高考一轮复习数学课件(新教材人教A版):平面向量的概念及线性运算

2024届高考一轮复习数学课件(新教材人教A版):平面向量的概念及线性运算
当λ<0时,λa的方向与a的方向 相反 ; λ(a+b)=_λ_a_+__λ_b_
当λ=0时,λa=__0__
知识梳理
3.向量共线定理 向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使 b=λa .
常用结论
1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最 后一个向量终点的向量,即A—1→A2+A—2→A3+A—3→A4+…+—A—n-—1A→n =A—1→An,特 别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.若 F 为线段 AB 的中点,O 为平面内任意一点,则O→F=12(O→A+O→B).
常用结论
3.若 A,B,C 是平面内不共线的三点,则P→A+P→B+P→C=0⇔P 为△ABC 的重心,A→P=13(A→B+A→C). 4.对于任意两个向量a,b,都有||a|-|b||≤|a±b|≤|a|+|b|.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)|a|与|b|是否相等,与a,b的方向无关.( √ ) (2)若向量a与b同向,且|a|>|b|,则a>b.( × )
√B.A→M+M→B+B→O+O→M=A→M
C.A→B+B→C-A→C=0 D.A→B-A→D-D→C=B→C
教材改编题
3.已知a与b是两个不共线的向量,且向量a+λb与-(b-3a)共线,则λ=-__13__.
由题意知存在k∈R,
使得a+λb=k[-(b-3a)],
所以λ1==-3kk,,
解得k=13, λ=-13.
知识梳理
2.向量的线性运算 向量运算 法则(或几何意义)
运算律
加法
交换律:a+b= b+a ; 结合律:(a+b)+c=_a_+__(_b_+__c)_

25平面向量的概念及线性运算

25平面向量的概念及线性运算

P
O A
ห้องสมุดไป่ตู้ 题 型一
【例 1】给出下列命题:
平面向量的概念辨析
①若|a|=|b|,则 a=b; → → ②若 A,B,C,D 是不共线的四点,则AB=DC是四边形 ABCD 为 平行四边形的充要条件; ③若 a=b,b=c,则 a=c; ②③ ④a=b 的充要条件是|a|=|b|且 a∥b.其中正确命题的序号是______.
B O A
OP OA OB ( 1)
❷向量的中点公式 当 1 时, 2 OP= 1 (OA OB ). + 2
B
OP OA AB
忆一忆知识要点
法则(或几何意义)
a
ka ( k 0)
运算律
( a ) ( )a | || a | 求实数λ (1)|λa|=________. 与向量a (2)当λ>0时, λa与a的方 数乘 ( )a = a + a 的积的 向_______; 相同 运算 (3)当λ<0时, λa 与 a 的 (a + b ) a + b 相反 方 向_______; (4)当λ=0时,λa=__.0
→ =1a+5b,ON=2a+2b,MN=1a-1b. → → 综上,OM 6 6 3 3 2 6
题 型三
和△OBC 的面积之比为( A.3∶2 B.5∶2
平面向量的共线问题
) C.4∶1 D.5∶1
→ → 例 3.设 O 是△ABC 内部的一点, → +2OB+2OC=0, 且OA 则△ABC
→ → → → → 解析:如下图:∵OA+2OB+2OC=0,∴OA=-2(OB+ → → 而OE → ∴OA → ∴|OA → OC)=-2OE, → =2OD, → =-4OD, → |=4|OD h1 1 |.设 A、O 到 BC 的距离分别是 h,h1,则 h =5.又∵△ABC S△ABC 与△OBC 同底,∴ =5∶1,故选 D. S△OBC

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算平面向量是解决平面几何问题的重要工具。

平面向量之间可以进行线性运算,包括加减法、数量乘法和应用特殊运算规则的向量乘法。

本文将详细介绍平面向量的线性运算及其应用。

一、平面向量的基本概念在平面直角坐标系中,向量由两个有序实数对表示,分别表示向量在 x 轴和 y 轴上的分量。

设向量 a 的分量为 (a1, a2),则向量 a 可表示为 a = a1i + a2j,其中 i 和 j 分别是 x 轴和 y 轴的单位向量。

二、平面向量的加法设有两个平面向量 a = a1i + a2j, b = b1i + b2j,其和为 c = (a1 +b1)i + (a2 + b2)j。

向量的加法满足交换律、结合律和零向量的存在性。

三、平面向量的减法设有两个平面向量 a = a1i + a2j, b = b1i + b2j,其差为 c = (a1 - b1)i + (a2 - b2)j。

向量的减法也满足交换律和结合律。

四、平面向量的数量乘法设有平面向量 a = a1i + a2j,实数 k,k与向量 a 的数量积为 k * a =ka1i + ka2j。

数量乘法满足结合律、分配律和对数乘法的分布律等性质。

五、平面向量的线性运算应用1. 向量共线与平行若有两个非零向量 a 和 b,当且仅当存在实数 k,使得 a = kb,称向量 a 和 b 共线。

若向量 a 和 b 共线且方向相同或相反,则称向量 a 和b 平行。

2. 向量的线性组合设有向量组 a1, a2, ..., an,其中每个向量的形式为 ai = ai1i + ai2j。

对于任意给定的实数 k1, k2, ..., kn,向量 b = k1a1 + k2a2 + ... + knan 称为向量组 a1, a2, ..., an 的线性组合。

3. 向量的共面性若存在不全为零的实数 k1, k2, k3,使得 k1a1 + k2a2 + k3a3 = 0,称向量组 a1, a2, a3 共面。

平面向量的概念及线性运算(课堂PPT)

平面向量的概念及线性运算(课堂PPT)

3
动脑思考 探索新知
在数学与物理学中,有两种量.只有大小,没有方向的量 做数量(标量) ,例如质量、时间、温度、面积、密度等. 既有大小,又有方向的量叫做向量(矢量), 如力、速度、位移等.
向量的大小叫做向量的模.向量a, A B 的模依次记作 a , A B .
模为零的向量叫做零向量.记作0, 零向量的方向是不确定的.
O A O B O A ( O B ) = O A B O B O O A B A .

O A O BB A . (7.2)
观察图可以得到:起点相同的
a-b
A
两个向量a、 b,其差a − b仍然是一
B
个向量,其起点是减向量b的终点,
b
a
终点是被减向量a的终点.
O
21
巩固知识 典型例题
生活中的一些问题.
作业
32
平行四边形法则不适用于共线向量,可以验证,向量的加法 具有以下的性质:
(1) a+0 = 0+a=a; a+(− a)= 0; (2) a+b = b+a; (3) (a+b)+ c = a +(b+c).
16
巩固知识 典型例题
例3 一艘船以12 km/h的速度航行,方向垂直于河岸,已知水流
速度为5 km/h,求该船的实际航行速度.
模为1的向量叫做单位向量.
B a A
4
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km,另一架飞机从A处 朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向 线段表示两架飞机的位移.
解 位移是向量.虽然这两个向量的模相等,但是它们的方向不
同,所以两架飞机的位移不相同.两架飞机位移的有向线段表示分别

(完整版)平面向量的线性运算

ABabbaa a O =−→−OBA B O B a abb=−→−OB a +b ABAa +b向量的线性运算(一)1.向量的加法向量的加法:求两个向量和的运算叫做向量的加法。

表示:→--AB −→−+BC =→--AC .规定:零向量与任一向量a ,都有00a a a +=+=.【注意】:两个向量的和仍旧是向量(简称和向量)作法:在平面内任意取一点O ,作→--OA =a →--→--OB =→--OA +→--AB a +b2.向量的加法法则(1)共线向量的加法:同向向量反向向量(2)不共线向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)。

三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。

表示:→--AB −→−+BC=→--AC .平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作平行四边形ABCD ,则以A 为起点的对角线→--AC 就是a 与b 的和,这种求向量和的方法称为向量加法的平行四边形法则。

如图,已知向量a 、b 在平面内任取一点A ,作→--AB =a ,=−→−BC b ,则向量−→−AC 叫做a与b 的和,记作a +b ,即a +b +=−→−AB =−→−BC −→−AC【说明】:教材中采用了三角形法则来定义,这种定义,对两向量共线时同样适用,当向量不共线时,向量加法的三角形法则和平行四边形法则是一致的 特殊情况:探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |.(4)“向量平移”:使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.向量加法的运算律(1)向量加法的交换律:a +b =b +a(2)向量加法的结合律:(a +b ) +c =a +(b +c ) 证明:如图:使=−→−AB a , =−→−BC b , =−→−CD c 则(a +b )+c =−→−AC +=−→−CD −→−AD ,a + (b +c )=−→−AB −→−+BD −→−=AD ,∴(a +b )+c =a +(b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行例如:()()()()a b c d b d a c +++=+++;[()]()a b c d e d a c b e ++++=++++.例题:例1. O 为正六边形的中心,作出下列向量:(1)−→−OA +−→−OC (2)−→−BC +−→−FE (3)−→−OA +−→−FE例2.如图,一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时水aaab bba +ba +b ABC ABCD三角形法则平行四边形法则的流速为h km /2,求船实际航行的速度的大小与方向。

平面向量的线性运算及练习试题

平面向量的线性运算学习过程知识点一:向量的加法1定义已知非零向量,a b ,在平面内任取一点A,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a b +,即a b +=AB +BC =AC . 求两个向量和的运算,叫做叫向量的加法.这种求向量和的方法,称为向量加法的三角形法则. 说明:①运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量终点 的向量即为和向量.②两个向量的和仍然是一个向量,其大小、方向可以由三角形法则确定. ③位移的合成可以看作向量加法三角形法则的物理模型.2向量加法的平行四边形法则以点O 为起点作向量a OA = ,OB b =,以OA,OB 为邻边作OACB ,则以O 为起点的对角线所在向量OC 就是,a b 的和,记作a b +=OC ;说明:①三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适.②力的合成可以看作向量加法平行四边形法则的物理模型.③对于零向量与任一向量00a a a a +=+=,3特殊位置关系的两向量的和①当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;②当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,③当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.4向量加法的运算律①向量加法的交换律:a +b =b +a②向量加法的结合律:a +b +c =a + b +c知识点二:向量的减法1相反向量:与a 长度相同、方向相反的向量.记作 -a ;2①向量a 和-a 互为相反向量,即 –-a .②零向量的相反向量仍是零向量.③任一向量与其相反向量的和是零向量,即 a +-a =-a +a =0.④如果向量,a b 互为相反向量,那么a =-b ,b =-a ,a +b =0.3向量减法的定义:向量 a 加上的 b 相反向量,叫做 a 与b 的差.即: a - b = a + - b 求两个向量差的运算叫做向量的减法.4向量减法的几何作法在平面内任取一点O,作,OA a OB b ==,则BA a b =-.即a b -可以表示为从向量b 的终点指向向量a 的终点的向量,这就是向量减法的几何意义. 说明:①AB 表示a b -.强调:差向量“箭头”指向被减数②用“相反向量”定义法作差向量,a - b = a + - b , 显然,此法作图较繁,但最后作图可统一.知识点三:向量数乘的定义1定义:一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:⑴|λa |=|λ||a |⑵当0λ>时,λa 的方向与a 的方向相同;当0λ<时,λa 的方向与a 的方向相反. 当0λ=时,λa =02 向量数乘的运算律根据实数与向量的积的定义,我们可以验证下面的运算律:设λ、μ为实数,λμa ;λ+μa =λa a ;λa +b =λa +λb .知识点四:向量共线的条件向量a a ≠0与b 共线,当且仅当有唯一一个实数λ,使b =λa .学习结论1两个向量的和仍然是向量,它的大小和方向可以由三角形法则和平行四边形法则确定,这两种法则本质上是一致的.共线向量加法的几何意义,为共线向量首尾相连接,第一个向量的起点与第二个向量的终点连接所得到的有向线段所表示的向量.2a b -可以表示为从向量b 的终点指向向量a 的终点的向量3实数与向量不能相加减,但实数与向量可以相乘.向量数乘的几何意义就是几个相等向量相加.4向量a a ≠0与b 共线,当且仅当有唯一一个实数λ,使b =λa ;练习例1.已知任意两个非零向量,a b ,作,2,3OA a b OB a b OC a b =+=+=+,试判断A 、B 、C 三点之间的位置关系. 解:∵ AB =OB -OA =a+2b -a+b =b, 且 AC =OC -OA =a+3b -a+b =2 b,∴ AC =2AB .所以,A 、B 、C 三点共线.例2.如图,平行四边形ABCD 的两条对角线相交于点M ,且AB =a ,AD =b ,试用a ,b 表示向量,,,MA MB MC MD .解析:AM MC ==1()2a b +,所以1()2MA a b =-+,DM MB =MA AB =+1()2a b =-所以1()2MD b a =- 例3.一艘船从长江南岸A 点出发以5 km/h 的速度向垂直于对岸的方向行驶,同时江水的流速为向东2 km/h .⑴试用向量表示江水速度、船速以及船实际航行的速度保留两个有效数字;⑵求船实际航行速度的大小与方向用与江水速度间的夹角表示,精确到度.分析:速度是一个既有大小又有方向的量,所以可以用向量表示,速度的合成也就是向量的加法.解析:⑴如图,设AD 表示船向垂直于对岸行驶的速度,AB 表示水流的速度,以AD 、AB 作邻边作平行四边形ABCD,则AC 就是船实际航行的速度.⑵在Rt △ABC 中,|AB |=2,|BC |=5,∴ |AC |=22222529 5.4AB BC +=+=≈ ∵ tan ∠CAB =52,∴ 68CAB ∠≈︒答:船实际航行速度的大小约为 km/h,方向与水的流速间的夹角为约为68°.1.2006上海理如图,在平行四边形ABCD 中,下列结论中错误的是A →--AB =→--DC ; B →--AD +→--AB =→--AC ;C →--AB -→--AD =→--BD ; D →--AD +→--CB =→0. 2.2007湖南文若O 、E 、F 是不共线的任意三点,则以下各式中成立的是A .EF OF OE =+ B. EF OF OE =-C. EF OF OE =-+D. EF OF OE =--3.2003辽宁已知四边形ABCD 是菱形,点P 在对角线AC 上不包括端点A 、C,则=AP A .)1,0(),(∈+λλAD AB B .)22,0(),(∈+λλBC AB C .)1,0(),(∈-λλAD AB D .)22,0(),(∈-λλBC AB 4.2008辽宁理已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =A .2OA OB - B .2OA OB -+C .2133OA OB -D .1233OA OB -+ 5.2003江苏;天津文、理O 是平面上一定点,A B C 、、是平面上不共线的三个点,动点P满足[)(),0,,AB AC OP OA P AB AC λλ=++∈+∞则的轨迹一定通过ABC 的 A 外心 B 内心 C 重心 D 垂心6.2005全国卷Ⅱ理、文已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC相交于E ,那么有BC CE λ=,其中λ等于A 2B 12C -3D -137.设b a ,是两个不共线的非零向量,若向量b a k 2+与b k a +8的方向相反,则k=__________.8.2007江西理.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N,若AB = m AM ,AC =n AN ,则m +n 的值为 .9.2005全国卷Ⅰ理ABC ∆的外接圆的圆心为O,两条边上的高的交点为H,)(OC OB OA m OH ++=,则实数m =10.2007陕西文、理如图,平面内有三个向量OA 、OB 、OC ,其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且OA =OB =1,OC =22.若OC =μλμλμλ+∈+则R),,(OB OA 的值为 .例1. B . 例2.A. 例3.B.三基础训练:1. C ; 2.B. 3.A . 4. A . 5.B 6.C ; 7._—4__;8. 2 .9. 1 ;10. 62.AB C D四拓展与探究:11、D .; 12. (,0)-∞,13(,)22.平面向量的线性运算复习课复习目标:• 1、掌握向量加、减法的运算,并理解其几何意义.• 2、掌握向量数乘运算,并理解其几何意义,以及两个向量共线的含义.• 3、了解向量的线性运算性质及其几何意义.重点:向量加、减、数乘运算及其几何意义.难点:应用向量线性运算的定义、性质灵活解决相应的问题.一、学案导学 自主建构复习1:向量的加法 复习2:向量的减法已知向量a 和向量b ,作向量a +b . 已知向量a 和向量b ,作向量a -b .复习3:向量的数乘 复习4:平面向量共线定理 已知向量 a ,作向量3a 和-3a .二、合作共享 交流提升1、填空: ------ ----- --------(4)___ABCD AB AD AB AD BAD +=-∠=在平行四边形中,若则2、判断题:1相反向量就是方向相反的向量 (1)AD CA +=(2)AB CB DC --=(3)AB AC BD CD -+-=2 3AB OA OB =-4 在△ABC 中,必有0AB BC CA ++=5若0AB BC CA ++=,则A 、B 、C 三点必是一个三角形的三个顶点;32,,,OA OB OC A B C =-若则三3、点是否共线三、案例剖析 总结规律例1:根据条件判断下列四边形的形状(1)AD BC = 1(2)3AD BC = (3),AD BC AB AD ==且 (4);(OA OC OB OD O +=+是四边形所在平面内一点) (5)AC AB AD =+(6),ABCD AC BD O AO OC DO OB ==四边形的对角线与相交于点,并且例2、如图,在 OAB ∆ 中,延长BA 到C,使AC=BA,在OB 上取点D,使BD=与OA 交于E,设OA a OB b ==,,请用 a b OC DC ,表示向量, .例3、设▱ABCD 一边AB 的四等分点中最靠近B 的一点为E,对角线BD 的五等分点中靠近B 的一点为F,求证:E 、F 、C 三点在一条直线上.AB BA +=四、反馈矫正 形成能力跟踪训练:1、有一边长为1的正方形ABCD,设,BC b AC c ==求:()1a b c ++ ()2a b c +- ()3a b c -+2、已知A 、B 、C 是不共线的三点,O 是△ABC 内的一点,若OA OB OC ++ = 0,则O 是△ABC 的——————填内心、重心、垂心、外心等.。

平面向量的线性运算

平面向量的线性运算在数学中,平面向量是向量的一种,它在平面内具有长度和方向,可以用有向线段表示。

平面向量之间可以进行线性运算,包括加法和数乘。

本文将详细介绍平面向量的线性运算及其性质。

一、平面向量的定义平面向量是指具有大小和方向的向量,它们通常用加粗的小写字母表示,如a、a等。

平面向量可以用有向线段表示,线段的起点表示向量的起点,线段的方向表示向量的方向,线段的长度表示向量的大小。

二、平面向量的加法平面向量的加法是指将两个向量相加得到一个新的向量。

设有两个平面向量a和a,它们的加法定义为:a + a = a + a这意味着向量的加法满足交换律,顺序不影响结果。

加法的几何解释为将两个向量的起点相连,然后将它们的箭头相连,新向量的起点与第一个向量的起点相同,终点与第二个向量的终点相同。

三、平面向量的数乘平面向量的数乘是指将一个向量与一个实数相乘得到一个新的向量。

设有一个平面向量a和一个实数a,它们的数乘定义为:aa = aa数乘有以下性质:1. 数乘满足结合律:(aa)a = a(aa),其中a和a为实数。

2. 数乘满足分配律:(a + a)a = aa + aa,其中a和a为实数。

3. 数乘满足分配律:a(a + a) = aa + aa,其中a为实数,a和a为平面向量。

四、线性组合线性组合是指将一组向量与一组实数相乘并求和得到一个新的向量。

设有a个平面向量a₁、a₂、...、aa和a个实数a₁、a₂、...、aa,它们的线性组合定义为:a₁a₁ + a₂a₂ + ... + aaaa线性组合是向量加法和数乘的联合运算,这个概念在线性代数中具有重要的应用。

五、线性运算的性质1. 交换律:向量加法满足交换律,即a + a = a + a。

2. 结合律:向量加法满足结合律,即(a + a) + a = a + (a + a),其中a、a和a为平面向量。

3. 分配律:向量加法和数乘满足分配律,即a(a + a) = aa + aa,(a + a)a = aa + aa,其中a、a为实数,a和a为平面向量。

高考数学复习第4章平面向量第1讲平面向量及其线性运算


向量-b 的和的 减法
运算叫做 a 与 b
的差
三角形法则
运算律 a-b=a+(-b)
(续表) 向量 运算
定义
法则(或几何意义)
运算律
(1)|λa|=___|λ_|_|a_|__; (2)当λ>0 时,λa 的
数乘 求实数λ与向量 a 的积的运算
方向与 a 的方向相 同;当λ<0 时,λa 的 方向与 a 的方向相
量的个数为( B )
A.1
B.2
C. B.
4.如图 4-1-1,在正六边形 ABCDEF 中,B→A+C→D+E→F= (D )
图 4-1-1
A.0
B.B→E
C.A→D
D.C→F
考点 1 平面向量的基本概念
例 1:(1)(多选)下列命题正确的有( ) A.若|a|=|b|,则 a=b B.若 A,B,C,D 是不共线的四点,则A→B=D→C是四边形 ABCD 为平行四边形的充要条件 C.若 a=b,b=c,则 a=c D.若 a∥b,b∥c,则 a∥c
选 A.
答案:A
【规律方法】(1)相等向量具有传递性,非零向量的平行也 具有传递性.(2)共线向量即为平行向量,它们均与起点无关. (3)向量可以平移,平移后的向量与原向量是相等向量.解题时, 不要把它与函数图象的平移混为一谈.(4)非零向量 a 与|aa|的关系: |aa|是与 a 同方向的单位向量.
λ(μa)=___λ_μ_a___; (λ+μ)a=λa+μa; λ(a+b)=_λ_a_+__λ_b_
反;当λ=0 时,λa
=____0____
3.共线向量定理 向量 a(a≠0)与 b 共线的充要条件是存在唯一一个实数λ, 使得 b=λa.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变式迁移 2(2011·深圳模拟)如图所示,若四边形 ABCD 是一个等腰梯形,AB∥DC, → → → → → M、N 分别是 DC、AB 的中点,已知AB=a,AD=b,DC=c,试用 a、b、c 表示BC,MN, → → DN+CN.
探究点三 共线向量问题 → → 例 3 如图所示,平行四边形 ABCD 中,AD=b,AB=a,M 为 AB 中点,N 为 BD 靠 近 B 的三等分点,求证:M、N、C 三点共线.
自主梳理 1.向量的有关概念 (1)向量的定义:既有______又有______的量叫做向量. (2)表示方法:用 来表示向量.有向线段的长度表示向量的大小,箭头所指的 → → 方向表示向量的方向.用字母 a,b,…或用AB,BC,…表示. (3)模:向量的______叫向量的模,记作________或_______. (4)零向量:长度为零的向量叫做零向量,记作 0;零向量的方向是________. (5)单位向量:长度为____单位长度的向量叫做单位向量.与 a 平行的单位向量 e= ____________. (6)平行向量:方向______或______的______向量;平行向量又叫____________,任一 组平行向量都可以移到同一直线上.规定:0 与任一向量______. (7)相等向量:长度______且方向______的向量. 2.向量的加法运算及其几何意义 → → → (1)已知非零向量 a,b,在平面内任取一点 A,作AB=a,BC=b,则向量AC叫做 a 与 b → → 的 ,记作 ,即 =AB+BC= ,这种求向量和 的方法叫做向量加法的 . (2)以同一点 O 为起点的两个已知向量 a,b 为邻边作 OACB,则以 O 为起点的对 → 角线OA就是 a 与 b 的和,这种作两个向量和的方法叫做向量加法的 . (3)加法运算律 a+b=________ (交换律); (a+b)+c=____________(结合律). 3.向量的减法及其几何意义 (1)相反向量 与 a____________、____________的向量,叫做 a 的相反向量,记作______. (2)向量的减法 ①定义 a-b=a+________,即减去一个向量相当于加上这个向量的____________. → → → → ②如图,AB=a, ,AD=b,则AC= ,DB=____________.
10.(12 分)在△ABC 中, → 用 a,b 表示AP.
AD 1 AE 1 → → BE 与 CD 交于点 P,且AB=a,AC=b, , , AB 3 AC 4
11.(14 分)(2011· 黄山模拟)已知点 G 是△ABO 的重心,M 是 AB 边的中点. → → → (1)求GA+GB+GO; 1 → → → → (2a,OB=b,OP=ma,OQ=nb,求证: + m 1 =3. n
变式迁移 3 设两个非零向量 e1 和 e2 不共线. → → → (1)如果AB=e1-e2,BC=3e1+2e2,CD=-8e1-2e2,求证:A、C、D 三点共线; → → → (2)如果AB=e1+e2,BC=2e1-3e2,CD=2e1-ke2,且 A、C、D 三点共线,求 k 的 值.
→ 1 → → 1.若点 P 为线段 AB 的中点,O 为平面内的任意一点,则OP= (OA+OB).如图所示. 2
Go the distance
①λ(μa)=________.(结合律) ②(λ+μ)a=________.(第一分配律) ③λ(a+b)=__________.(第二分配律) (3)两个向量共线定理:向量 b 与 a (a≠0)共线的充要条件是存在唯一一个实数 λ,使 b =λa. 5.重要结论 → 1→ → → PG= (PA+PB+PC)⇔G 为△ABC 的________; 3 → → → PA+PB+PC=0⇔P 为△ABC 的________. 自我检测 → 1. ( 2010 ·四川)设点 M 是线段 BC 的中点,点 A 在直线 BC 外, BC = 16 , → AB AC = AB AC | , | 则 | AM | 等 于 ( ) A.8 B.4 C.2 D.1 2.下列四个命题: ①对于实数 m 和向量 a,b,恒有 m(a-b)=ma-mb; ②对于实数 m 和向量 a,b (m∈R),若 ma=mb,则 a=b; ③若 ma=na (m,n∈R,a≠0),则 m=n; ④若 a=b,b=c,则 a=c, 其 中 正 确 命 题 的 个 数 为 ( ) A.1 B.2 C.3 D.4 → → → → → 3.在 ABCD 中,AB=a,AD=b,AN=3NC,M 为 BC 的中点,则MN等于 ( ) 1 1 1 1 A.- a+ b B.- a+ b 4 4 2 2 1 3 3 C.a+ b D.- a+ b 2 4 4 → → → → → 4. (2010· 湖北) 已知△ABC 和点 M 满足MA+MB+MC=0.若存在实数 m 使得AB+AC =m, 成立, 则 m 等于 ( ) A.2 B.3 C.4 D.5 → 5.(2009·安徽)在平行四边形 ABCD 中,E 和 F 分别是边 CD 和 BC 的中点,若AC= → → λAE+μAF,其中 λ、μ∈R,则 λ+μ=______.
Go the distance
→ → → → 7.已知 OP1 =a,OP2=b,P1P2=λPP2,则OP=_________. → 8. (2011·青岛模拟)O 是平面上一点,A,B,C 是平面上不共线三点,动点 P 满足OP 1 → → → → → → =OA+λ(AB+AC),λ= 时,则PA· (PB+PC)的值为________. 2 三、解答题(共 38 分) 9.(12 分)若 a,b 是两个不共线的非零向量,a 与 b 起点相同,则当 t 为何值时,a,tb, 1 (a+b)三向量的终点在同一条直线上? 3

Go the distance
③|a|=0⇒a=0; → → ④若 A、B、C、D 是不共线的四点,则AB=DC⇔四边形 ABCD 是平行四边形. 探究点二 向量的线性运算 例 2 (2011·开封模拟)已知任意平面四边形 ABCD 中,E、F 分别是 AD、BC 的中点. → 1 → → 求证:EF= (AB+DC). 2
(
探究点一 平面向量的有关概念辨析 例 1 ①有向线段就是向量,向量就是有向线段; ②向量 a 与向量 b 平行,则 a 与 b 的方向相同或相反; → → ③向量AB与向量CD共线,则 A、B、C、D 四点共线; ④如果 a∥b,b∥c,那么 a∥c. 以 上 命 题 中 正 确 的 个 数 ) A.1 B.2 C.3 D.0 变式迁移 1 下列命题中正确的有________(填写所有正确命题的序号). ①|a|=|b|⇒a=b; ②若 a=b,b=c,则 a=c;
Go the distance
学案 25
平面向量及其线性运算
导学目标: 1.了解向量的实际背景.2.理解平面向量的概念、 理解两个向量相等的含义.3. 理解向量的几何表示.4.掌握向量加法、 减法的运算, 并理解其几何意义.5.掌握向量数乘的运 算及其意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.
答案
自主梳理 方向 (5)1 个 (2)有向线段 a ± |a| (6) 相同 (3)长度 非零 |a|
1.(1)大小 (4) 任意的
AB |
平行 (7) 相等 相同

相反
共线向量
→ 2.(1)和 a+b a+b AC 三角形法则 (2)平行四边形法则 (3)b+a a+(b+c) 3.(1)长 度相等 方向相反 -a (2)①(-b) 相反向量 ②a+b a-b 4.(1)λa ①|λ||a| ②相同 相反 0 (2)①(λμ)a ②λa+μa ③λa+λb 5.(1)重心 (2)重心 自我检测 1.
4.向量数乘运算及其几何意义 (1)定义:实数 λ 与向量 a 的积是一个向量,记作______,它的长度与方向规定如下: ①|λa|=______; ②当 λ>0 时,λa 与 a 的方向______;当 λ<0 时,λa 与 a 的方向______;当 λ=0 时,λa =______. (2)运算律 设 λ,μ 是两个实数,则
(满分:75 分) 一、选择题(每小题 5 分,共 25 分) 1.若 O、E、F 是不共线的任意三点,则以下各式中成立的是 ( ) → → → → → → A.EF=OF+OE B.EF=OF-OE → → → → → → C.EF=-OF+OE D. EF=-OF-OE → → → 2.设 a,b 为不共线向量, AB=a+2b,BC=-4a-b,CD=-5a-3b,则下列关系式 中 正 确 的 是 ( ) → → → → A.AD=BC B.AD=2BC → → → → C.AD=-BC D.AD=-2BC 3.(2011· 杭州模拟)设 a,b 是任意的两个向量,λ∈R,给出下面四个结论: ①若 a 与 b 共线,则 b=λa; ②若 b=-λa,则 a 与 b 共线; ③若 a=λb,则 a 与 b 共线; ④当 b≠0 时,a 与 b 共线的充要条件是有且只有一个实数 λ=λ1,使得 a=λ1b. 其 中 正 确 的 结 论 有 ( ) A.①② B.①③ C.①③④ D.②③④ → → → → → 4.在△ABC 中, AB=c, AC=b, 若点 D 满足BD=2DC, 则AD等于 ( ) 2 1 5 2 A. b+ c B. c- b 3 3 3 3 2 1 1 2 C. b- c D. b+ c 3 3 3 3 → → 5.(2010·广东中山高三六校联考)在△ABC 中,已知 D 是 AB 边上一点,AD=2DB, 1 → → → CD = CA + λ CB , 则 λ 等 于 3 ( ) 2 1 1 2 A. B. C.- D.- 3 3 3 3 1 2 3 4 5 题号 答案 二、填空题(每小题 4 分,共 12 分) → → → 6.(2009·湖南)如下图,两块斜边长相等的直角三角板拼在一起,若AD=xAB+yAC, 则 x=______,y=__________.
相关文档
最新文档