完整word版初三解直角三角形基本模型复习.docx

合集下载

初三解直角三角形基本模型复习学习资料

初三解直角三角形基本模型复习学习资料

初三解直角三角形基本模型复习课题解直角三角形模型教学目标1. 熟悉特殊的三角函数,理解三角函数表示的意义,学会利用三角函数求线段长度和角度;2. 学会解决常考的解直角三角形题型。

重难点学会解决常考的解直角三角形题型导案学案教学流程一、进门考(建议不超过10分钟)1.(2017•绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)二、基础知识网络总结与巩固知识回顾:三角函数中常用的特殊函数值。

函数名0°30°45°60°90°sinα0 1cosα 1 0tanα0 无穷大cotα无穷大 1 01.解直角三角形的定义:在直角三角形中,除直角外,共有5个元素,即3条边和2个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形。

2.解直角三角形的常用关系: 在Rt △ABC 中,∠C=90°,则:①三边关系:a 2+b 2= c 2;②两锐角关系:∠A +∠B= 90°;③边与角关系:sin A=cos B= a c ,cos A=sin B=b c ,tan A=a b; ④平方关系:1cos sin 22=+A A⑥倒数关系:tan A •tan(90°—A)=1 ⑦弦切关系:tan A=AAcos sin 3.解直角三角形的两种基本类型————①已知两边长; ②已知一锐角和一边。

注意:已知两锐角不能解直角三角形。

4.解非直角三角形的方法:对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。

浙教版初中数学九年级《解直角三角形》全章复习与巩固--知识讲解(基础)

浙教版初中数学九年级《解直角三角形》全章复习与巩固--知识讲解(基础)

《解直角三角形》全章复习与巩固--知识讲解(基础)【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cos A、tanA表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数;2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受.【知识网络】【要点梳理】要点一、锐角三角函数1.正弦、余弦、正切的定义如右图、在Rt△ABC中,∠C=90°,如果锐角A确定:(1)sinA=,这个比叫做∠A的正弦.(2)cosA=,这个比叫做∠A的余弦.(3)tanA=,这个比叫做∠A的正切.要点诠释:(1)正弦、余弦、正切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA、cosA、tanA是一个整体符号,即表示∠A三个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin·A,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin∠BAC,而不能写出sinBAC.(3)sin2A表示(sinA)2,而不能写成sinA2.(4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.要点诠释:1. 函数值的取值范围对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是∠A的函数.同样,cosA、tanA也是∠A的函数,其中∠A是自变量,sinA、cosA、tanA分别是对应的函数.其中自变量∠A的取值范围是0°<∠A<90°,函数值的取值范围是0<sinA<1,0<cosA<1,tanA>0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式”如∠A+∠B=90°,那么:sinA=cosB; cosA=sinB;同角三角函数关系:sin2A+cos2A=1;tanA=3.3030°、45°、60°角的三角函数值和解30°、60°直角三角形和解45°直角三角形为本章重中之重,是几何计算题的基本工具,三边的比借助锐角三角函数值记熟练.要点二、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°;边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见应用问题(1)坡度:;坡角:.(2)方位角:(3)仰角与俯角:要点诠释:1求∠2.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.3.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁.如:射影定理不能直接用,但是用等角的三角函数值相等进行代换很简单:∵∴∵∴∵∴【典型例题】类型一、锐角三角函数1.(1)如图所示,P是角α的边上一点,且点P的坐标为(-3,4),则sinα=( ).A.35B.45- C.45D.2例1(1)图例1(2)图(2)在正方形网格中,∠AOB如图所示放置,则cos∠AOB的值为( ).A.55 C.12D.2【答案】(1)C; (2)A;【解析】(1)由图象知OA=3,PA=4,在Rt△PAO中5OP==.∴4sin5PAOPα==.所以选C.(2)由格点三角形知如图中存在一个格点三有形Rt△OCD,且OC=1,CD=2,则OD=因此cos5OCAOBOD∠===.所以选A.【总结升华】两小题都没有出现现成的直角三角形.∠O分别置于直角坐标系和正方形网格之中,通过观察图形,构造含∠O的直角三角形.举一反三:【课程名称:《锐角三角函数》全章复习与巩固:395953例1-例2】【变式】已知,如图,D是ABC∆中BC边的中点,90BAD∠=︒,2tan3B=,求sin DAC∠.B C【答案】过D作DE∥AB交AC于E,则∠ADE=∠BAD=90°,由2tan3B=,得2,3ADAB=设AD=2k,AB =3k,∵D是ABC∆中BC边的中点,∴DE =3,2k在Rt△ADE中,5,2AE k=332sin.552kDEDACAE k∠===类型二、特殊角三角函数值的计算2.先化简,再求代数式231122xx x-⎛⎫-÷⎪++⎝⎭的值,其中4sin452cos60x=-°°.【答案与解析】原式1212(1)(1)1x xx x x x-+=⨯=+-++.而14sin452cos6042122x=-=⨯-⨯=°°.∴4=.【总结升华】 先进行分式化简,再由1sin 45602==°°得x 的值,最后代值求出结果. 举一反三:【课程名称:《锐角三角函数》全章复习与巩固 :395953 计算】【变式】计算:tan 230°+cos 230°-sin 245°tan45°【答案】原式=222((1322-⨯ =131+342- =712类型三、 解直角三角形3.如图所示,菱形ABCD 的周长为20 cm ,DE ⊥AB ,垂足为E ,3sin 5A =,则下列结论正确的个( ).①DE =3 cm ;②BE =1 cm ;③菱形的面积为15 cm 2;④BD =.A .1个B .2个C .3个D .4个 【答案】C ;【解析】由菱形的周长为20 cm 知菱形边长是5 cm .在Rt △ADE 中,∵ AD =5 cm ,sin A =35,∴ DE =AD ·sinA =3535⨯=(cm).∴ 4AE ==(cm).∴ BE =AB -AE =5-4=1(cm). 菱形的面积为AB ·DE =5×3=15(cm 2).在Rt △DEB 中,BD ==.综上所述①②③正确.故选C .【总结升华】此题是菱形的性质、三角函数的定义及勾股定理综合运用. 类型四 、锐角三角函数与相关知识的综合4. 如图,六一儿童节那天,墨墨和同学一起到游乐场游玩,该游乐场大型摩天轮的示意图,其半径OA 是24m ,它匀速旋转一周需要30分钟,最底部点D 离地面2m .(1)求此摩天轮旋转5分钟,墨墨乘坐的车厢经过的路程是多少?(结果保留π) (2)在旋转一周的过程中,墨墨将有多长时间连续保持在离地面38m 及以上的空中?【思路点拨】(1)先求出5分钟所走的角度,然后根据弧长公式计算出5分钟经过的路程即可;(2)设当旋转到E处时,离地面的距离为38m,作弦EF⊥CO交CO的延长线于点H,连接OE,OF,此时EF离地面高度为HC,在Rt△OEH中,利用三角函数求得∠HOE的度数,易得∠EOF的度数,进而可求出由点E旋转到F所用的时间.【答案与解析】解:(1)∵匀速旋转一周需要30分钟,∴旋转5分钟走过的角度为60°,则经过的路程为:6024180π⨯=8π(m);(2)当旋转到E处时,作弦EF⊥CO交CO的延长线于点H,连接OE,OF,此时EF离地面高度为HC,当HC=38时,OH=38-2-24=12(m),∵OE=24m,∴OH=12 OE,∴∠HOE=60°,∴∠FOE=120°.∵每分钟旋转的角度为:36030=12°,∴由点E旋转到F所用的时间为:=10(分钟).【总结升华】本题考查了解直角三角形的应用以及垂径定理,弧长公式等知识,解答本题的关键是构造直角三角形,运用三角函数求解.举一反三:【课程名称:《锐角三角函数》全章复习与巩固:395953例6-例8】【变式】如图,C、D是半圆O上两点,511CDAB=,求cos CEB∠和tan CEB∠.【答案】如图,连结BC ,则∠ACB=90°,易证△ECD ∽△EBA , ∴CE CD 5==EB AB 11,cos ∠CEB=5.11CE =EB tan ∠CEB=BC CE类型五、三角函数与实际问题5.如图,一海伦位于灯塔P 的西南方向,距离灯塔40海里的A 处,它沿正东方向航行一段时间后,到达位于灯塔P 的南偏东60°方向上的B 处,求航程AB 的值(结果保留根号).【思路点拨】过P 作PC 垂直于AB ,在直角三角形ACP 中,利用锐角三角函数定义求出AC 与PC 的长,在直角三角形BCP 中,利用锐角三角函数定义求出CB 的长,由AC+CB 求出AB 的长即可. 【答案与解析】解:过P 作PC ⊥AB 于点C , 在Rt △ACP 中,PA=40海里,∠APC=45°,sin ∠APC=,cos ∠APC=,∴AC=AP •sin45°=40×=40(海里),PC=AP •cos45°=40×=40(海里),在Rt △BCP 中,∠BPC=60°,tan ∠BPC=,∴BC=PC •tan60°=40(海里),则AB=AC+BC=(40+40)海里.【总结升华】此题考查了解直角三角形的应用﹣方向角问题,熟练掌握锐角三角函数定义是解本题的关键.6.(2016•青海)如图,某办公楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE ,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)【思路点拨】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可【答案与解析】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间的距离约为48m.【总结升华】此题主要考查了解直角三角形的应用,根据已知得出tan22°=是解题关键.。

初三几何复习资料(解直角三角形

初三几何复习资料(解直角三角形

初三几何复习资料班级 姓名 座号第六章 解直角三角形重点、难点和关键:本章的重点是锐角三角函数的概念和直角三角形的解法。

特殊锐角与其三角函数值之间的对应关系也很重要,应当牢记,即:已知特殊锐角,说出它的四个三角函数值;反过来,已知特殊锐角的三角函数值,说出这个角的度数。

锐角三角函数的概念,既是本章的难点,又是学好本章的关键。

只有正确了解锐角三角函数的概念,才能正确理解直角三角形中边、角之间的关系,从而才能利用这些关系来解直角三解形。

学习指导:了解锐角三解函数的概念,能够正确地应用sin A,cos A,tan A,cot A 表示直角三角形中两边的比,熟记30°,45°,60°角的各个三角函数值,会计算含有这三个特殊锐角的的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角。

理解直角三角形中边、角之间的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,并会用解直角三角形的有知识来解某些简单的实际问题。

第一节 锐角三角函数1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

A90B 90∠-︒=∠︒=∠+∠得由B A 对边4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、30°、45°、60°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

(完整word版)九年级数学解直角三角形专题

(完整word版)九年级数学解直角三角形专题

做教育做良知中小学 1 对 1 课外指导《解直角三角形》专题一、复习目标:1.掌握直角三角形中锐角三角函数的定义。

2.熟记 30°, 45°, 60°角的各三角函数值,会计算含特别角三角函数的代数式的值。

3.能娴熟运用勾股定理、直角三角形中两锐角互余及三角函数定义解直角三角形。

4.会用解直角三角形的相关知识解简单的实质问题。

二、复习要点:先结构直角三角形,再综合应用勾股定理和锐角三角函数解决简单的实质问题。

三、复习难点:把实质问题转变为解直角三角形的数学识题。

四、复习过程: B(一)知识回首1.三角函数定义 :我们规定斜边∠A 的对边A C∠A 的邻边A的对边A的对边①叫∠ A 的正弦 . 记作sin A斜边斜边A的邻边A的邻边②叫∠ A 的余弦 . 记作cos A斜边斜边A的对边A的对边③叫∠ A 的正切 . 记作 tanA=A的邻边A的邻边2.特别角的三角函数值角度30°45°60°函数值sin 1 2 32 2 2cos 3 2 12 2 2tan α31 3 33.互为余角的函数关系式 :90°- ∠A与∠ A 是互为余角 .有 sin(90A) cos A cos(90A) sin A经过这两个关系式, 能够将正 , 余弦互化 .如 sin 40cos50cos38 12sin 51 48专题练习做教育做良知中小学 1 对 1 课外指导1. 如图,从地面上的点 A 看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是 45°,向前走 6m抵达 B 点,测得杆顶端点 P 和杆底端点Q的仰角分别是 60°和 30°。

(1)求∠ BPQ的度数;(2)求该电线杆 PQ的高度(结果精准到 1m)。

备用数据: 3 1.7, 2 1.42.热气球的探测器显示,从热气球底部 A 处看一栋高楼顶部的俯角为 30°,看这栋楼底部的俯角为 60°,热气球 A 处于地面距离为 420 米,求这栋楼的高度.3.如图,小俊在 A 处利用高为 1.5 米的测角仪 AB 测得楼 EF 顶部 E 的仰角为 30°,而后行进 12 米抵达 C 处,又测得楼顶 E 的仰角为 60°,求楼 EF 的高度.(结果精准到 0.1 米)做教育做良知中小学1对1课外指导4.为解决江北学校学生上学过河难的问题,乡政府决定修筑一座桥,建桥过程中需丈量河的宽度(即两平行河岸AB 与MN 之间的距离).在丈量时,选定河对岸沿河岸 AB 前行 30 米后抵达 B 处,在 B 处测得∠≈1.41,≈1.73,结果保存整数)MN 上的点 C 处为桥的一端,在河岸点 A 处,测得∠ CAB=30 °,CBA=60 °,请你依据以上丈量数据求出河的宽度.(参照数据:5.为保护渔民的生命财富安全,我国政府在南海海疆新建了一批观察点和避风港.某日在观察点 A 处发此刻其北偏西 36.9 °的 C处有一艘渔船正在作业,同时检测到在渔船的正西 B 处有一股强台风正以每小时40 海里的速度向正东方向挪动,于是立刻通知渔船到位于其正东方向的避风港 D 处进行闪避.已知避风港 D 在观察点 A 的正北方向,台风中心 B 在观察点 A 的北偏西67.5 °的方向,渔船C与观察点 A 相距 350 海里,台风中心的影响半径为 200 海里,渔船的速度为每小时18 海里,问渔船可否顺利闪避本次台风的影响?(sin36.9 °≈ 0.6 ,tan36.9 ≈0.75 ,sin67.5 ≈0.92 ,tan67.5 ≈2.4 )6.如图,某校数学兴趣小组为测得大厦 AB 的高度,在大厦前的平川上选择一点 C,测得大厦顶端 A 的仰角为 30°,再向大厦方向行进 80 米,抵达点 D 处( C、D、B 三点在同向来线上),又测得大厦顶端 A 的仰角为 45°,请你计算该大厦的高度.(精准到0.1 米,参照数据:≈ 1.414,≈ 1.732)7.如图,爬山缆车从点 A 出发,路过点 B 后抵达终点 C,此中 AB段与 BC段的运转行程均为200m,且 AB段的运行路线与水平面的夹角为30°, BC段的运转路线与水平面的夹角为42°,求缆车从点A运转到点 C 的垂直上涨的距离.(参照数据: sin42 °≈ 0.67 , cos42 °≈ 0.74 , tan42 °≈ 0.90 )8.张老师利用歇息时间组织学生丈量山坡上一棵大树CD 的高度,如图,山坡与水平面成30°角(即∠MAN=30 °),在山坡底部 A 处测得大树顶端点 C 的仰角为45°,沿坡眼行进20 米,抵达 B 处,又测得树顶端点 C 的仰角为60°(图中各点均在同一平面内),求这棵大树CD 的高度(结果精准到0.1 米,参照数据:≈1.732)9.如图,我南海某海疆 A 处有一艘打鱼船在作业时突遇特狂风波,船长立刻向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到打鱼船正西方向的 B 处,该渔政船收到渔政求救中心指令后前往营救,但两船之间有大片暗礁,没法直线抵达,于是决定立刻调整方向,先向北偏东60°方向以每小时30 海里的速度航行半小时抵达C 处,同时打鱼船低速航行到 A 点的正北 1.5 海里D 处,渔政船航行到点 C 处时测得点 D 在南偏东53°方向上.( 1)求 CD 两点的距离;( 2)渔政船决定再次调整航向前往营救,若两船航速不变,而且在点 E 处相会集,求∠ECD的正弦值.(参照数据:sin53°≈, cos53°≈,tan53°≈)10. 如图,两幢建筑物 AB 和 CD,AB⊥ BD,CD⊥ BD,AB=15cm,CD=20cm, AB和 CD之间有一景观池,小南在 A 点测得池中喷泉处 E 点的俯角为42°,在 C 点测得 E 点的俯角为45°(点 B、E、D 在同向来线上),求两幢建筑物之间的距离 BD(结果精准到0.1m ).(参照数据: sin42 °≈ 0.67 ,cos42°≈ 0.74 ,tan42 °≈ 0.90 )11.如图,在楼房AB 和塔 CD 之间有一棵树EF ,从楼顶 A 处经过树顶 E 点恰巧看到塔的底部 D 点,且俯角α为 45°.从距离楼底 B 点 1 米的 P 点处经过树顶 E 点恰巧看到塔的顶部 C 点,且仰角β为30°.已知树高EF=6米,求塔CD 的高度.(结果保存根号)12.如下图,港口 B 位于港口 O 正西方向 120km 处,小岛 C 位于港口 O 北偏西 60°的方向.一艘游船从港口 O 出发,沿OA 方向(北偏西 30°)以 vkm/h 的速度驶离港口 O,同时一艘快艇从港口 B 出发,沿北偏东 30°的方向以 60km/h 的速度驶向小岛C,在小岛 C 用 1h 加装补给物质后,立刻按本来的速度给游船送去.( 1)快艇从港口 B 到小岛 C 需要多长时间?( 2)若快艇从小岛 C 到与游船相遇恰巧用时1h,求 v 的值及相遇处与港口O 的距离.5做教育做良知中小学 1 对 1 课外指导13.如下图,港口 B 位于港口 O 正西方向 120km 处,小岛 C 位于港口 O 北偏西 60°的方向.一艘游船从港口 O 出发,沿 OA 方向(北偏西30°)以 vkm/h 的速度驶离港口O,同时一艘快艇从港口 B 出发,沿北偏东 30°的方向以 60km/h 的速度驶向小岛C,在小岛 C 用 1h 加装补给物质后,立刻按本来的速度给游船送去.( 1)快艇从港口 B 到小岛 C 需要多长时间?( 2)若快艇从小岛 C 到与游船相遇恰巧用时1h,求 v 的值及相遇处与港口 O 的距离.14.一数学兴趣小组为了丈量河对岸树AB 的高,在河岸边选择一点C,从 C 处测得树梢 A 的仰角为45°,沿 BC 方向退后10 米到点 D,再次测得 A 的仰角为30°,求树高.(结果精准到0.1 米,参照数据:≈1.414,≈1.732)15.如图是一座人行天桥的表示图,天桥的高度是10 米, CB ⊥DB ,坡面 AC 的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为 i=:3.若新坡角下需留 3 米宽的人行道,问离原坡角( A 点处) 10 米的建筑物能否需要拆掉?(参照数据:≈1.414,≈1.732)616.如图,一艘轮船航行到 B 处时,测得小岛 A 在船的北偏东60°的方向,轮船从 B 处继续向正东方向航行 200 海里抵达 C 处时,测得小岛 A 在船的北偏东30°的方向.己知在小岛四周 170 海里内有暗礁,若轮船不改变航向持续向前行驶,试问轮船有无触礁的危险?(≈1.732)17.2015 年 4 月 25 日 14 时 11 分,尼泊尔发生8.1 级地震,震源深度20 千米.中国营救队快速赶往灾区营救,探测出某建筑物废墟下方点 C 处有生命迹象.在废墟一侧某面上选两探测点 A 、 B, AB 相距 2 米,探测线与该面的夹角分别是30°和 45°(如图).试确立生命所在点C 与探测面的距离.(参照数据≈1.41,≈1.73)18.某海疆有 A ,B 两个港口, B 港口在 A 港口北偏西30°方向上,距 A 港口 60 海里,有一艘船从 A 港口出发,沿东北方向行驶一段距离后,抵达位于 B 港口南偏东75°方向的 C 处,求该船与 B 港口之间的距离即CB 的长(结果保存根号).19.如图,某渔船在海面上朝正西方向以20 海里 /时匀速航行,在 A 处观察到灯塔 C 在北偏西 60°方向上,航行 1 小时抵达 B 处,此时察看到灯塔 C 在北偏西 30°方向上,若该船持续向西航行至离灯塔距离近来的地点,求此时渔船到灯塔的距离(结果精准到 1 海里,参照数据:≈1.732)20.小红将笔录本电脑水平搁置在桌子上,显示屏OB与底板OA所在的水平线的夹角为120 °时,感觉最舒坦(如图 1),侧面表示图为图2;使用时为了散热,她在底板下垫入散热架ACO ' 后,电脑转到AO ' B ' 地点(如图3),侧面表示图为图 4.已知 OA=OB=24cm ,O' C OA 于点C, O ' C =12cm.(1)求CAO '的度数;(2)显示屏的顶部B '比本来高升了多少?( 3)如图 4,垫入散热架后,要使显示屏O ' B' 与水平线的夹角仍保持120°,则显示屏O 'B ' 应绕点 O ' 按顺时针方向旋转多少度?。

(完整word版)中考解直角三角形知识点复习

(完整word版)中考解直角三角形知识点复习

中考解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:可表示以下:∠C=90 °∠ A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。

3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:若是直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a2+b2= c2. 即直角三角形两直角边的平方和等于斜边的平方B弦ca勾A Cb 股勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:若是三角形的三边长a, b, c 有下面关系:a2+ b2= c2,那么这个三角形是直角三角形。

考点二、直角三角形的判断1、有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形2、若是三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理:若是三角形的三边长222,那么这个三角形是直角三角形。

〔经典直角三角a、 b、 c 满足a +b =c形:勾三、股四、弦五〕用它判断三角形可否为直角三角形的一般步骤是:(1〕确定最大边〔不如设为 c〕;(2〕假设 c2=a2+b2,那么△ ABC 是以∠ C 为直角的三角形;假设 a2+ b2< c2,那么此三角形为钝角三角形〔其中 c 为最大边〕;假设 a2+ b2> c2,那么此三角形为锐角三角形〔其中 c 为最大边〕4. 勾股定理的作用:〔1〕直角三角形的两边求第三边。

〔2〕直角三角形的一边,求另两边的关系。

〔3〕用于证明线段平方关系的问题。

〔4〕利用勾股定理,作出长为n 的线段考点三、锐角三角函数的看法1、如图,在△ABC中,∠ C=90°①锐角 A 的对边与斜边的比叫做∠ A 的正弦,记为sinA ,即②锐角 A 的邻边与斜边的比叫做∠ A 的余弦,记为cosA,即③锐角 A 的对边与邻边的比叫做∠ A 的正切,记为tanA ,即A的对边a sin A斜边cA的邻边b cos A斜边cA的对边a tan AA的邻边b1A的邻边b ④锐角 A 的邻边与对边的比叫做∠ A 的余切,记为cotA ,即cotAA的对边a 2、锐角三角函数的看法锐角 A 的正弦、余弦、正切、余切都叫做∠ A 的锐角三角函数3、一些特别角的三角函数值三角函数30 °45 °60 °sin α123 222cosα321222tanα313 3cotα313 34、各锐角三角函数之间的关系(1〕互余关系: sinA=cos(90 °— A) ,cosA=sin(90 °— A) ;〔 2〕平方关系:sin 2 A cos2 A1(3〕倒数关系: tanA ?tan(90 °—A)=1(4〕商〔弦切〕关系: tanA=sin Acos A5、锐角三角函数的增减性当角度在 0°~90°之间变化时,〔 1〕正弦值随着角度的增大〔或减小〕而增大〔或减小〕;〔2〕余弦值随着角度的增大〔或减小〕而减小〔或增大〕;〔 3〕正切值随着角度的增大〔或减小〕而增大〔或减小〕;〔4〕余切值随着角度的增大〔或减小〕而减小〔或增大〕考点四、解直角三角形1、解直角三角形的看法在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的元素求出所有未知元素的过程叫做解直角三角形。

初中数学九年级下册第二十八章《282复习课:解直角三角形

初中数学九年级下册第二十八章《282复习课:解直角三角形
° 甲:我站在此处看塔顶仰角为60
° 乙:我站在此处看塔顶仰角为30
甲:我们的身高都是1.5m 乙:我们相距20m 请你根据两位同学的对话,计算白塔的高度(精确到1米).
A
30°
20 x
60°
B
20
编辑ppt
C
D
12
A 解:∵∠B=30°∠ACD=60 °
∴∠BAC=30 °(三角形外角定理)
30°
P 解:∵PQ∥AC ∠QPA=30 °∠QPB=60 °
450 ∴ ∠ PAC=30 ° ∠PBC=60 °
30° A
60° 在Rt⊿PBC中
B
C
∵sin60 °=
PC BP

3 = 450
2
BP
∴BP= 3 0 0 3 经检验,该值是
原方程的解。
又∠ PAC=30 ° ∠PBC=60 °
∴∠BPA=30 °(三角形外角定理)
cos30 3 2
tan30 3 3
sin 45 2 2
cos45 2 2
tan45 1
sin 60 3 2
cos60 1 2
tan60 3
30° +
60° =
90°
4
∠A+ ∠ B=90°
解直角三角形
a2+b2=c2
A
三角函数关系式
sin A a c
b
c
C
a
B
cos A b c
C
45° 60°
编辑ppt
14
B 5 D X-5 C
变式一:(2008 威海市)如图,小明同学在东西方 向的环海路A处,测得海中灯塔P在北偏东60°方向 上,在A处东500米的B处,测得海中灯塔P在北偏 东45°方向上,则灯塔P到环海路的距离PC是多少 米?(结果用根号表示).

初三解直角三角形.docx

初三解直角三角形.docx

辅导讲义(1) 三边关系:a 2+b 2=c 2,(2) 角关系:ZA+ZB=—,sin B = — ,cos A =—,cos B = —, tan A c c c c 二、同步题型分析直角三角形的性质已知:如图,ADDBC,F 是AB 中点,DF 交CB 延长线于点E, CE = CD ,则图中与ZADE 相等的 有 ,与ZADE 互余的角有 ___ •解题分析:(1)注意题中直线的平行关系,利用平行线的性质找出相等角(2)利用等腰三角形的性质,判定哪些三角形是直角三角形,再利用Rt △的两个锐角互余进行处理1. 几何题注意先标清题屮给出的条件,寻找突破门;sin A (3)边角关系:AB(亍2.灵活运用平行线性质;3.注意等腰三角形三线合一.瑪例题3如图,A、C是ZMON的0M边上两点,A3丄0W于B,CD丄ON于D, 若OA=-,OB=CD,OD+AB=1 求ZMON的度数.2解题分析:(1)注意分析OD+AB二1二20A,可联想到三角形中的性质,延长0D至II,使得DII二AB,连CII;(2)利用三角形全等,可确定OA=CH=| OH,可得ZA=30°;(3)本题主要注意截长补短方法的运用.1.先标出己知条件,通过己知条件推导岀其中隐含的条件,再灵活运用这些条件解题;2.注意截长补短方法的运用;3.在Rt△屮,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30。

.如图,已知在AABC中,ZACB = 90°, AC = BC, AE 丄BE于E, AE = -BD . 2求证:BZ)平分ZABC.4解题分析:(1)延长AE、BC,相交点F,连接CE;(2)灵活利用:在Rt△中,斜边上的小线等于斜边的一半;(3)同时注意垂直平分线定理的运用. 詈衣采弑一弑./1.己知:如图所示,AE、BD相交于点C, M、F、G分别是AD、BC、中点,AB = AC, DC = DE .求证:MF = MG .解题分析:连接AF、DG.灵活运用刚学的相关知识(在Rt△屮,斜边上的中线等于斜边的一半)进行处理.2.如图,在AA3C^,Z3 = 40o,ZC = 20°,AD 丄C4于人交BC于D .求证:CD = 2AB.解题分析:取CD 中点连接AM.灵活运用刚学的相关知识(在Rt △中,斜边上的中线等于斜边的一半)进行处理.3. 如图,正\ABC 的边长为1, P 是AB±不与A,3重合的任意一点,PQ 丄BC , QR 丄AC, RS 1 AB t Q,R,S为垂足,设BP = x, AS = y.求(1) y 与x 之间的函数关系式;(2) 当SP =丄时,求AP 的长; 4(3) 当点P 与S 重合时,与4R 的长各为多少?解题分析:在Rt △中,如果一个锐角等于30。

2019年中考数学复习第5章图形的相似与解直角三角形第20课时锐角三角函数与解直角三角形精讲试题word版本

2019年中考数学复习第5章图形的相似与解直角三角形第20课时锐角三角函数与解直角三角形精讲试题word版本

第20课时锐角三角函数与解直角三角形题号,30三角形一般与圆综合考查毕节中考真题试做30°,45°,60°角的三角函数值1.(2018·毕节中考)计算:⎝⎛⎭⎪⎫-13-1-12+3 tan 30°-(π-3)0+||1-3.解:原式=(-3)-23+3×33-1+(3-1)=-3-23+3-1+3-1=-5.解直角三角形2.(2017·毕节中考)如图,在▱ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sin D=45,求AF的长.(1)证明:∵四边形ABCD是平行四边形,∴AB ∥CD,AD ∥BC,AD =BC. ∴∠D +∠C =180°,∠ABF =∠BEC. ∵∠AFB +∠AFE =180°,∠AFE =∠D, ∴∠C =∠AFB. ∴△ABF ∽△BEC ; (2)解:∵AE ⊥DC,AB ∥DC, ∴∠AED =∠BAE =90°.在Rt △ADE 中,AE =AD·sin D =5×45=4.在Rt △ABE 中,根据勾股定理,得 BE =AE2+AB2=42+82=4 5. ∵△ABF ∽△BEC, ∴AF BC =AB BE , 即AF 5=845,∴AF =2 5.毕节中考考点梳理锐角三角函数的概念特殊角的三角函数值\ 锐角α α解直角三角形1.(2018·柳州中考)如图,在Rt △ABC 中,∠C =90°,BC =4,AC =3,则sin B =ACAB =( A )A .35B .45C .37D .34(第1题图)(第3题图)2.若∠A+∠B =90°,则下列各式成立的是( D )A .sin A =cos AB .tan A +tan B =1C .sin A =sin BD .sin A =cos B3.(2018·广州中考)如图,旗杆高AB =8 m ,某一时刻,旗杆影子长BC =16 m ,则tan C =__12__.4.(2018·滨州中考)在△ABC 中,∠C =90°,若tan A =12,则sin B =55.(2018·贵阳中考)如图①,在Rt △ABC 中,以下是小亮探究a sin A 与bsin B之间关系的方法:∵sin A =a c ,sin B =bc,∴c =a sin A ,c =bsin B ,∴a sin A =b sin B. 根据你掌握的三角函数知识.在图②的锐角△ABC 中,探究a sin A ,b sin B ,c sin C之间的关系,并写出探究过程.解:a sin A =b sin B =c sin C .证明如下:过A 作AD ⊥BC 于点D,过B 作BE ⊥AC 于点E.在Rt △ABD 中,sin B =ADc ,即AD =c si n B.在Rt △ADC 中,sin C =ADb ,即AD =b sin C.∴c sin B =b sin C,即b sin B =csin C .同理可得a sin A =csin C ,则a sin A =b sin B =csin C.6.(2018·遵义中考)如图,吊车在水平地面上吊起货物时,吊绳BC 与地面保持垂直,吊臂AB 与水平线的夹角为64°,吊臂底部A 距地面1.5 m .(计算结果精确到0.1 m ,参考数据sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1)当吊臂底部A 与货物的水平距离AC 为5 m 时,吊臂AB 的长为______m ; (2)如果该吊车吊臂的最大长度AD 为20 m ,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)解:(1)在Rt △ABC 中,∠BAC =64°,AC =5, ∴AB =ACcos 64°≈5÷0.44≈11.4.∴吊臂AB 的长为11.4 m .故应填:11.4; (2)过点D 作DH ⊥地面于点H,交水平线于点E.在Rt △ADE 中,AD =20,∠DAE =64°,EH =1.5,∴DE =sin 64°×AD ≈20×0.90=18.0,即DH =DE +EH ≈18.0+1.5=19.5.答:从地面上吊起货物的最大高度是19.5 m .中考典题精讲精练30°,45°,60°角的三角函数值例1 (2018·广安中考)计算:⎝ ⎛⎭⎪⎫13-2+|3-2|-12+6 cos 30°+(π-3.14)0.【解析】对照30°,45°,60°角的三角函数值表,然后按照实数的运算方法计算出结果.【答案】解:原式=9+2-3-23+6×32+1=12.解直角三角形例2 (2018·潍坊中考)如图,点M 是正方形ABCD 边CD 上一点,连接AM,作DE ⊥AM 于点E,BF ⊥AM 于点F,连接BE.(1)求证:AE =BF ;(2)已知AF =2,四边形ABED 的面积为24,求∠EBF 的正弦值.【解析】(1)由正方形的性质,可得BA =AD,∠BAD =90°.由DE ⊥AM,BF ⊥AM,可得∠ABF =∠DAE.对于△ABF 和△DAE,可由AAS 得到△ABF ≌△DAE,结论可证;(2)设AE =x,由(1)中结论可得BF =x,DE =AF =2.利用S 四边形ABED=S △ABE +S △ADE 可列方程求出x 得到EF 的长.在Rt △BFE 中利用勾股定理可求出BE 的长.最后利用正弦的定义可求结果.【答案】(1)证明:∵四边形ABCD 为正方形, ∴BA =AD,∠BAD =90°. ∵DE ⊥AM 于点E,BF ⊥AM 于点F, ∴∠AFB =∠DEA =90°,∴∠ABF +∠BAF =90°,∠DAE +∠BAF =90°, ∴∠ABF =∠DAE. 在△ABF 和△DAE 中, ⎩⎪⎨⎪⎧∠AFB=∠DEA,∠ABF=∠DAE,AB =DA ,∴△ABF ≌△DAE(AAS ),∴BF =AE ; (2)解:设AE =x,则BF =x,DE =AF =2. ∵四边形ABED 的面积为24, ∴12·x·x +12·x·2=24, 解得x 1=6,x 2=-8(舍去),∴EF =x -2=4. 在Rt △BEF 中,BE =42+62=213, ∴sin ∠EBF =EF BE =4213=21313.解直角三角形的应用例3 (2018·烟台中考)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40 km /h .数学实践活动小组设计了如下活动:在l 上确定A,B 两点,并在AB 路段进行区间测速.在l 外取一点P,作PC ⊥l,垂足为点C.测得PC =30 m ,∠APC =71°,∠BPC =35°.上午9时测得一汽车从点A 到点B 用时6 s ,请你用所学的数学知识说明该车是否超速.(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90)【解析】先根据角的正切分别得出AC =PC tan ∠APC,BC =PC tan ∠BPC,再根据线段的和与差得出AB 的长,继而根据速度=路程时间,求得该车通过AB 路段的车速.若该车通过AB 路段的车速超过40 km /h ,则该车超速;否则,该车没有超速.【答案】解:在Rt △APC 中,AC =PC tan ∠APC =30 tan 71°≈30×2.90=87. 在Rt △BPC 中,BC =PC tan ∠BPC =30 tan 35°≈30×0.70=21, 则AB =AC -BC =87-21=66, ∴该汽车的实际速度为666=11(m /s ).又∵40 km /h ≈11.1 m /s ,11<11.1, ∴该车没有超速.1.计算:|-2|-(2 019+2)0+⎝ ⎛⎭⎪⎫12-1+2 cos 30°-27.解:原式=2-1+2+2×32-33=3+3-3 3 =3-2 3.2.如图,在△ABC 中,∠BAC =90°,AB =AC,点D 为边AC 的中点,DE ⊥BC 于点E,连接BD,则tan ∠DBC 的值为( A )A .13B .2-1C .2- 3D .143.(2018·扬州中考)如图,在平行四边形ABCD 中,DB =DA,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E,连接AE.(1)求证:四边形AEBD 是菱形;(2)若DC =10,tan ∠DCB =3,求菱形AEBD 的面积. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥CE,∴∠DAF =∠EBF. ∵∠AFD =∠BFE,AF =FB, ∴△AFD ≌△BFE,∴AD =BE.∵AD ∥EB,∴四边形AEBD 是平行四边形. 又∵DB =DA,∴四边形AEBD 是菱形; (2)解:∵四边形ABCD 是平行四边形, ∴CD =AB =10,AB ∥CD, ∴∠ABE =∠DCB,∴tan ∠ABE =tan ∠DCB =3. ∵四边形AEBD 是菱形, ∴AB ⊥DE,AF =FB,EF =DF, ∴tan ∠ABE =EFBF =3.∵BF =102,∴EF =3102,∴DE =310. ∴S 菱形AEBD =12AB·D E =1210×310=15.4.如图,一块三角形空地上种植草皮绿化,已知AB =20 m ,AC =30 m ,∠A =150°,草皮的售价为a 元/m 2,则购买草皮至少需要( C )A .450a 元B .225a 元C .150a 元D .300a 元(第4题图)(第5题图)5.一个公共房门前的台阶高出地面 1.2 m ,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( B )A .斜坡AB 的坡度是10° B .斜坡AB 的坡度是tan 10°C .AC =1.2 tan 10° mD.AB=1.2cos 10°m6.(2018·重庆中考A卷)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7 m,升旗台坡面CD的坡度i=1∶0.75,坡长CD=2 m,若旗杆底部到坡面CD的水平距离BC=1 m,则旗杆AB的高度约为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)( B )A.12.6 mB.13.1 mC.14.7 mD.16.3 m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题解直角三角形模型
教学目标 1.熟悉特殊的三角函数,理解三角函数表示的意义,学会利用三角函数求线段长度和角度;
2.学会解决常考的解直角三角形题型。

重难点学会解决常考的解直角三角形题型
导案学案
教学流程
一、进门考(建议不超过10 分钟)
1. ( 2017?绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口 C 测得教学楼
顶部 D的仰角为18°,教学楼底部B的俯角为 20°,量得实验楼与教学楼之间的距离AB=30m.
( 1)求∠ BCD的度数.
( 2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20 °≈ 0.36 , tan18 °≈ 0.32 )
二、基础知识网络总结与巩固
知识回顾:三角函数中常用的特殊函数值。

函数名0°30°45°60°90°
sin α01
cos α10
tan α0无穷大
cot α无穷大10
1.解直角三角形的定义:
在直角三角形中,除直角外,共有 5 个元素,即 3 条边和 2 个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形。

2.解直角三角形的常用关系:
在 Rt △ ABC中,∠ C=90°,则:①
三边关系: a2+ b2= c 2;②两锐角关
系:∠ A+∠ B= 90 °;
③边与角关系: sin A=cos B=a
, cos A=sin B=
b
, tan A=a ;
c c b
④平方关系: sin 2 A cos2 A1
⑥倒数关系: tan A? tan(90°—A)=1
⑦弦切关系: tan A=sin A
cos A
3. 解直角三角形的两种基本类型————①已知两边长;②已知一锐角和一边。

注意:已知两锐角不能解直角三角形。

4.解非直角三角形的方法:
对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是:
①作垂线构成直角三角形;
②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。

5.常见的几种图形辅助线:
三、重难点例题启发与方法总结
类型一背靠背
例 1. ( 2017?恩施州)如图,小明家在学校 O的北偏东 60°方向,距离学校 80 米的 A 处,小华家在学校 O的南偏东 45°方向的 B 处,小华家在小明家的正南方向,求小华家到学校的距
离.(结果精确到 1 米,参考数据:≈ 1.41,≈ 1.73,≈ 2.45)
例 2( 2017?海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提
供的方案是:水坝加高 2 米(即 CD=2米),背水坡 DE的坡度 i=1 :1(即 DB:EB=1: 1),如图所示,已知 AE=4米,∠ EAC=130°,求水坝原来的高度 BC.
(参考数据: sin50 °≈ 0.77 , cos50 °≈ 0.64 , tan50 °≈ 1.2 )
巩固练习
70 米,用1.如图,两条互相平行的河岸,在河岸一边测得AB 为20 米,在另一边测得CD

测角器测得∠ACD=30°,测得∠BDC=45°,求两条河岸之间的距离.(≈ 1.7,结果保留整数)
2.( 2017?大连)如图,一艘海轮位于灯塔P 的北偏东60°方向,距离灯塔86n mile的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的 B 处,此时, B 处与灯塔 P 的距离约为n mile.(结果取整数,参考数据:≈ 1.7,≈ 1.4)
类型二母抱子
例 1.( 2017?邵阳)如图所示,运载火箭从地面L 处垂直向上发射,当火箭到达位于地面 R 处的雷达测得AR的距离是40km,仰角是30°, n 秒后,火箭到达角是 45°,则火箭在这n 秒中上升的高度是km.
A 点时,从
B 点,此时仰
例 2.( 2017?广安)如图,线段AB、 CD分别表示甲乙两建筑物的高,BA⊥ AD, CD⊥ DA,垂足分别为 A、 D.从 D 点测到 B 点的仰角α为60°,从 C 点测得 B 点的仰角β为30°,甲建筑物的高 AB=30 米
( 1)求甲、乙两建筑物之间的距离AD.
( 2)求乙建筑物的高CD.
巩固练习
1.( 2017?潍坊)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼层底为车库,高 2.5 米;上面五层居住,每层高度相等.测角仪支架离地 1.5 米,在 A 处测得五楼顶部点
D的仰角为60°,在 B 处测得四楼顶点 E 的仰角为30°, AB=14 米.求居民楼的高度(精确
到 0.1 米,参考数据:≈ 1.73)
2.( 2017?新疆)如图,甲、乙为两座建筑物,它们之间的水平距离BC为 30m,在 A 点测得
D点的仰角∠ EAD为 45°,在 B 点测得 D 点的仰角∠ CBD为 60°,求这两座建筑物的高度(结果保留根号)
类型三斜截式
例 1.( 2017?凉山州)如图,若要在宽AD为 20 米的城南大道两边安装路灯,路灯的灯臂BC 长2 米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?
例 2.如图,铜亭广场装有智能路灯,路灯设备由灯柱AC 与支架 BD共同组成(点 C 处装有安全监控,点 D 处装有照明灯),灯柱AC为 6 米,支架BD为 2 米,支点 B 到 A 的距离为4米, AC与地面垂直,∠ CBD=60°.某一时刻,太阳光与地面的夹角为 45°,求此刻路灯设备在
地面上的影长为多少?
巩固练习
1.如图,若要在宽AD为 20 米的城南大道两边安装路灯,路灯的灯臂BC长 2 米,且与灯柱AB成 120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂 BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?
四、课后强化巩固练习与方法总结(时间分配:10 分钟)
1.( 2017?恩施州)如图,小明家在学校O 的北偏东60°方向,距离学校80 米的 A 处,小华家在学校O的南偏东45°方向的 B 处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到 1 米,参考数据:≈ 1.41,≈ 1.73,≈ 2.45)
2.( 2017?呼和浩特)如图,地面上小山的两侧有A,B 两地,为了测量A,B 两地的距离,让一热气球从小山西侧 A 地出发沿与AB 成 30°角的方向,以每分钟40m的速度直线飞行,10 分钟后到达 C 处,此时热气球上的人测得CB与 AB成 70°角,请你用测得的数据求A, B 两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)
3.要在宽为36m的公路的绿化带MN(宽为 4m)的中央安装路灯,路灯的灯臂AD的长为 3m,且与灯柱CD成 120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB 与灯臂垂直.当
灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:
应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈ 1.732)。

相关文档
最新文档