遗传算法的应用与发展

合集下载

遗传算法的研究与进展

遗传算法的研究与进展

遗传算法的研究与进展一、综述随着科学技术的不断发展和计算能力的持续提高,遗传算法作为一种高效的优化方法,在许多领域中得到了广泛的应用。

本文将对遗传算法的研究进展进行综述,包括基本原理、改进策略、应用领域及最新研究成果等方面的内容。

自1975年Brendo和Wolfe首次提出遗传算法以来,该算法已经发展成为一种广泛应用于求解最优化问题的通用方法。

遗传算法主要基于自然选择的生物进化机制,通过模拟生物基因的自然选择、交叉和变异过程来寻找最优解。

在过去的几十年里,众多研究者和开发者针对遗传算法的性能瓶颈和改进方向进行了深入探讨,提出了许多重要的改进策略。

本文将对这些策略进行综述,并介绍相关的理论依据、实现方法以及在具体问题中的应用。

遗传算法的核心思想是基于种群搜索策略,在一组可行解(称为种群)中通过选择、交叉和变异等遗传操作产生新的候选解,进而根据适应度函数在种群中选择优良的候选解,重复上述过程,最终收敛于最优解。

遗传算法的关键要素包括:染色体表示、适应度函数设计、遗传操作方法等。

为进一步提高遗传算法的性能,研究者们提出了一系列改进策略。

这些策略可以从以下几个方面对遗传算法进行改进:多目标优化策略:针对单点遗传算法在求解多目标优化问题时容易出现陷入局部最优解的问题,可以通过引入多目标遗传算法来求解多目标问题。

精英保留策略:为了避免遗传算法在进化过程中可能出现未成熟个体过早死亡的现象,可以采用精英保留策略来保持种群的优良特性。

基于随机邻域搜索策略:这种策略通过对当前解的随机邻域进行搜索,可以在一定程度上避免陷入局部最优解,并提高算法的全局收敛性。

遗传算法作为一种常用的优化方法,在许多领域都有广泛应用,如组合优化、约束满足问题、机器学习参数优化、路径规划等。

随着技术的发展,遗传算法在深度学习、强化学习和智能交通系统等领域取得了显著成果。

研究者们在遗传算法的设计和应用方面取得了一系列创新成果。

基于神经网络的遗传算法被用于解决非线性优化问题;基于模型的遗传算法通过建立优化问题模型来提高算法的精度和效率;一些研究还关注了遗传算法的鲁棒性和稳定性问题,提出了相应的改进措施。

遗传算法及应用

遗传算法及应用

遗传算法将问题的求解表示成“染色体”(用编码 表示字符串)。该算法从一群“染色体”串出发, 将它们置于问题的“环境”中,根据适者生存的原 则,从中选择出适应环境的“染色体”进行复制, 通过交叉、变异两种基因操作产生出新的一代更适 应环境的“染色体”种群。随着算法的进行,优良 的品质被逐渐保留并加以组合,从而不断产生出更 佳的个体。这一过程就如生物进化那样,好的特征 被不断的继承下来,坏的特征被逐渐淘汰。新一代 个体中包含着上一代个体的大量信息,新一代的个 体不断地在总体特性上胜过旧的一代,从而使整个 群体向前进化发展。对于遗传算法,也就是不断接 近最优解。
优势
总的来说,遗传算法与其他寻优算法相比的主要特点可以归纳如下: 1)遗传算法是对参数的编码进行操作,而不是对参数本身。 2)遗传算法是从许多初始点开始并行操作,而不是从一个点开始。因而 可以有效地防止搜索过程收敛于局部最优解,而且有较大可能求得全部 最优解。 3)遗传算法通过目标函数来计算适配度,而不要求其他的推导和附属信 息,从而对问题的依赖性较小。 4)遗传算法使用概率的转变原则,而不是确定性原则。 5)遗传算法在解空间内不是盲目地穷举或完全随机测试,而是一种启发 式搜索,其搜索效率往往优于其他算法。 6)遗传算法对于待寻优的函数基本无限制,它既不要求函数连续,更不 要求可微;既可以是数学解析式所表达的显函数,又可以是映射矩阵甚 至是神经网络等隐函数,因而应用范围很广。 7)遗传算法更适合大规模复杂问题的优化。
6.2遗传算法的基本操作与模式理论
下面通过一个简单的例子,详细描述遗传算法的基 本操作过程,然后给出简要的理论分析,从而清晰 地展现遗传算法的原理和特点。 6.2.1遗传算法的基本操作 例:设需要求解的优化问题为当自变量x在0~31之间 取整数值时寻找f(x)=x^2函数的最大值。枚举的方 法是将x取尽所有可能值,观察能否得到最高的目标 函数值。尽管对如此简单的问题该法是可靠的,但 这是一种效率很低的方法。下面运用遗传算法来求 解这个问题。

遗传算法理论及其应用发展

遗传算法理论及其应用发展

遗传算法理论及其应用发展摘要:首先介绍了遗传算法的基本工作原理和主要特点; 然后讨论了近年来从遗传算子、控制参数等方面对遗传算法的发展,并对遗传算法在国内外的研究进展和新的应用领域进行了讨论; 最后评述了遗传算法未来的研究方向和主要研究内容。

关键词:遗传算法; 遗传算子; 控制参数; 组合优化遗传算法[1] (Genetic Algorithms,简称GA )是由美国Michigan 大学的Holland教授于1975年首先提出的。

它源于达尔文的进化论、孟德尔的群体遗传学说和魏茨曼的物种选择学说; 其基本思想是模拟自然界遗传机制和生物进化论而形成的一种过程搜索最优解的算法。

从公开发表的论文看, 我国首先开始研究应用遗传算法的有赵改善和华中理工大学的师汉民等人。

遗传算法最早应用于一维地震波形反演中, 其特点是处理的对象是参数的编码集而不是问题参数本身, 搜索过程既不受优化函数联系性的约束, 也不要求优化函数可导, 具有较好的全局搜索能力; 算法的基本思想简单, 运行方式和实现步骤规范, 具有全局并行搜索、简单通用、鲁棒性强等优点, 但其局部搜索能力差, 容易出现早熟现象。

自1985年起, 国际遗传算法会议每两年召开一次, 在欧洲, 从1990年开始每隔一年也举办一次类似的会议。

1993年, 国际上第一本以遗传算法和进化计算为核心内容的学术期刊5 Evolutionary Com putation6 (进化计算) 在MIT 创刊; 1994年, 在美国奥兰多召开的IEEE World Congress on Computation Intelligence ( IEEE全球计算智能大会)上, 进化计算与模糊逻辑、神经网络一起统称为计算智能; 1997年, 5 IEEE Transaction son Evolutionary Computation6创刊。

这些刊物及时全面地报道了近年来遗传算法的最新研究成果。

遗传算法的一些实例

遗传算法的一些实例

引言概述遗传算法是一种启发式优化算法,其灵感来源于生物进化理论,主要用于解决复杂的优化问题。

通过模拟生物进化的过程,遗传算法能够通过遗传变异和适应度选择来优秀的解决方案。

本文将通过一些实例来说明遗传算法的应用。

正文内容一、机器学习中的遗传算法应用1.基因选择:遗传算法可以用于寻找机器学习模型中最佳的特征子集,从而提高模型的性能。

2.参数优化:遗传算法可以用于搜索机器学习模型的最佳参数组合,以获得更好的模型效果。

3.模型优化:遗传算法可以用于优化机器学习模型的结构,如神经网络的拓扑结构优化。

二、车辆路径规划中的遗传算法应用1.路径优化:遗传算法可以应用于车辆路径规划中,通过遗传变异和适应度选择,寻找最短路径或者能够满足约束条件的最优路径。

2.交通流优化:遗传算法可以优化交通系统中的交通流,通过调整信号灯的时序或者车辆的路径选择,减少拥堵和行程时间。

三、物流配送中的遗传算法应用1.车辆调度:遗传算法可用于优化物流配送的车辆调度问题,通过遗传变异和适应度选择,实现车辆最优的配送路线和时间安排。

2.货物装载:遗传算法可以用于优化物流运输中的货物装载问题,通过遗传变异和适应度选择,实现货物的最优装载方式。

四、生物信息学中的遗传算法应用1.序列比对:遗传算法可以用于生物序列比对问题,通过遗传变异和适应度选择,寻找最佳的序列匹配方案。

2.基因组装:遗传算法可以用于基因组装问题,通过遗传变异和适应度选择,实现基因组的最优组装方式。

五、电力系统中的遗传算法应用1.能源调度:遗传算法可用于电力系统中的能源调度问题,通过遗传变异和适应度选择,实现电力系统的最优能源调度方案。

2.电力负荷预测:遗传算法可以用于电力负荷预测问题,通过遗传变异和适应度选择,实现对电力负荷的准确预测。

总结遗传算法在机器学习、车辆路径规划、物流配送、生物信息学和电力系统等领域都有广泛的应用。

通过遗传变异和适应度选择的策略,遗传算法能够搜索到最优解决方案,从而优化问题的求解。

遗传算法介绍及应用

遗传算法介绍及应用

遗传算法的介绍及应用目录1遗传算法介绍 (2)1.1遗传算法的产生和发展 (2)1.2 遗传算法的基本求解步骤 (2)1.2.1 编码 (2)1.2.2初始化: (3)1.2.3估计适应度: (3)1.2.4再生(选择): (3)1.2.5 交叉: (3)1.2.6 变异: (3)1.2.7 重复: (3)2 遗传算法的应用例子 (4)2.1 编码 (4)2.2 初始化 (4)2.3 计算适应度 (5)2.4 再生(选择) (5)2.5 交叉 (5)2.6 变异 (6)3 遗传算法解决TSP的例子 (7)3.1 TSP 问题描述 (7)3.2 遗传算法用于TSP 问题 (8)3.2.1 编码表示 (8)3.2.2 初始化群体和适应度函数及其终止条件的设定 (8)3.2.3 选择算子 (9)3.2.4 交叉算子 (9)3.2.5 变异算子 (10)3.2.6 TSP问题的总结 (10)1遗传算法介绍遗传算法(genetic algorithms,GA)是一种模拟自然选择和遗传机制的寻优方法,它是建立在达尔文的生物进化论和孟德尔的遗传学说基础上的算法。

基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。

遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。

1.1遗传算法的产生和发展50 年代末60 年代初,生物学家Fraser 试图通过计算的方法来模拟生物界"遗传与选择"的进化过程,这便是GA 的雏形。

受此启发,Holland 教授认识到自然遗传可以转化为人工遗传算法。

1967 年Bagley 在其博士论文中首次提出了"遗传算法"这一术语。

1975 年,Holland 出版了《自然与人工系统中的适应性行为》。

该书系统地阐述了遗传算法的基本理论和方法,提出了遗传算法的基本定理-模式定理,从而奠定了遗传算法的理论基础。

基于生物信息学的遗传算法及其应用研究

基于生物信息学的遗传算法及其应用研究

基于生物信息学的遗传算法及其应用研究生物信息学是一门综合利用计算机科学、数学、统计学和生物学知识来研究生物信息的学科。

遗传算法是一种基于自然选择和遗传机制的搜索和优化算法。

结合生物信息学和遗传算法的研究,可以帮助我们更好地理解和优化生物系统,解决一系列生物学问题。

生物信息学的发展使得我们对生物系统中的基因组学、蛋白质组学和代谢组学等各种生物数据的理解更深入。

但是,基因组学数据的复杂性和大规模性也给我们带来了巨大的挑战。

在这种情况下,遗传算法成为了一种有效的工具来处理和分析这些海量的生物学数据。

首先,遗传算法在序列比对和基因识别领域具有广泛的应用。

序列比对是生物信息学中的一个基本问题,它的目的是找到两个或多个生物序列之间的异同。

传统的序列比对算法在处理大规模的序列数据时会面临效率和准确性的问题。

而基于遗传算法的序列比对方法通过模拟生物进化的过程,寻找最佳的序列比对结果。

这种方法已经被广泛应用于DNA、RNA和蛋白质序列的比对中,并取得了良好的效果。

其次,遗传算法在基因表达调控网络的建模和分析方面也发挥了重要作用。

基因表达调控网络是由多个基因组成的复杂网络,它们相互作用并影响生物体的生理过程。

通过遗传算法建立基因表达调控网络模型,并分析其中的关键基因、通路和相互作用机制,有助于我们深入了解基因表达调控的原理和生物体的发育过程。

这对于研究疾病的发生机制、发现治疗靶点以及设计基因工程技术等具有重要意义。

此外,遗传算法也被应用于药物分子的筛选和设计。

药物发现是一个复杂且耗时的过程,传统的药物筛选方法往往面临着样本数量限制和计算复杂度高的问题。

通过利用遗传算法,可以建立药物分子结构的搜索和优化模型,从而实现高效的药物筛选。

这种方法可以加速药物研发过程,降低成本,为新药的发现和设计提供有力的支持。

总结来说,基于生物信息学的遗传算法在序列比对、基因表达调控网络和药物分子设计等领域有着广泛的应用。

通过结合生物学和计算科学的知识,这一研究方向帮助我们更好地理解生物系统的复杂性,解决生物学中的一系列难题。

人工智能中的遗传算法

人工智能中的遗传算法

人工智能中的遗传算法遗传算法(Genetic Algorithm,GA)是一种模拟自然进化过程的优化算法。

它适用于复杂问题的求解,并且在人工智能领域中得到了广泛的应用。

本文将介绍人工智能中遗传算法的原理、应用以及优势。

一、遗传算法原理遗传算法模拟了生物进化过程中的遗传与进化机制,通过对每个个体的基因组进行编码,然后通过选择、交叉和变异等操作,迭代地生成新一代的解,并逐步优化。

1.1 基因编码遗传算法中每个个体的解被编码为一个染色体,染色体由若干基因组成。

基因可以是二进制串、整数或浮点数等形式,根据问题的特点进行选择。

1.2 适应度评价适应度函数用于评价每个个体的优劣程度。

适应度值越高表示个体解越优秀。

在问题的求解过程中,根据适应度函数对个体进行评估和排序。

1.3 选择操作选择操作根据适应度函数对个体进行选择,使优秀的个体有更高的概率被选中。

常见的选择算法有轮盘赌和竞争选择等。

1.4 交叉操作交叉操作模拟了生物进化中的基因重组,通过交换父代个体的染色体片段产生新个体。

交叉操作可以增加种群的多样性,并且有助于在解空间中进行全局搜索。

1.5 变异操作变异操作是对个体染色体中的基因进行突变,引入一定的随机性。

变异操作可以避免种群陷入局部最优解,从而增加算法的全局搜索能力。

1.6 算法迭代遗传算法通过不断迭代地进行选择、交叉和变异操作,逐渐优化种群中的个体。

迭代次数和种群大小是影响算法性能的重要参数。

二、遗传算法的应用2.1 函数优化遗传算法可以用于求解复杂的函数优化问题,例如求解多峰函数的全局最优解。

通过适当选择适应度函数和调整参数,可以提高算法的收敛性和搜索能力。

2.2 组合优化遗传算法在组合优化问题中有广泛的应用。

例如在图的最短路径问题中,通过遗传算法可以求解出图中节点间的最短路径。

2.3 机器学习遗传算法可以用于机器学习领域中的特征选择和参数优化等问题。

通过遗传算法搜索最优的特征子集或参数组合,可以提高机器学习模型的性能和泛化能力。

遗传算法的详解及应用

遗传算法的详解及应用

遗传算法的详解及应用遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传过程的算法。

在人工智能和优化问题中得到了广泛的应用。

本文将详细介绍遗传算法的基本原理和优化过程,并探讨它在实际应用中的价值和局限性。

一、遗传算法的基本原理遗传算法的基本原理是通过模拟生物进化的过程来寻找一个问题的最优解。

在遗传算法中,优秀的解决方案(也称为个体,Individual)在进化中拥有更高的生存几率,而劣质的解决方案则很快被淘汰。

在遗传算法的过程中,每个个体由若干个基因组成,每个基因代表某种特定的问题参数或者状态。

通过遗传算法,我们可以找到问题最优的解或者其中一个较优解。

遗传算法的基本流程如下:1. 初始化群体(Population):首先,我们需要随机生成一组初始解作为群体的个体。

这些个体被称为染色体(chromosome),每一个染色体都由一些基因(gene)组成。

所以我们可以认为群体是由很多染色体组成的。

2. 选择操作(Selection):选择运算是指从群体中选出一些个体,用来繁殖后代。

其目的是让优秀的个体留下更多的后代,提高下一代的平均适应度。

在选择操作中,我们通常采用轮盘赌选择(Roulette Wheel Selection)法、锦标赛(Tournament)法、排名选择(Ranking Selection)法等方法。

3. 交叉操作(Crossover):交叉运算是指随机地从两个个体中选出一些基因交换,生成新的染色体。

例如,我们可以将染色体A和B中的第三个基因以后的基因交换,从而产生两个新的染色体。

4. 变异操作(Mutation):变异运算是指随机改变染色体中的个别基因,以增加多样性。

例如,我们随机将染色体A的第三个基因改变,从而产生一个新的染色体A'。

5. 适应度评估(Fitness Evaluation):适应度评估是指给每一个个体一个适应度分数,该分数是问题的目标函数或者优化函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、遗传算法发展展望
遗传算法是智能控制领域中一个很活跃的应用算法,在21世纪,随着科学技术的迅猛发展和智能控制的日益成熟,遗传算法也在发展中慢慢成熟,遗传算法也必然会迅猛发展。由于遗传算法具有生物遗传学的特性,所以,遗传算法会向着精密、高端的方向发展。总的来说,遗传算法未来会在硬件电路的设计、和智能控制其他的控制算法相结合发展;在大规模的城市生活设施的管理方面、航空航天、军工、精密仪器的设计制造、气象方面、灾难预测:例如地震、泥石流等;由于遗传算法的生物遗传特性,因此它也可以应用于人造器官的设计制造、机器人的关节控制、电力系统的控制、自动控制领域等等。相信,在未来,遗传算法会发展的越来越快,也能够为国家的发展做出应有贡献,为经济、军事、政治的发展发挥一份力量。
参考文献:
[1]陶砚蕴徐萃华林家骏.遗传算法的发展及在入侵检测中的应用现状 [J].传感器世界,2007,4:11-12.
[2]Jing Huang,Gürsel A. Süer,Shravan B. R. Urs.Genetic algorithm for rotary machine scheduling with dependent processing times[J].Journal of Intelligent Manufacturing, Online First, 2 March 2011:1-18.
Chen Wangchang
Guangxi University of Technology,Liuzhou city, Guangxi province
AbstractGenetic Algorithmas a branch ofintelligent control,it playing a more and more obvious important rolein the modern control.This paper mainly talk about someappliesofGenetic Algorithmandpossible development trend and directioninfuture.
从Holland教授基础遗传算法的思想到现在,遗传算法的发展不过才40多年的历史,总的来说,遗传算法的发展历史可以分为以下阶段:
20世纪70年代初Holland教授首次提出遗传算法的思想和基本原理,奠定理论基础。1975年他出版了《自然系统和人工系统的自适应性》一书,该书主要论述遗传算法和人工系统的关系。80年代,他用遗传算法第一个实现了机器学习系统,开创算法学习的新篇章。
较传统的搜索方法而言,遗传算法使用的是全局搜索策略,因而它的鲁棒性更好,其全局优化方法的能力来源更宽,优化能力也比传统搜索方法更强,但是遗传算法也有搜索全局性的限制,这主要是因为需要优化的群体的大小限制以及群体的高维性的差异直接限制了算法的搜索。从而限制了算法的精度,为此,许多研究人员针对这一问题缺陷做了很多研究,对遗传算法进行改进,现有三种方法可以较好地提高遗传算法的精度:第一是将编码方法和遗传机制的操作改进;第二是将其与传统算法相结合,改善其收敛速度;第三是将其和模糊控制等算法结合形成较为先进的混合控制算法,提高算法的优化精度、微调能力等。另外,遗传算法在实际应用中还有可能出现早熟收敛、得到的解决方案不是全局最优解、搜索效率低等缺陷,为此,有人提出了针对解决这几个缺陷的方法,从而出现以下的几个子遗传算法:小生境遗传算法,自适应遗传算法,并行遗传算法,混和遗传算法。这几个算法对解决遗传算法在实际应用中的缺陷有着良好的作用效果。
在现代控制领域中,无论是现代化生产、科研、工程、还是医学,单单一种优化方法往往已不能满足现代生产和控制的高精度、高效率的要求,遗传算法往往通过与其他算法或者是计算机软件编程语言等相结合的手段来提高控制精度,提高并改善群体的性能。例如,用MAT-LAB语言、C语言实现遗传算法
在现代化生产中,有人提出了把现代工厂的流水线按“选择单元、交叉单元、变异单元、适应度计算单元”的方式划分,并用基于FPGA的遗传算法设计实现了流水线的生产功能,使其更加先进,功能更完善。
[9] 随顺旭,张欣,等.基于遗传算法优化模糊PID控制器的研究 [J].计算机光盘软件与应用,2011,2:1.
[10]王鸿斌,张立毅.基于遗传算法优化神经网络的多用户检测 [J].计算机工程,2011,7:207-209.
[11]胡德福.结合改进的遗传算法的BP人工神经网络岩爆预测研究 [J].铁道勘测与设计,2011,2:94-96.
[3]李楠,高鹏东,鲁永泉,余文华.并行混合遗传算法在深度像配准中的应用研究 [J].计算机工程与应用,2011年12期:12-13.
[4]俞国燕,王筱珍.改进遗传算法的应用研究 [J].机械制造,2007,5:58-60.
[5]周颖波,邝继腰,杨脯.基于FPGA的遗传算法流水线设计与实现 [J].计算机工程,2011,7:268-269.
[12]姚丽丽,史海波,刘昶,潘福成.烟草排产中嵌入规则的遗传算法应用研究制 [J].造业自动化,2011,8:89-93.
[13]李慧玲,李春明.一种基于遗传算法和神经网络的故障诊断方法 [J].电子科学与工程,2011,4:43-47.
[14]徐雁飞,幸海琼.遗传算法的应用及研究分析 [J].电脑学习,2010,3:113-115.
此外,遗传算法在智能控制领域也发挥着作用。在智能仪器的设计和研究方面,将遗传算法和模糊神经网络结合在一起,对PID控制器进行参数的修改和完善,改变隶属函数和控制规则,降低控制器的依赖性,实现一起的在线自动调整,改进控制效果,再用Mat lab等工具仿真研究,设计制造出性能更强成本更低的智能仪器。
遗传算法是一个非常活跃的应用算法,除了在以上提及的方面有应用外,遗传算法还和模拟控制中的模拟退火控制结合,形成一种改进型的最优解算法应用于小规模的地下水的管理系统中;在电路设计中也有遗传算法的应用,不过应用不多。像基于自适应度扩展的自适应遗传算法在门极电路的研究应用中,就是将遗传算法把每个逻辑输出单元进行合理处理,寻找适应度评价值的最优值,该方法在门电路的设计上面不仅收敛速度快,而且成功率高。遗传算法还可以应用于神经网络的优化,解决多用户的检测问题,也可以和神经网络相结合,用于诊断电力系统和电子元器件在使用过程中出现的故障,保障系统和元件的可靠性和安全性。
函数优化。这是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例。特别是对那些非线性、模型多、目标覆盖广的函数优化问题,用传统优化方法难于找到最优解,但是用遗传算法却可以得到较好的结果。
组合优化方面。随着问题增大,组合优化搜索空间也增大,传统的优化方法很难找到最优解,运用遗传算法可以很方便的得到满意的结果,因为遗传算法本身就是为寻求最优解而产生的。
遗传算法还可以应用于神经网络的优化解决多用户的检测问题也可以和神经网络相结合用于诊断电力系统和电子元器件在使用过程中出现的故障保障系统和元件的可靠性和安三遗传算法发展展望遗传算法是智能控制领域中一个很活跃的应用算法在21世纪随着科学技术的迅猛发展和智能控制的日益成熟遗传算法也在发展中慢慢成熟遗传算法也必然会迅猛发展
在医学应用上,遗传算法也发挥了其越来越明显的作用 。用并行的遗传算法来处理Otsu双阀值医学图像的分割,也就是一方面将计算机的高速并行性和遗传算法的自然并行性结合起来,使得求解速度和质量大大提高;另一方面在子群体间并行进行,避免单个子群体过早过快收敛,提高收敛速度和收敛质量。将分割结果和Otsu双阀值分割结果相比较,提高分割结果的稳定性和分割精度。另外,将并行的混合遗传算法还可以应用于医学的深度像的精确配准,利用基因和染色体(一种位置变换关系)的相关关系,构建相应的适应值函数,对图像进行精确度的配准,对于那些面临报废而又有着相当意义的医学图像的配准重塑,具有重要意义。
在工程和科研方面,遗传算法也发挥了它应有的作用。在煤矿高转速永磁同步电机的研究中,有人用遗传算法对电机的运转特性进行仿真,并取得良好效果。国外,还有利用遗传算法来处理转缸式发动机的加工处理时间以及对发动机的运行各个特性数据进行处理,来改善发动机的性能;还将遗传算法应用于多目标策略的基因选择中的数据表达,将遗传算法用来判断基因的活跃度,进而选择将信号发送给基因表达的主体,选择是否表达该基因。还有,可以利用改进的遗传算法和BP人工神经网络相结合的方法,来预测岩爆,达到良好效果。在流体机械研究制造这方面,利用遗传算法和人工神经网络相结合的方法,用于流体的主动控制、空气动力学参数的设计、用于插值的空气动力学的数据函数等工程研究,完善流体机械的动力学特性,使流体机械更加符合设计的动力学原理。
遗传算法的应用与发展
陈旺昌
广西工学院 广西柳州
摘要遗传算法作为智能控制的一个分支,在现代控制中发挥着越来越明显的重要作用。本文主要介绍遗传算法的一些应用及未来可能的发展趋势和方向。
关键词遗传算法 智能控制 应用
The application and development of Genetic Algorithm
1991年,L. Davis出版《遗传算法手册》,为遗传算法的推广普及做出贡献。
1992年,J. R. Koza成功把遗传算法的方法应用于计算机程序的编写,并把遗传编程的方法应用于多个方面。
二、遗传算法的应用
遗传算法发展得愈来愈成熟,因而它得到了越来越广泛的应用。总的来说,遗传算法主要应用在经典应用领域和现代控制领域。在经典应用领域,遗传算法主要用于路径的优化,求解问题的解决方案,例如:
1967年,Holland教授的学生J. D. Bagley首次提出“遗传算法”,并发表论文,发展遗传算子,创立自适应遗传算法新概念。
1975年,K. A. DeJong博士在博士论文中树立遗传算法的工作框架,推荐适用于多数问题优化的遗传算法参数,定义其在评价性能方面的一些指标。
1989年,D. J. Goldberg在《搜索、优化和机器学习中的遗传算法》一书中论述遗传算法的原理及应用,为现代遗传算法的发展奠定科学的基础。
相关文档
最新文档