电动力学 西南师范大学出版社 罗婉华 第三章作业答案

合集下载

电动力学答案(郭硕鸿+第三版) chapter3

电动力学答案(郭硕鸿+第三版) chapter3

(ρ > a)
a ∴ r = xr − xr' = (ρ cosϕ − a cosϕ')2 + (ρ sinϕ − a sinϕ')2 + z'2
d = ρ 2 + a2 + z'2 −2aρ cos(ϕ −ϕ') h rr = xr − xr'= ( ρ cosϕ − a cosϕ')erx (ρ sinϕ − a sinϕ')ery − z'erz k dlr = −adϕ'⋅sinϕ'erx + adϕ'⋅cosϕ'ery . ∴ dlr × rr = −az'cosϕ'dϕ'erx − az'sinϕ'dϕ'ery + [a2 − aρ cos(ϕ'−ϕ)]dϕ'erz
第三章 静磁场
场是均匀强磁场 故只须求出其中轴线上的磁感应强度 即可知道管内磁场 由其无限长的特性 不妨取场点为零点 以柱坐标计算
rr = −a cosϕ 'erx − a sin ϕ 'ery − z'erx
dlr = −adϕ '⋅sinϕ'erx + adϕ'⋅cosϕ 'ery ∴ dlr × rr = (−adϕ '⋅sin ϕ 'erx + adϕ '⋅cosϕ'ery ) × (−a cosϕ'erx − a sin ϕ'ery − z'erx )
erθ
ww ∴ Hr 2 − Hr1 = 0,满足边界条件 nr × (Hr 2 − Hr1) = 0

电动力学课后答案

电动力学课后答案

电动⼒学课后答案第五章多电⼦原⼦1.选择题:(1)关于氦原⼦光谱下列说法错误的是:BA.第⼀激发态不能⾃发的跃迁到基态;B.1s2p 3P2,1,0能级是正常顺序;C.基态与第⼀激发态能量相差很⼤;D.三重态与单态之间没有跃迁(2)氦原⼦由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产⽣的谱线条数为:BA.0;B.3;C.2;D.1(3)氦原⼦由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产⽣的谱线条数为:CA.3;B.4;C.6;D.5(4)氦原⼦有单态和三重态两套能级,从⽽它们产⽣的光谱特点是:DA.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不⼀定是三线.(5)若某原⼦的两个价电⼦处于2s2p组态,利⽤L-S耦合可得到其原⼦态的个数是:CA.1;B.3;C.4;D.6.(6)设原⼦的两个价电⼦是p电⼦和d电⼦,在L-S耦合下可能的原⼦态有:CA.4个;B.9个;C.12个D.15个;(7)若镁原⼦处于基态,它的电⼦组态应为:CA.2s2s B.2s2p C.3s3s D.3s3p(8)有状态2p3d3P 2s3p3P的跃迁:DA.可产⽣9条谱线B.可产⽣7条谱线C 可产⽣6条谱线D.不能发⽣课后习题1.He 原⼦的两个电⼦处在2p3d态。

问可能组成哪⼏种原⼦态?(按LS耦合)解答:l1 = 1 l2 = 2 L = l1 + l2, l1 + l2?1, ……, | l1? l2| = 3, 2, 1 s1 =1/2 s2 =1/2 S = s1 + s2, s1 + s2?1, ……, |s1 ? s2| = 1, 0 这样按J = L+S, L+S?1, ……, |L?S| 形成如下原⼦态:S = 0 S = 1L = 1 1P13P0,1,2L =2 1D23D1,2,3L = 3 1F33F2,3,43.Zn 原⼦(Z=30) 的最外层电⼦有两个。

《电动力学》课后答案

《电动力学》课后答案

(a ⋅ ∇ ) r = ( a x
∂ ∂ ∂ + ay + a z )[( x − x ' )e x + ( y − y ' )e y + ( z − z ' )e z ] ∂x ∂y ∂z = axe x + a y e y + az ez = a
4 ○
∇ ( a ⋅ r ) = r × (∇ × a ) + ( r ⋅ ∇ ) a + a × (∇ × r ) + (a ⋅ ∇ ) r 因为, a 为常向量,所以, ∇ × a = 0 , ( r ⋅ ∇) a = 0 , 又 ∵ ∇ × r = 0 ,∴ ∇( a ⋅ r ) = ( a ⋅ ∇) r = a ∇ ⋅ [ E0 sin( k ⋅ r )] = (∇ ⋅ E0 ) sin( k ⋅ r ) + E0 ⋅ [∇ sin( k ⋅ r )]
ez ex ey dA (3) ∇u × = ∂u / ∂x ∂u / ∂y ∂u / ∂z du dAx / du dAy / du dAz / du
dAy ∂u dAx ∂u dA ∂u dAz ∂u dAz ∂u dAy ∂u − )e x + ( x − )e y + ( − )e z du ∂y du ∂z du ∂z du ∂x du ∂x du ∂y ∂Ay (u ) ∂Ax (u ) ∂A (u ) ∂Ay (u ) ∂A (u ) ∂Az (u ) =[ z − ]e x + [ x − ]e y + [ − ]e z ∂y ∂z ∂z ∂x ∂x ∂y = ∇ × A(u ) =(
S S S S S S S S S
(1)

电动力学第三版答案

电动力学第三版答案

电动力学第三版答案第一章:静电学1.1 静电场静电场是由电荷所产生的场,它是一种无时间变化的电磁场。

静电场的性质可以通过电场强度、电势和电荷分布来描述。

电场强度表示单位正电荷所受到的力,并且是一个向量量。

在任意一点的电场强度可以通过库仑定律计算。

电势是单位正电荷所具有的势能,它是一个标量量。

电势可以通过电势差来定义,电势差是两点之间的电势差别。

1.2 电场的高斯定律电场的高斯定律是描述电场在闭合曲面上的通量与该闭合曲面内的电荷有关系的定律。

它可以通过以下公式表示:\[ \oint \mathbf{E} \cdot \mathbf{n} \, ds =\frac{Q_{\text{enc}}}{\varepsilon_0} \]其中,\(\mathbf{E}\) 是电场强度,\(\mathbf{n}\) 是曲面上的单位法向量,\(ds\) 是曲面上的微元面积,\(Q_{\text{enc}}\) 是闭合曲面内的总电荷,\(\varepsilon_0\) 是真空电容率。

1.3 电势电势是单位正电荷所具有的势能,它是一个标量量。

它可以通过电势差来定义,电势差是两点之间的电势差别。

电势可以通过以下公式计算:\[ V = - \int \mathbf{E} \cdot d\mathbf{l} \]其中,\(V\) 是电势,\(\mathbf{E}\) 是电场强度,\(d\mathbf{l}\) 是路径上的微元长度。

1.4 静电场中的导体在静电场中,导体内部的电场强度为零。

当导体受到外部电场作用时,其表面会产生等效于外部电场的电荷分布,这种现象被称为静电感应。

静电感应可以通过以下公式来计算表面电荷密度:\[ \sigma = \mathbf{n} \cdot \mathbf{E} \]其中,\(\sigma\) 是表面电荷密度,\(\mathbf{n}\) 是表面法向量,\(\mathbf{E}\) 是外部电场强度。

电动力学课后答案 (2)

电动力学课后答案 (2)

电动力学课后答案本文档为电动力学课后习题的答案,旨在帮助学生理解和巩固所学的电动力学知识。

以下是习题的答案解析。

1. 高斯定律的应用(20分)题目:一半径为 R 的均匀带电球面,电荷密度为σ。

沿球面 A 点方向垂直放置一个圆环,半径为 r (r < R),环面上均匀分布着电荷,电荷密度为ρ。

求圆环上的电场强度。

解析:根据高斯定律,可以得到球面上的电场强度公式:E * 4πR² = Q / ε₀其中 E 为电场强度,R 为球面的半径,Q 为球面内的总电荷量,ε₀ 为真空介电常数。

对于球面内的总电荷量 Q,可以通过球面的电荷密度σ求得:Q = σ * 4πR²将 Q 的值代入上式,可以得到球面上的电场强度:E = σ / ε₀对于圆环上的电场强度E₁,根据叠加原理,可以将整个圆环分割成无限小的电荷元素,然后将各个电荷元素对圆环上某一点的电场强度进行叠加:E₁ = ∫(k * dq / r²)其中 k 为库仑常数,dq 为圆环上无限小的电荷元素,r 为圆环上的点到电荷元素之间的距离。

将 dq 的值代入上式,进行积分计算,可以得到圆环上的电场强度。

2. 电势与电势能(15分)题目:一电荷为 Q 的点电荷静止在距离无限远处,根据库仑定律,可以得到电场强度公式。

根据电场强度 E,可以求出电势差V = ∫E · dr。

解析:根据库仑定律,点电荷 Q 在距离 r 处的电场强度 E 可以表示为:E = k * Q / r²其中 k 为库仑常数。

对于电势差V,可以定义为电场强度E 在两点之间的积分:V = ∫E · dr该积分表示沿路径的曲线积分,其中 E 为点电荷 Q 在路径上的电场强度,dr 为路径上的微小位移。

将 E 的表达式代入上式,并对路径进行处理,可以计算得到电势差 V。

3. 静电场的能量(25分)题目:两个点电荷Q₁ 和Q₂ 之间的电势能可以表示为 E = k * Q₁ * Q₂ / r,其中 k 为库仑常数,r 为两个点电荷之间的距离。

电动力学 西南师范大学出版社 罗婉华 第七章作业答案

电动力学 西南师范大学出版社 罗婉华 第七章作业答案

习题七2.用洛仑兹变换式和四维坐标矢量,导出洛仑兹变换矩阵。

解:洛仑兹变换式为./1/',',',/1'22222cv cvx t t z z y y cv vt x x --===--= (1)令,ict x z x y x x x ====4321,,,,按矢量的变换性质,则 νμνμx L x =' (2) μνL 为洛仑兹变换矩阵,设为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44434241343332312423222114131211a a a a a a a a a a a a a a a a L (3) 由(2)式矩阵计算为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321444342413433323124232221141312114321''''x x x x a a a a a a a a a a a a a a a a x x x x (4) (4)式计算结果为4443432421411434333232131142432322212114143132121111''''x a x a x a x a x x a x a x a x a x x a x a x a x a x x a x a x a x a x +++=+++=+++=+++= (5)将(5)式和(1)式比较,不难得出γβγβγγ=-===44411411,,,a i a i a a 其中cv =β,.1122cv -=γL 中其余各量为0. 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=γβγβγγ0010*******i i L . 5.爱因斯坦在他创立狭义相对论的论文《论运动物体的电动力学》中说:“设有一个在电磁场里运动的点状单位电荷,则作用在它上面的力等于它所在的地方所存在的电场强度。

这个电场强度是我们经过场的变换变到与该电荷相对静止的坐标系所得出的。

电动力学 西南师范大学出版社 罗婉华 第二章作业答案

电动力学 西南师范大学出版社 罗婉华 第二章作业答案

习题二1.将一个位于真空中的带电导体球切成两半,求它们之间的排斥力.设球的半径为0R ,球的电势为0V .答案: .ˆ2200z eV F πε= 解:0004R q V πε=,0004V R q πε=,.000R V εσ=z z e V e R F ˆ2ˆ22002002πεπεσ=⋅=2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充电导率为σ的非磁性物质.⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场.⑵求f λ随时间的衰减规律.⑶求与轴相距为r 的地方的能量耗散功率密度.⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率. ⑵;0tf eεσλλ-=⑶22⎪⎪⎭⎫⎝⎛r f πελσ; ⑷.ln222ab l f πελσ解:⑴r f e r D ˆ2πλ=,.ˆ2r f e rDE πελε==.ˆ2r f f e r E J πεσλσ== .ˆ21r fD e tr t D J ∂∂=∂∂=λπ对两式求散度,并且由f D ρ=⋅∇ ,0=∂∂+⋅∇tJ ff ρ得f f tλεσλ-=∂∂,所以0=∂∂+tD J f。

因为介质是非磁性的,即H Bμ=,故任意一点,任意时刻有000=⎪⎪⎭⎫⎝⎛∂∂+=⨯∇=⨯∇t D J H B fμμ ⑵由f f tλεσλ-=∂∂,解这个微分方程得()tf et εσλλ-=0⑶()222/r E E J p f f πελσσ==⋅=⑷长度为l 的一段介质耗散的功率为.ln 222222a bl rldr r f baf πελσππελσ=⎪⎪⎭⎫ ⎝⎛⎰能量密度()22/,21r tw D E w f πελσ-=∂∂⋅=长度为l 的一段介质内能量减少率为 .ln2222ab l rldr tw f baπελσπ⎰=∂∂-3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示.⑴试求筒内的磁感应强度B;⑵试求筒内接近内表面处的电场强度E和玻印廷矢量S ;⑶试证明:进入这圆筒长为l 一段的S 的通量为⎪⎪⎭⎫ ⎝⎛2022B l R dt d μπ. 答案: ⑴ωσμR B 0=;⑵ωασμe eRr E r ˆˆ210⨯= ; r er R S ˆ212320ασμ-= .解:⑴单位面电流ωσσπR lT Rl i ==2ωσμμR ei B z 00ˆ== ⑵在圆筒的横截面内,以轴线为心,r 为半径作一圆,通过这圆面积的磁通量为 ωσμπR r S d B s02=⋅=Φ⎰由法拉第定律,得 .21210d td Rrdtd r E ωσμπ-=Φ-=因为t αω= 所以ασμrR E 021-=考虑到方向,则有z r e erR E ˆˆ210⨯=ασμ 在筒内接近表面处,z r e eR E ˆˆ2120⨯=ασμ 该处的能流密度为 ()()z z r R R R e R e eR H E S ˆˆˆ2120ωσασμ⨯⨯=⨯=r et R ˆ212320ασμ-= 负号表明,S 垂直于筒表面指向筒内。

电动力学课后习题解答(参考)

电动力学课后习题解答(参考)

∂ ∂y
∂ ∂z
=
(
∂Az ∂y

∂Ay ∂z
)ex
+
(
∂Ax ∂z

∂Az ∂x
)ey
+
(
∂Ay ∂x

∂Ax ∂y
)ez
Ax(u) Ay(u) Az(u)
=
(
∂Az du
∂u ∂y

∂Ay du
∂u ∂z
)ex
+
(
∂Ax du
∂u ∂z

∂Az du
∂ ∂
u x
)ey
+
(
∂Ay du
∂u ∂x

(dl2
·
dl1)
11、平行板电容器内有两层介质,它们的厚度分别为l1和l2,电容率为ε1和ε2,今在两板接上电 动势为E的的电池,求
(1)电容器两板上的自由电荷密度ωf (2)介质分界面上的自由电荷密度ωf 若介质是漏电的,电导率分别为σ1和σ2,当电流达到恒定时,上述问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向,
[∇
1 r
·
∇]m
=
−(m
·
∇)∇
1 r
∴ ∇ × A = −∇ϕ
7、有一个内外半径分别为r1和r2的空心介质球,介质的电容率为ε,使介质内均匀带静止自由 电荷ρf ,求 (1)空间各点的电场 (2)极化体电荷和极化面电荷分布 解:1) S D · dS = ρf dV ,(r2 > r > r1)
R
)
=
(∇
·
m)∇
1 r
+(m源自·m)∇1 r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题三参考答案
1.试证明,在两种导电介质的分界面上, .011
22=∂∂-∂∂n
n
ϕσϕσ
()21指向由n

证明:因为
0=⋅⎰⎰
S
S d j
所以,n n j j 21= 又, n
E j n n ∂∂==ϕσ
σ
即 .011
22=∂∂-∂∂n
n
ϕσϕσ
2.半径为0R 的导体球,带自由电荷总量为f Q .今使导体球的一半浸在介电常数为ε的液体中,另一半露在真空中.求静电势、静电场、自由电荷和束缚电荷分布. 答案:
液体的电势1ϕ,电场1E
及空气中电势2ϕ,电场2E 分别为
()().
2,
23
021021R
R Q E E R
Q f f
εεπεεπϕϕ+=
=+=
=
导体球的电势0ϕ及球内电场0E
分别为
().0,200
00=+=
E R Q f
εεπϕ
自由电荷分布及束缚电荷分布:
① 下半球面 ()()().2,22
002
0R Q R Q f
P
f
f
εεπεεσ
εεπεσ
+-=
+=
② 上半球面 ().0,22
00=+=
P
f
f
R
Q σ
εεπεσ
③ 液体表面 .0,0==p
f
σσ
提示 由边界条件,提出尝试解r
A =ϕ ,再由唯一性定理,求出常数A.
3.试论证:在没有电荷的地方,电势既不能达到极大值,也不能达到极小值.
(提示:分真空和均匀介质空间,用泊松方程证明.) 证明:由0
2ερϕ-=∇ (1)
没有电荷的地方
02
2
2
2
22
=∂∂+
∂∂+
∂∂z
y
x
ϕϕϕ (2)
如果ϕ为极大,则
02
2
<∂∂x
ϕ,
02
2
<∂∂y
ϕ,
02
2
<∂∂z
ϕ,这不满足(2)式,可见没有电荷
处,ϕ不能为极大。

同理可以证明ϕ不能为极小。

在均匀介质中,有ρερ⎪⎪⎭

⎝⎛--=r p 11,若没有自由电荷,也就没有极化电荷。

方程(2)仍然成立,证明和前面一样。

4.三个同心薄金属球壳形成一个静电系统,内球半径为1R ,中间球半径为2R ,外球半
径为 3R ,球壳之间为真空,内外球壳接地,电荷Q 置于中间球壳上,试求: (1)内球壳上的感应电荷1Q 值;’ (2) 外球面上的感应电荷3Q 的值.
解 在所研究场域内无电荷分布,故场域满足0=⋅∇D .因为电场具有球对称的特点,故选用球坐标,且0==φθE E ,于是
0=⋅∇D )(21R r R << 或在球坐标系中
0)(112
2
=D r d
d r
(1)
积分得 2
1r
A D =
(2)
同理得 2
2r
B D =
)(32R r R << (3)
根据边界条件确定常数A 、B. 由


=⋅-
⋅Q dS D dS 1
n D n 2, 得
π
4Q B A =
+ (4)
由 ⎰⎰⋅=⋅1
23
221R R R R r r d E d E 得
B R R R R R R A )
()(123231--=
(5)
联立(4)、(5)式,得
)
()(4132231R R R R R R Q A --⋅
=
π
; )
()(4132123R R R R R R Q B --⋅
=
π
因此,球壳之间电场分布为 )
()(132231012
4R R R R R R Q
E r --⋅
=
πε;
)
()(4132232
021R R R R R R r
Q E --=
πε
内球壳上感应电荷分布
10101E E n εεσ-==
总电荷Q R R R R R R Q )
()(1322311---
=
外球壳内表面感应电荷分布为 20203E E n εεσ-== 总电荷
Q
R R R R R R Q )
()
(1
3
2
1
2
3
2
---
= .
5.(1)根据电荷守恒定律证明稳恒电流情况下的边界条件:电流密度的法向分量连续. (2)证明导体表面电位移的法向分量σ=n D (σ为面电流密度),但 D 不在导体表面的法线方向.
解(1)在两种导电媒质的分界面上,作一扁圆柱体(高0→∆h ),把连续性方程

=⋅0S j d 用于这个圆柱面上,则0)(12=-⋅j j n 或n n 21j j =,法向单位基矢n 由媒质1指
向媒质2,因此电流密度在界面法线n 上的分量连续.
(2)由于介质中各点02=j ,故导电媒质与非导电媒质交界面上边界条件为
01=E σ 2t
1t
E E =t
∵ σ=-⋅)(12D D n ,σ=n D 2
因为电场有切向分量,所以D 不在导体表面法线方向。

分析 (1)在稳流场中,两种导电媒质界面上n j 连续,而n E 不连续是由于界面上
存在面电荷.面电荷密度为
)112221()(E E n D D n εεσ-⋅=-⋅=
j )(
1
12
2σεσ
ε-
=
界面上积累电荷密度激发的电场将影响整个空间的电场分布.
(2)两种导电媒质的交界面不是等势面,当交界面上各点切向分量0=t E ,界面才是等势面.
(3)对理想导体∞→1σ ,其内部电流密度有限,故01=E ,整个理想导体为等势体..在稳流场中,一般把供电电极作为理想导体使用,而不论其电导率的值为多大.
6. 已知三平面交线一点有点电荷q ,三个两面角是321,,ααα;每个角内介质是3
,2,1εεε.
求空间电势分布.
解 在所研究场域内,除 q 之外,电荷密度 0=ρ,故电势ϕ满足方程
02
=∇i ϕ i=1,2,3
边界条件是:(1) 0=∞
→r
i ϕ;
(2) 2
1
ϕ
ϕ=(1,2界面),32ϕϕ=(2,3界面),3
1ϕϕ=(1,3界面);(3)以 q 为中心的球面是等势面,故 321ϕϕϕ==;(4)给定电荷. 根据唯一性定理提出尝试解
B r A +=
ϕ
由边界条件决定系数A 、B 由条件(1)得0=B ,故r
A =
ϕ ,因此介质内电场强度
r E 3
r
A =
-∇=ϕ,电位移i i i E D ε= ,根据高斯定理
⎰⎰


++=⋅+
⋅+
⋅=
⋅=
1
2
3
332211332211)222(S S S A d d d d q αεαεαεS D S D S D S
D
于是 )
(2332211αεαεαε++=
q
A
r
q
r
A )(2332211αεαεαεϕ++==
7. 试用A表示一个沿z 方向的均匀恒定磁场B,写出A的两种不同表示式,证明二者之差是无旋场.
解:由z e B A ˆ=⨯∇
,(1) 在直角坐标系中
选x e
By A ˆ1-=,或y e Bx A ˆ2-=,其他分量为零,都满足(1) 而且有
()
()()021=∂∂
--∂∂-=-⨯∇Bx x
By y A A。

相关文档
最新文档