上海市高三数学知识点总结

合集下载

上海市高中数学知识点总结

上海市高中数学知识点总结

上海市高中数学知识点总结一、函数与方程1.函数的性质:定义域、值域、奇偶性、周期性;2.函数的分类:一次函数、二次函数、指数函数、对数函数、幂函数、三角函数、反三角函数;3.函数的运算:加减乘除、复合函数、反函数;4.方程与不等式:一次方程、二次方程、绝对值方程、绝对值不等式、分式方程;5.方程的解法:代入法、消元法、配方法、因式分解、根-轴对称、二次函数标准式。

二、平面向量与空间向量1.向量的性质:模长、方向、共线与共面;2.向量的运算:加法、数乘、数量积、向量积、混合积;3.向量的坐标表示与几何意义;4.平面向量的应用:平面几何、平面图形的性质、直线与圆的位置关系;5.空间向量的应用:直线与平面的位置关系、空间图形的性质。

三、数列与数学归纳法1.等差数列与等比数列的性质;2.数列的通项公式与部分和公式;3.数列的求和运算;4.递推数列的通项公式和求和公式;5.数学归纳法的基本思想与应用。

四、三角函数与复数1.三角函数的基本关系式及性质;2.三角函数的图像与性质;3.解三角方程与不等式;4.复数的定义与基本性质;5.复数的运算与几何表示;6.复数方程的解法。

五、概率与统计1.概率的定义与计算公式;2.条件概率与独立事件;3.排列与组合的基本性质;4.基本统计指标的计算与应用;5.统计图的制作与分析。

六、解析几何1.平面坐标系与空间坐标系;2.点、向量、直线、平面的位置关系;3.二次曲线的方程与性质;4.圆锥曲线的方程与性质;5.立体图形的性质与计算。

七、导数与微分1.导数的定义与基本性质;2.常用函数的导数公式;3.高阶导数与隐函数求导;4.微分的定义与应用;5.函数的单调性与极值;6.曲线的凹凸性与拐点。

八、积分与不定积分1.不定积分的概念与性质;2.基本初等函数的不定积分公式;3.换元积分法与分部积分法;4.定积分的概念与性质;5.定积分的计算与应用;6.曲线与曲面的面积与体积计算。

总结起来,高中数学的知识点主要包括函数与方程、向量、数列与数学归纳法、三角函数与复数、概率与统计、解析几何、导数与微分、积分与不定积分。

上海高中高考数学知识点总结

上海高中高考数学知识点总结

上海高中高考数学知识点总结数学是高中阶段的一门重要学科,也是高考的一科必考科目。

上海是我国教育事业发展最为先进的地区之一,其高中高考数学知识点体系较为完备。

下面将对上海高中高考数学知识点进行总结。

一、函数与方程1.一次函数:将函数的定义域与值域、函数图像的性质(斜率、截距、单调性、定义域、值域等)、函数的性质(奇偶性、周期性等)作为重点。

2.二次函数:将函数图像的性质(顶点、对称轴、单调性、定义域、值域等)、零点特征(判别式、根与系数的关系)以及函数与方程的应用问题作为重点。

3.三角函数:将基本函数的定义域与值域、函数图像的性质(周期、对称轴、单调性等)、反函数以及函数与方程的应用问题作为重点。

4.幂函数与指数函数:将函数图像的性质(单调性、定义域、值域等)、乘幂性质、对数函数与指数函数的关系以及函数与方程的应用问题作为重点。

5.对数函数与指数方程:将函数图像的性质(单调性、定义域、值域等)、对数性质、指数方程的解法以及函数与方程的应用问题作为重点。

6.三角方程:将三角函数的性质、解三角方程的方法以及函数与方程的应用问题作为重点。

7.不等式:将一次不等式、二次不等式、分式不等式的解法以及应用问题作为重点。

二、平面解析几何1.直线与圆:将直线的方程(一般式、斜截式、点斜式)、圆的方程(一般式、截距式、标准式)以及直线与圆的应用问题作为重点。

2.曲线的方程:将椭圆、双曲线、抛物线的方程、基本性质(焦点、准线等)以及曲线与方程的应用问题作为重点。

3.空间几何体:将点、线、面的位置关系、截距表示、距离性质以及平面与直线的交点、角度等问题作为重点。

三、立体几何1.空间几何体的计算:对长方体、正方体、圆柱体、圆锥体、球体的体积、表面积以及应用问题进行掌握。

2.空间向量:将向量的定义、线性运算、数量积、向量积、坐标表示以及应用问题作为重点。

四、概率与统计1.概率:将事件的概念、事件的运算、频率与概率的关系、条件概率、独立性、全概率公式、贝叶斯公式以及概率与统计的应用问题作为重点。

上海高考数学知识点总结内容精华版

上海高考数学知识点总结内容精华版

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:〔1〕理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.〔2〕理解逻辑联结词“或〞、“且〞、“非〞的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法〔集合化简〕、简易逻辑三局部:二、知识回忆:(一) 集合1. 根本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}〔√〕 Z ={全体整数} 〔×〕②集合S 中A 的补集是一个有限集,那么集合A 也是有限集.〔×〕〔例:S=N ; A=+N ,那么C s A= {0}〕 ③ 空集的补集是全集.④假设集合A =集合B ,那么C B A = ∅, C A B = ∅ C S 〔C A B 〕= D 〔 注 :C A B = ∅〕. 3. ①{〔x ,y 〕|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{〔x ,y 〕|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{〔x ,y 〕|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. 〔例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 那么A ∩B =∅〕 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,那么它的逆否命题一定为真. 原命题⇔逆否命题. 例:①假设325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,那么a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:假设255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.根本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法〔零点分段法〕①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+〞;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点〔为什么?〕;④假设不等式〔x 的系数化“+〞后〕是“>0〞,那么找“线〞在x 轴上方的区间;假设不等式是“<0〞,那么找“线〞在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx〔自右向左正负相间〕那么不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;20>∆ 0=∆ 0<∆二次函数c bx ax y ++=2〔0>a 〕的图象原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2.分式不等式的解法 〔1〕标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, 〔2〕转化为整式不等式〔组〕⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法〔1〕公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.〔2〕定义法:用“零点分区间法〞分类讨论.〔3〕几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)〔1〕根的“零分布〞:根据判别式和韦达定理分析列式解之.〔2〕根的“非零分布〞:作二次函数图象,用数形结合思想分析列式解之. 〔三〕简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

上海高三数学高考前知识点

上海高三数学高考前知识点

上海高三数学高考前知识点高三的学业已经进入了冲刺阶段,而数学作为高考科目之一,对于学生来说显得尤为重要。

为了帮助同学们有针对性地复习和巩固数学知识,下面将总结上海高三数学高考前的知识点,供大家参考。

一、函数与方程1.函数的定义与性质(1)函数的定义:函数是一个或多个自变量与因变量之间的一种映射关系。

(2)函数的性质:奇偶性、周期性、单调性等。

2.一次函数与二次函数(1)一次函数:y=kx+b,其中k为斜率,b为截距,图像为一条斜率为k的直线;(2)二次函数:y=ax^2+bx+c,其中a不为0,图像为抛物线。

3.指数函数与对数函数(1)指数函数:y=a^x,其中a为底数,图像与x轴相交于(0,1),随着x的增大,函数值逐渐增加;(2)对数函数:y=loga(x),其中a为底数,图像与y轴相交于(1,0),随着x的增大,函数值逐渐增加。

4.分式函数与幂函数(1)分式函数:y=f(x)/g(x),其中f(x)和g(x)均为多项式函数;(2)幂函数:y=x^a,其中a为实数。

二、空间几何与立体几何1.平面几何(1)平面几何基本概念:点、直线、线段、平行线、垂直线等;(2)平面图形的性质与判定:三角形的性质、平行四边形的性质、等腰三角形的性质等。

2.立体几何(1)立体几何基本概念:点、直线、平面、立体图形的表面积与体积等;(2)柱、锥、盒子等立体图形的性质与计算公式。

三、概率与统计1.概率(1)随机事件与样本空间;(2)概率计算公式:互斥事件、相对补事件、加法定理、乘法定理等;(3)条件概率与独立事件。

2.统计(1)统计基本概念:样本、总体、频数等;(2)频率分布与频率直方图;(3)统计指标:平均数、中位数、众数等。

四、数与数量关系1.数与数的运算(1)整数的性质与运算:加法、减法、乘法、除法等;(2)有理数的性质与运算:分数的四则运算、整数与分数的加减法、乘除法等。

2.数形关系(1)比例与类比:比例的性质与应用、类比的构造与判定等;(2)相似三角形的性质与判定。

沪教数学高三知识点汇总

沪教数学高三知识点汇总

沪教数学高三知识点汇总高三数学知识点汇总一、函数与导数1. 常用函数1. 幂函数及其性质:$f(x) = a^x$,其中$a>0$且$a≠1$,对数函数:$f(x) = \log_a{x}$。

2. 三角函数:正弦函数$y = \sin{x}$,余弦函数$y = \cos{x}$,正切函数$y = \tan{x}$等。

3. 指数函数与对数函数:$y = e^x$,$y = \ln{x}$。

4. 二次函数:$f(x) = ax^2+bx+c$。

5. 反比例函数:$y = \dfrac{a}{x}$,其中$a\neq0$。

2. 函数运算1. 函数的四则运算,包括加法、减法、乘法和除法。

2. 复合函数:$(f\circ g)(x) = f(g(x))$。

3. 函数的求导法则:常函数求导、幂函数求导、指数函数求导、对数函数求导和三角函数求导等。

3. 导数与函数的性质1. 导数的定义与几何意义。

2. 导数的基本性质:和差法则、常数倍法则、乘法法则、除法法则和链式法则等。

3. 函数的单调性、极值点和拐点等概念。

二、平面向量1. 向量的概念与表示1. 向量的定义与性质:有向线段、模、方向角、数量积和向量垂直等。

2. 向量的坐标表示:平面直角坐标系、单位向量和零向量等。

2. 向量的运算1. 向量的加法与减法:平行四边形法则、三角形法则。

2. 向量的数量积:点乘与夹角余弦。

3. 向量的数量积的性质:交换律、分配律等。

3. 平面向量的应用1. 向量的平移:向量平移定理。

2. 向量的共线与线性相关性的判定。

3. 向量的投影:向量投影定理、向量投影的性质。

三、导数应用1. 函数的单调性与极值1. 函数的递增与递减:区间的单调性、零点与单调性、函数的单调性判定等。

2. 极值与最值:极值点的判定、凹凸性与拐点等。

2. 函数的应用问题1. 切线与法线:切线与曲线的切点、曲线的切线方程和法线方程等。

2. 函数的增减表与最值点:利用导数研究函数的增减性与最值点。

上海高三数学知识点

上海高三数学知识点

上海高三数学知识点数学作为一门学科,不仅是学生在高中阶段必修的科目,也是对于培养学生逻辑思维和解决问题能力十分重要的一门学科。

而在上海地区的高三数学教学中,有一些重要的知识点是学生们必须要掌握的。

本文将重点介绍上海高三数学知识点。

一、函数与方程函数与方程是高中数学的核心内容之一。

在高三数学中,学生需要掌握各类函数的性质、图像和变换等,并能够灵活运用函数来解决问题。

这其中包括:1. 三角函数:学生需要熟练掌握正弦函数、余弦函数、正切函数等的定义、性质和图像特征,能够运用三角函数解决实际问题。

2. 指数函数与对数函数:学生需要了解指数函数和对数函数的定义和性质,并能够运用指数函数和对数函数解决实际问题。

3. 二次函数与一元二次方程:学生需要掌握二次函数的图像特征和性质,以及解一元二次方程的方法和技巧。

4. 不等式与绝对值:学生需要了解不等式的基本性质和解不等式的方法,并能够解决带有绝对值的不等式。

二、概率与统计概率与统计是数学的一个重要分支,它在高三数学教学中有着广泛的应用。

上海高三数学中的概率与统计知识点主要包括:1. 随机变量与概率分布:学生需要了解随机变量的概念和基本性质,以及离散型和连续型随机变量的概率分布。

2. 统计分布与抽样:学生需要了解正态分布、泊松分布等统计分布的性质和应用,并能够进行抽样调查和数据分析。

3. 统计参数的估计与检验:学生需要了解统计参数的点估计和区间估计,以及假设检验等统计方法。

4. 相关与回归分析:学生需要学会计算相关系数和回归方程,并能够分析变量之间的相关性和建立回归模型。

三、立体几何与解析几何立体几何与解析几何是高中数学的难点之一,也是上海高三数学教学中的重要内容。

学生需要掌握立体几何和解析几何的相关知识,包括:1. 空间几何体的性质:学生需要熟悉球、锥、台、棱柱、棱锥等各种几何体的定义和性质,并能够应用几何体的相关性质解决实际问题。

2. 空间向量与平面方程:学生需要了解空间向量的定义、运算法则和性质,以及平面方程的求解方法。

上海高三知识点汇总数学

上海高三知识点汇总数学

上海高三知识点汇总数学数学是高中阶段学习中非常重要的一门学科。

它不仅是培养学生逻辑思维和分析解决问题能力的基础,也是许多专业考试如高考所必备的一门科目。

为了提高大家对上海高三数学知识点的了解和掌握,本文将对一些重要的数学知识点进行汇总和归纳。

1. 解析几何解析几何是数学中的一个重要分支,主要研究平面和空间中的点、线和圆的几何性质。

在高三数学中,解析几何占据着很大的比重。

主要内容包括点、直线、圆的方程等。

通过解析几何的学习,可以帮助学生建立起一个更为直观和准确的空间感。

2. 数列和数列极限数列是数学中非常重要的一个概念,是由一系列数字按照一定的规律排列而成的。

数列极限是数列中非常重要的一个概念,它描述了数列中的数字随着序号无限增大或减小时的趋势。

在高三数学中,数列和数列极限是必须要掌握的内容。

3. 函数与导数函数与导数是高中数学中的重点内容之一。

函数是数学中一种常见的数学对象,它将一个自变量映射到一个因变量上。

导数是函数的一个重要的衡量指标,表示函数在某一点的变化率。

在高三数学中,函数与导数的学习包括了函数的定义、函数的性质以及导数的计算等方面。

4. 平面向量与立体几何平面向量与立体几何是数学中的另一个重点内容。

平面向量是在平面上带有方向和大小的量,它可以用来表示物体的位移或力的大小和方向。

立体几何主要研究空间中的点、线、面和体的性质,通过学习平面向量与立体几何,可以帮助学生理解和掌握空间几何的概念和方法。

通过对上海高三数学知识点的汇总和归纳,我们可以看到数学在高三阶段的学习中占据着重要的地位。

掌握这些知识点,不仅可以提高我们的数学水平,还可以帮助我们在高考中取得更好的成绩。

因此,我们应该重视数学的学习,不断巩固和提高自己在这方面的能力。

总结起来,上海高三数学知识点的汇总包括解析几何、数列与数列极限、函数与导数以及平面向量与立体几何等内容。

通过对这些知识点的学习和理解,我们可以更好地应对高中数学的考试,并为未来的学习和发展打下坚实的基础。

(完整版)上海高中高考数学知识点总结(大全),推荐文档

(完整版)上海高中高考数学知识点总结(大全),推荐文档

上海高中高考数学知识点总结(大全)一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NMa a alog log log -= M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N a N a =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换 平移:“左加右减,上正下负”α>101<<αα<0)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 67同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列定义:)0(1≠=+q q a ann通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底)平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x + =+=+2)(b a夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=?除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=ni r rk i i =+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+-点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +)2a 、2b:椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句 IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF 语句2 END IF5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO循环体 循环体WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2 v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市高三数学知识点总结数学作为一门重要的基础学科,具有广泛的应用价值,对学生而言是必修的科目之一。

在上海市高三数学教学中,有一些重要的知识点,需要同学们掌握和理解。

下面将对这些知识点进行总结和梳理。

一、函数与方程
1. 函数的概念和性质:
函数是两个数集之间的一种对应关系,具有自变量和因变量的概念。

函数的性质包括定义域、值域、增减性、奇偶性等。

2. 一次函数:
一次函数是指其图像呈直线,可以用 y = kx + b 这个形式来表示。

其中 k 代表斜率,b 代表截距。

3. 二次函数:
二次函数是指其图像呈抛物线,可以用 y = ax^2 + bx + c 这个形式来表示。

其中 a 代表抛物线的开口方向,b 代表顶点横坐标,c 代表顶点纵坐标。

4. 指数与对数函数:
指数函数是指以某个固定的常数为底数的自变量是指数的函数,可以用 y = a^x 表示。

对数函数是指以某个固定的常数为底数的自变量是函数值的函数,可以用 y = loga(x) 表示。

二、解析几何
1. 直线与圆:
直线是指不弯曲的曲线,可以用斜率和截距来表示。

圆是指平面上所有到圆心距离等于半径的点的集合。

2. 曲线的方程:
曲线的方程是根据曲线的性质和几何特点来确定的,常见的曲线方程包括直线方程、圆的方程、椭圆的方程等。

3. 二次曲线:
二次曲线包括抛物线、椭圆和双曲线,具有不同的几何性质和方程形式。

三、概率与统计
1. 概率的基本概念:
概率是指某一事件发生的可能性,可以用 [0,1] 区间内的数值来表示。

2. 事件的互斥与独立:
互斥事件是指两个或多个事件之间不能同时发生,独立事件是指两个事件之间的发生与否不受对方影响。

3. 随机变量与概率分布:
随机变量是一个可以随机取值的变量,可以分为离散型和连续型。

概率分布是指随机变量每个取值对应的概率。

四、数列与数学归纳法
1. 数列的概念:
数列是按照一定规律排列的一列数,可以分为等差数列和等比数列等。

2. 数列的通项公式:
通项公式是指数列中第 n 项与 n 的关系式,可以通过数列的
前几项找到规律,进而推导出通项公式。

3. 数学归纳法:
数学归纳法是证明数学命题和结论的一种重要方法,包括归
纳的初等形式和归纳的推广形式。

五、导数与极限
1. 导数的概念:
导数是函数在某一点上的变化率,可以表示为函数的斜率。

导数的求解可以通过导数定义、导数运算法则和导数公式等方法。

2. 极限的概念与运算:
极限是函数在某一点或无穷远处的趋势和趋势值,可以分为
左极限和右极限。

极限的运算包括四则运算、复合函数的极限、
函数极限的夹逼定理等。

通过对上海市高三数学知识点的总结和梳理,我们可以更好地
理解和掌握这些重要的知识点,为高考数学的学习和应用打下坚
实的基础。

在学习过程中,我们应注重理论与实践的结合,灵活运用数学知识解决实际问题,提高数学应用能力。

希望同学们在高三数学学习中,努力拥抱挑战,取得优异的成绩!。

相关文档
最新文档