Zemax光学设计:一个带校正器的卡塞格林望远镜的设计实例

合集下载

基于zemax的反射式系统的结构设计

基于zemax的反射式系统的结构设计

基于zemax的反射式系统的结构设计基于zemax的反射式系统的结构设计11。

球面和非球面22。

典型的反射系统32。

1 牛顿望远镜(抛物面镜)42.2 经典卡塞格林系统52。

3 里奇—克列基昂(R—C系统)62。

4 格里高里系统92。

5 马克苏托夫—卡塞格林式102。

6 施密特-卡塞格林系统142。

7 施密特弯月形卡塞格林162。

8 达尔—奇克汉卡塞格林162.9 霍顿—卡塞格林(H—C系统)172.10 阿古诺夫—卡塞格林182。

11 普雷斯曼-卡米歇尔卡塞格林192。

12 ”离轴”或”斜反射”反射镜卡塞格林202。

13 三反-卡塞格林(Three-mirror Cassegrain)203. 反射式的特点214. 参考与鸣谢215。

附录221。

球面和非球面球面只用一个参数即表面半径(或曲率)来定义。

球面折射强烈,球差明显。

若使表面形状自光轴向外越来越平坦,则可以逐渐减小折射角,最终使所有光线会聚到同一焦点。

对比:球面边缘较陡,非球面平坦,可校正球差(主要应用).非球面不能只用一个曲率来定义,因其局部曲率在其表面范围内变化,常用解析公式描述,有时也用表面内坐标点的矢高表示。

最普遍形式是旋转对称的非球面,矢高为:22i i z a r =+∑,其中,c 为顶点处基本曲率,k 为圆锥曲线常数,r 为垂直光轴方向的径向坐标;2i i a r 为非球面的高次项。

圆锥曲线常数k表面类型 0 球面 K 〈—1 双曲面 K=—1 抛物面 —1〈k<0 椭球面 k>0扁椭球面当非球面非旋转对称时,将其表示成双锥形表面形式或变形非球面形式.双锥形表面有沿正交方向的两个基本曲率和两个圆锥曲线常数;变形非球面在两个正交方向上还附加高次项。

非球面的另一个形式是超环面(即复曲面),超环面具有环形面包圈的形状。

当非球面的高次项为0,非球面采用旋转对称的圆锥曲面横截面形式,其性质:A.不论反射面还是折射面,圆锥曲面对于一组特定的共轭点无球差。

基于某卡塞格林系统地望远物镜设计ZEMAX

基于某卡塞格林系统地望远物镜设计ZEMAX

工程光学课程设计报告班级:姓名:学号:成绩:指导教师:报告日期:目录摘要 (i)第一章绪论 (1)1.1课程设计题目 (1)1.2 设计要求 (1)第二章望远物镜的设计与相关参数 (2)2.1 望远物镜的主要参数 (2)2.2 望远物镜结构类型 (3)2.3 物镜的光学特性 (4)2.3 卡塞格林光学系统 (4)2.4 ZEMAX中的像质评价方法 (5)第三章设计与优化 (9)3.1设计过程 (9)3.2优化过程 (12)第四章运用Solid works对镜片进行绘制 (16)第五章新得与体会 (18)主要参考文献 (19)摘要由薄透镜组的初级像差理论入手,根据初级像差参量PW与透镜折射率n、孔径半径r、厚度d等关系,求出了满足初始设计的结构参数的透镜折射率n、孔径半径r、厚度d、形状系数Q、曲率p。

用光学设计软件ZEMAX对所求的结构参数进行了优化。

光学设计要完成的工作包括光学系统设计和光学结构设计。

所谓光学设计就是根据系统所提出的使用要求,来决定满足各种使用要求的数据,即设计出光学系统的性能参数、外形尺寸、各光组的结构等。

大体可以分为两个阶段。

第一阶段根据仪器总体的要求,从仪器的总体出发,拟定出光学系统原理图,并初步计算系统的外形尺寸,以及系统中各部分要求的光学特性等。

第二阶段是根据初步计算结果,确定每个透镜组的具体结构参数,以保证满足系统光学特性和成像要求。

这一阶段的设计成为“相差设计”,一般简称光学设计。

评价一个光学系统的好坏,一方面要看它的性能和成像质量,另一方面要系统的复杂度。

一个系统设计的好坏应该是在满足使用要求的情况下,结构设计最简单的系统。

第一章绪论1.1课程设计题目基于卡塞格林的望远物镜设计1.2 设计要求(1)入瞳直径:D=20mm;(2)相对孔径D/f’=1/6.15;(3)视场角2ω=7°;(4)在可见光波段设计(取d、F、C三种色光。

d为主波长);(5)MTF值在67lp/mm处大于0.40;(6)要求给出用ZEMAX优化减小球差和轴向色差的方法。

光学设计实验望远镜系统设计实验

光学设计实验望远镜系统设计实验

光学设计实验报告——望远镜系统设计**:***学号:B********班级:B090103目录一、ZEMAX仿真二、设计优化三、数据比较和优化后参数四、公差分析五、光学系统图六、设计心得体会一ZEMAX仿真一、本次设计要求如下:1.焦距为100mm;2.光源为无穷远处;3.像空间F/﹟=4,相对孔径1/44.前一块玻璃为BAK1,后一块玻璃为F25.全视场角为8度先打开ZEMAX软件,根据设计要求修改系统设定,包括系统孔径,镜头单位,视场,和波长。

望远镜物镜要求校正的像差主要是轴向色差、球差、慧差。

根据要求采用的是折射式望远双胶合型(1)修改系统设定。

首先,根据要求的设计参数计算物方孔径EPD。

提供的有效焦距efl为100mm,像空间F/﹟=4。

由公式,得物方孔径EPD约等于25。

在ZEMAX主菜单软件中,选择系统> 通用配置,在弹出的对话框中,选择图象空间F/#,数值选择4。

(2)视场设定。

在ZEMAX主菜单软件中,选择系统> 视场,在弹出的对话框中,视场类型选择角度,并输入三组视场数据,(0,8), (0, 2.8)和 (0,4)。

第三步,波长设定。

在ZEMAX主菜单软件中,选择系统> 波长,在弹出的对话框中,单击选择完成配置,然后单击确定。

系统配置完毕,即可在LDE中输入数据。

选择分析>草图>2D草图,将出现2D草图LAYOUT。

第二部分设计优化从2D草图可以看出,镜头的性能参数并非最优。

选择编辑——》优化函数,反复进行修改权重,直到mtf达到最优。

选择工具 > 优化 > 优化在弹出的窗口中执行最终优化当优化开始时,ZEMAX 首先更新系统的评价函数。

第四部分:数据比较与优化后参数优化后2D草图:第五部分公差分析在菜单栏中点开Tools(工具)选中Tolerancing点OK然后点Editors选中Tolerance Data Editor在页面上点开Tools选中Default Tolerances点OK输入参数进行公差分析后得点开Tools 选中Test Plate Fitting出现对话框选择Best to woest 点OK,第五部分光学系统图第六部分设计心得体会通过光学课程设计,我不但学到了一些以前不懂的知识,而且更进一步学会使用了ZEMAX 常用的光学设计软件,同时,也锻炼了我们在学习新软件的能力,这不但是对新知识的学习,更是对新事物学习和接受能力的锻炼,因此我对此次光电课程设计感触和收获颇深!刚开始,我们对设计的总体思路都没有一个大概的印象,刚得到题目时,我们到图书馆和上网查阅资料,看了以前上试验课时的PPT和一些资料,才对要使用的软件有了较深入的了解,然后对着以前的设计课题,慢慢的探索和练习。

基于卡塞格林系统的望远物镜设计(ZEMAX)

基于卡塞格林系统的望远物镜设计(ZEMAX)

工程光学课程设计报告班级:姓名:学号:成绩:指导教师:报告日期:南通大学课程设计论文目录摘要 (i)第一章绪论 (1)1.1课程设计题目 (1)1.2 设计要求 (1)第二章望远物镜的设计与相关参数 (2)2.1 望远物镜的主要参数 (2)2.2 望远物镜结构类型 (3)2.3 物镜的光学特性 (5)2.3 卡塞格林光学系统 (5)2.4 ZEMAX中的像质评价方法 (6)第三章设计与优化 (10)3.1设计过程 (10)3.2优化过程 (14)第四章运用Solid works对镜片进行绘制 (19)第五章新得与体会 (23)主要参考文献 (24)摘要由薄透镜组的初级像差理论入手,根据初级像差参量PW与透镜折射率n、孔径半径r、厚度d等关系,求出了满足初始设计的结构参数的透镜折射率n、孔径半径r、厚度d、形状系数Q、曲率p。

用光学设计软件ZEMAX对所求的结构参数进行了优化。

光学设计要完成的工作包括光学系统设计和光学结构设计。

所谓光学设计就是根据系统所提出的使用要求,来决定满足各种使用要求的数据,即设计出光学系统的性能参数、外形尺寸、各光组的结构等。

大体可以分为两个阶段。

第一阶段根据仪器总体的要求,从仪器的总体出发,拟定出光学系统原理图,并初步计算系统的外形尺寸,以及系统中各部分要求的光学特性等。

第二阶段是根据初步计算结果,确定每个透镜组的具体结构参数,以保证满足系统光学特性和成像要求。

这一阶段的设计成为“相差设计”,一般简称光学设计。

评价一个光学系统的好坏,一方面要看它的性能和成像质量,另一方面要系统的复杂度。

一个系统设计的好坏应该是在满足使用要求的情况下,结构设计最简单的系统。

第一章绪论1.1课程设计题目基于卡塞格林的望远物镜设计1.2 设计要求(1)入瞳直径:D=20mm;(2)相对孔径D/f’=1/6.15;(3)视场角2ω=7°;(4)在可见光波段设计(取d、F、C三种色光。

zemax实验学习教程

zemax实验学习教程

第19页/共101页
第十九页,编辑于星期日:八点 四十分。
第三章 ZEMAX设计实例
例9 扫面镜(Scanning Mirror) 再看其3D Layout图,如图所示,此时扫描镜关于后表面倾斜。
第20页/共101页
第二十页,编辑于星期日:八点 四十分。
第三章 ZEMAX设计实例
例10 离轴抛物镜(Off-Axis Parabolas)
第17页/共101页
第十七页,编辑于星期日:八点 四十分。
第三章 ZEMAX设计实例
例9 扫面镜(Scanning Mirror)
扫描镜分为两类:
Galvanometer反射镜和Polygon反射镜。 Galvanometer反射镜:镜面在顶点的倾斜; Polygon反射镜:在镜面顶点后面的一个偏置点处扫描。
现在移到第2面,在“tilt about x”列里输入45。 从主菜单选System,Update All,你将看到如图 所示的图形。
第3页/共101页
第三页,编辑于星期日:八点 四十分。
第三章 ZEMAX设计实例
例8 折叠反射镜面和坐标断点
注意近轴镜片的厚度为30,位于第一个坐标断点的旋转顶点。 坐标断点的厚度是0,表示反射镜面是在同一点上。但是, 坐标断点已将坐标系统旋转了45度。镜面本身是不旋转 的,只有它所在的坐标系统,才被旋转。镜面的厚度为0, 因为我们在移到下一个面前,要旋转另一个45度。第二 个坐标断点先旋转另一个45度,然后向焦点移动-70个单位。 注意所有的倾斜和偏心处理应在厚度改变之前。
第三章 ZEMAX设计实例
例10 离轴抛物镜(Off-Axis Parabolas)
在反射镜面2的前面增加一个CB面,并设置该CB在Y方向有+80mm的平移量。

zemax光学设计例子

zemax光学设计例子

在光学设计中,Zemax是一款非常受欢迎的软件,它提供了强大的工具和功能,可以帮助设计师轻松地完成各种光学设计任务。

本文将通过一个具体的例子,向大家展示如何使用Zemax进行光学设计。

一、设计背景我们假设需要设计一款望远镜,需要观察远处的星空。

望远镜的主要性能指标包括放大倍率、像差和亮度。

我们需要通过Zemax软件,找到最佳的光学系统方案,以达到最佳的观察效果。

二、设计步骤1.建立基本光学系统模型:在Zemax中,我们需要建立一个基本的光学系统模型,包括望远镜的主镜和次镜。

可以通过手动输入镜片数据或者使用预设的镜片库来建立模型。

2.调整参数:在Zemax中,我们可以调整各种参数来优化望远镜的性能。

例如,可以通过调整放大倍率和亮度参数来找到最佳的观察效果。

3.检测像差:在调整参数后,我们需要检测望远镜的像差。

Zemax 提供了强大的像差检测功能,可以帮助我们找到镜片上的缺陷和误差。

4.优化镜片:根据检测结果,我们可以对镜片进行优化。

可以通过添加或删除镜片、调整镜片位置和角度等方式来改善望远镜的性能。

5.模拟观察:在完成镜片优化后,我们可以模拟观察望远镜的成像效果。

可以通过调整望远镜的焦距和观察角度来查看不同情况下的成像效果。

6.调整和优化:根据模拟观察结果,我们可以再次调整和优化望远镜的设计。

直到达到满意的观察效果为止。

三、设计结果经过一系列的设计和优化步骤,我们得到了一个满意的光学设计方案。

该方案包括两片反射镜,放大倍率为10倍,像差在可接受范围内,亮度较高。

通过Zemax模拟观察,成像效果清晰、稳定,符合我们的预期。

四、总结通过这个具体的例子,我们展示了如何使用Zemax进行光学设计。

虽然只是一个简单的望远镜设计,但是它涵盖了光学设计的基本步骤和技巧。

在实际应用中,光学设计需要考虑的因素很多,例如环境因素、成本预算、材料选择等。

Zemax提供了丰富的工具和功能,可以帮助设计师轻松应对各种挑战。

设计望远镜

设计望远镜


利用光学软件zemax优化并设计了折返式卡塞格林望远镜系统 新型卡塞格林系统主次镜采用球面反射镜,避免了使用加工困难 和成本较高的非球面镜给出了利用zemax优化设计的整个过程, 并通过评价函数、点列图、光线扇面图以及光学传递函数的评 价手段对设计的系统进行评价和再优化,最终得到最好成像质 量的望远镜系统

此图为场曲曲线图,左图表示出了近轴焦点的漂移为 一个关于视场角的函数,而右 图则表示了有以近轴光线为基准的实际光线的畸变。 可以看出其轴向色差和初级球差大
弥散斑

调制传递函数(MTF)点扩散函数

左图衍射能量圈图。右图为多色光焦点漂移
在卡塞格林望远镜焦点处可以安置较大
的终端设备,并不挡光,且观测操作也 较方便。对于一个兼具有主焦点系统、 卡塞格林系统和折轴系统的望远镜,卡 塞格林望远镜的相对口径是中等的,它 适用于作中等光力、较大比例尺的照相 和其他工作,一般在这里进行的主要工 作有较大光谱仪的分光观测、直接照相 和像增强器照相、光电测光和红外观测 等。


6、Maksutov-Cassegrain 弯月透镜球面 球面 7、Schmidt-meniscus Cassegrain施密特校正器+弯 月透镜 球面 球面
ቤተ መጻሕፍቲ ባይዱ

8、Mangin-Cassegrain 多个球面透镜 球面 球面 9、Pressmann-Camichel 球面 椭圆面 10、Schiefspiegler 斜反射离轴 11、Three-mirror Cassegrain 三片反射镜 面型任意

这种设计在制造商提供给消费者的望远镜上非常 普遍,因为球面的光学表面不仅比长焦距的折射 式望远镜容易制做。虽然这类望远镜比同口径的 反射式望远镜价格要更昂贵,但是由于紧密的光 学设计使它在依订设计的口径之内很容易携带, 使它在严谨细致的天文爱好者中更受青睐,已经 成为目前主流的业余高端天象观测仪器。高的焦 比意味著它不同於前身的施密特摄星仪,不是一 架广角的望远镜,但是它狭窄的视野很适合观测 行星和深空天体。

密特—卡塞格林望远镜系统

密特—卡塞格林望远镜系统

实验四施密特—卡塞格林望远镜系统(Schmidt-Cassegrain)一、实验目的1.掌握Zemax中非球面镜面的定义与输入方法2.掌握Zemax中利用非球面镜的优化像差;3.熟悉Zemax中MTF的使用。

二、实验内容1.设计一个带多项式非球面矫正器施密特—卡塞格林系统;2.优化该系统的色球差。

三、实验器材1.p c机一台2.Z emax软件3.Z emax Manual一册(英文版)四、实验过程施密特-卡塞格林望远镜是在1931年由德国光学家施密特发明的优秀广视野望远镜。

在镜筒最前端的光学元件是施密特修正板,这块板是经过研磨接近平行的非球面薄透镜,可以确实的改正与消除主镜造成的球面像差。

自从1960年代,星特朗(Celestron)公司介绍了这一型的望远镜之后,数以万计的业余天文学家已经购买和使用过施密特-卡塞格林望远镜,直径从20厘米(8英寸)到48厘米(16英寸)都有。

本次实验是设计一个带多项式非球面矫正器施密特—卡塞格林系统 (Schmidt-Cassegrain) 。

设计的使用范围为可见光谱。

我们将采用10英寸的孔径,10英寸的后焦距(从主镜的后面到焦点)。

输入数据:由于只有矫正板和主反射面,进行这个设计是比较简单的,因此我们开始时先在光阑后插入两个面。

选择“SYSTEM”,“GENERAL”,输入10作为孔径值。

在同一个屏幕上,将单位“毫米(Millimeters)”改为“英寸(Inches)”。

选择“SYSTEM”,“WAVELENGTHS”,得到“波长数据”屏幕,设置3个波长:486,587,和656,其中587为主波长。

现在,我们将使用缺省的视场角0度,在Lens Data Editor中输入数据,如下表。

光阑被放在主面曲率半径的中心,这是为了排除视场像差(如彗差),它是Schmidt设计的特点。

我们可以选择2D Layout演示一下图形以验证一切是否就绪。

现在我们将加入辅助镜面,并安放像平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Zemax光学设计:一个带校正器的卡塞格林望远镜的设计实例
引言:
折反射系统相比于折射系统的主要优点有:
1.由于光路折叠而更紧凑;
2.可以做到很大口径;
3.可以很好校正色差,因为大多数的光焦度在反射镜而不是在透镜上。

4.可以做到从紫外到红外非常宽的波段。

5.反射镜与透镜的佩兹瓦尔曲面的曲率相反,可以实现较平的视场。

在两反射镜系统中,次镜构成的孔径的中心拦光(Central Obscuration),这不仅会造成能量的损失,也会使MTF的低频至中频部分随着中心拦光面积的增大而显著减小。

同时,因为两反射镜系统像的位置很接近于主镜位置,所以几乎所有的主镜都需要挖一个洞。

这个洞的大小限制了最大的像面尺寸,而且洞的大小必须远小于主镜的口径。

例如,通常中心拦光或洞的大小是主镜直径的30%,即线性拦光比为0.3,有效口径减小了0.09(0.32),此时MTF的中低频端变化不明显。

一般拦光比不要大于0.3。

典型的牛顿望远物镜仅用一个抛物凹面作为主反射镜,它可以形成一个直接用眼睛看的像。

在此基础上,添加一个凸双曲面的次反射镜,就成了卡塞格林望远镜(Cassegrain Telescope)。

由于主镜和次镜都是圆锥曲面,每个面上都没有球差,但是每个面都有彗差和像散,而这限制了可用的视场角。

另外,由于两个反射镜的半径不一样,还存在场曲。

设计仿真:
.
1.建立一个简单的卡塞格林望远镜系统
.
首先输入系统特性参数,如下:
在系统通用对话框中设置孔径。

在孔径类型中选择“Entrance Pupil Diameter”,并根据设计要求输入“3800”;
在视场设定对话框中设置3个视场,要选择“Angle”,如下图:
在波长设定对话框中,设定0.365um、0.5876um和0.850um共3个波长,如下图:
查看LDE:
2D Layout:
查看点列图:
查看Ray Fan:
从点列图和Ray Fan可以看出,这个系统有明显的彗差和像散。

.
2.在卡塞格林望远镜中加入像面校正器
.
临近焦面的双片式透镜可以校正彗差和像散。

但是双片式透镜需要引入一些球差,而这些球差可以用次反射镜的非球面或者沿轴平移来校正。

LDE如下:
查看2D Layout:
点列图:
Ray Fan:
从点列图和Ray Fan可以看出,彗差和像散得到明显地改善。

相关文档
最新文档