8大学物理习题及综合练习答案详解
大学物理习题集(下,含解答)

大学物理习题集(下册,含解答)单元一 简谐振动一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
(4)题(5)题6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大学物理学练习册参考答案全

大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
大学物理习题与答案解析

根据匀加速直线运动的速度公 式$v = v_0 + at$,代入已知的 $v_0 = 2m/s$和$a = 3m/s^2$,以及时间$t = 3s$, 计算得到$v = 2m/s + 3 times 3m/s^2 = 11m/s$。
一物体做匀减速直线运动,初 速度为10m/s,加速度为2m/s^2,则该物体在速度减为 零时的位移是多少?
04
答案解析
根据公式$v = lambda f$,频率$f = frac{v}{lambda} = frac{3 times 10^{8}}{500 times 10^{-9}}Hz = 6 times 10^{14}Hz$;根据公式 $E = hnu$,能量$E = h times f = 6.626 times 10^{-34} times 6 times
题目
答案解析
计算氢原子光谱线波长与频 率的关系。
根据巴尔末公式,氢原子光 谱线波长与频率的关系可以
表示为λ=R*(1/n1^2 1/n2^2),其中λ是光谱线波 长,R是里德伯常数,n1和 n2分别是两个能级的主量子
数。
பைடு நூலகம்
题目
一束光照射到某金属表面, 求光电子的最大初动能。
答案解析
根据爱因斯坦光电效应方程,光 电子的最大初动能Ekm=hν-W, 其中h是普朗克常数,ν是入射光 的频率,W是金属的逸出功。因 此,通过测量入射光的频率和金 属的逸出功,可以计算出光电子
题目
一定质量的理想气体,在等容升温过 程中,不吸热也不放热,则内能如何 变化?
答案解析
根据热力学第一定律,等容升温过程 中,气体不吸热也不放热,则内能增 加。
热传递习题及答案解析
题目
《大学物理》(8-13章)练习题

《大学物理》(8-13章)练习题(2022年12月)第八章气体运动论1.气体温度的微观或统计意义是什么?2.理想气体状态方程的三种形式?PV=N KT, p=nkT, (n=N/V)3.气体的最概然速率、方均根速率、平均速率的关系是什么?4.气体分子的平均平动动能的表达式及其意义?5.理想气体的内能?6.气体分子的平均自由程是指?7.单原子分子、刚性双原子分子气体的自由度数目各是多少?8、理想气体的微观模型是什么?综合练习1. 在某容积固定的密闭容器中,盛有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 4p1. ;B. 5p1;C. 6p1;D. 8p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B.pV mT⁄; C. pV kT⁄; D. pV RT⁄.3. 压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为( )A. 52pV; B. 32pV; C. pV; D. 12pV。
4 刚性双原子分子气体的自由度数目为()。
A. 2B. 3C. 4D. 55.气体温度的微观物理意义是:温度是分子平均平动动能的量度;温度是表征大量分子热运动激烈程度的宏观物理量,是大量分子热运动的集体表现;在同一温度下各种气体分子平均平动动能均相等。
6. 设v̅代表气体分子运动的平均速率,v p代表气体分子运动的最概然速率,(v2̅̅̅)12代表气体分子运动的方均根速率。
处于平衡状态下理想气体,三种速率关系为( )A. (v2̅̅̅)12=v̅=v p;B. v̅=v p<(v2̅̅̅)12;C. v p<v̅<(v2̅̅̅)12;D. v p>v̅>(v2̅̅̅)12。
大学物理习题及综合练习答案详解

库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上,使它们之间的库仑力正好抵消万有引力,已知地球的质量M = 5.98l024kg ,月球的质量m =7.34l022kg 。
(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。
解:(1)设Q 分成q 1、q 2两部分,根据题意有 2221r MmG r q q k=,其中041πε=k即 2221q k q GMm q q Q +=+=。
求极值,令0'=Q ,得 0122=-kq GMmC 1069.5132⨯==∴k GMm q ,C 1069.51321⨯==k q GMm q ,C 1014.11421⨯=+=q q Q (2)21q m q M =Θ,k GMm q q =21 kGMm m q mq Mq ==∴2122 解得C 1032.61222⨯==kGm q , C 1015.51421⨯==m Mq q ,C 1021.51421⨯=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形的重心上。
为使每个负电荷受力为零,Q 值应为多大?解:Q 到顶点的距离为 l r 33=,Q 与-q 的相互吸引力为 20141rqQ F πε=, 两个-q 间的相互排斥力为 220241l q F πε=据题意有 10230cos 2F F =,即 2022041300cos 412rqQl q πεπε=⨯,解得:q Q 33= 电场强度7-3 如图7-3所示,有一长l 的带电细杆。
(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元d x 对P 点的点电荷q 0 的电场力为何?q 0受的总电场力为何?(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。
解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为200200)(d 41)(d 41d x a l x q x a l q q F -+=-+=λπεπεq 0受的总电场力 )(4)(d 4000200a l a l q x a l xq F l+=-+=⎰πελπελ00>q 时,其方向水平向右;00<q 时,其方向水平向左q 0 图7-3a λ lP x q-q-q-ll rQ rr(2)在x 处取线元d x ,其上的电量x kx x q d d d ==λ,它在P 点的电场强度为2020)(d 41)(d 41d x a l xkx x a l q E P -+=-+=πεπε)ln (4)(d 40020al aa l k x a l x x kE lP ++=-+=∴⎰πεπε 方向沿x 轴正向。
(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理综合练习答案

擦不计,物体与台面间摩擦系数为,试计算台面对物体的摩擦力
的功以及物体的初速V0 。
L
V0
解:当物体滑至前端到达
x时摩擦力可表示为
f
滑道
m
xg
i
L
mg i
x (0 x L)
( x L)
L
台面
S
则全过程摩擦力的功为:
Af
f dl
L
0
m L
xg dx
S
mg dx
L
mg(S
L) 2
2.质量m=1Kg的物体,在坐标原点处从静止出发在水平面内沿X轴
运动,其所受合力方向与运动方向相同,合力大小为F=3+2x(SI),
那么物体在开始运动的3m内,合力所做功W=
其速率V=
6m/s
。
a F /m 3 2x
a dV / dt V dV / dx
18J
F
dr;且 03x(3=32mx)时i d,x i
移到相应的b、c、d 各点,设移动过程中电场力所做功分别为A1、
A2、A3,则三者的大小关系是: A1 A2 A3 。a
A q0U AB ,球面为-Q的一个等势面
5.在一个不带电的导体球壳内,先放进一电量为
Q
o
b c
d
填空题4
+q的点电荷,点电荷不与球壳内壁接触,然后使该球壳与地接触一
下,再将点电荷+q取走,此时球壳的电量为 -q ,电场分布的范
m l
x1g
T1
m l
x1a
(T1
T2 )R
J
(1 MR2 2
m R R2 )
l
a
S
大学物理习题与答案解析

dvy dt
kv
2 y
v dvy kdt
2 y
设入水时为计时起点,水面为坐标原点, 0 时,y=0, v y v0 , t 运动过程中t时刻速度为 v y ,将上式两侧分别以 v y和t为积分变量, k 以 和 y 2 为被积函数作积分得: v
v v0 (kv0 t 1)
x x0 vdt A costdt A sin t
0 0
t
t
x A sin t
大学物理
4、一质点在XOY平面内运动,其运动方程为 x at , y b ct 2 式中a、b、c为常数,当质点运动方向与x 轴成 450角时,它的速率为 v 2a 。
则解得
2 t 9
3
3
2 于是角位移为 2 3t 2 3 0.67(rad) 9
大学物理 2 4、一质点作平面运动,加速度为 ax A cost , a y B 2 sin t ,A B,A 0 ,B 0。当 t 0
时,v x 0 0 ,x0 点的运动轨迹。
2 2 t 1s时,v 2e i 2e j (m/s)
t 1s时,a 4e2i 4e2 j (m/s2 )
dv 2t 2t a 4e i 4e j (m/s 2 ) dt
dr 2t 2t v 2e i 2e j (m/s) dt
0
大学物理 6、一质点沿x轴作直线运动,在 t 0时,质点位于x0 2m
2 处,该质点的速度随时间的变化规律是 v 12 3t , 当质点瞬时静止时,其所在的位置和加速度分别为(A) x=来自6m, a=-12 m/s2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导体8-1两个同心导体球壳A 和B ,A 球壳带电+Q ,现从远处移来一带+q 的带电体(见图8-1),试问(请阐明理由):(1)两球壳间的电场分布与无+q 时相比有无变化?(2)两球壳间的电势差是否变化?(3)两球壳的电势是否变化?(4)如将B 球壳接地,上述(1)、(2)、(3)的情况又如何? 解:(1)由于静电屏蔽作用,+q 对两球壳间的电场没有影响。
(2)由⎰⋅=B A AB l E U ϖϖd 可知,由于E ϖ不变,所以AB U 不变,即两求壳间的电势差不变。
(3)由电势叠加原理,+q 使两球壳的电势升高。
(4)B 球壳接地,由于屏蔽作用,两球壳间的电场分布不变,从而AB U 不变。
因B 球壳接地,电势不变,所以A 球壳电势也不变。
8-2半径为R 1的导体球A ,带电q ,其外同心地套一导体球壳B ,内外半径分别为R 2和R 3(见图8-2),且R 2=2R 1,R 3=3R 1。
今在距球心O 为d =4R 1的P 处放一点电荷Q ,并将球壳接地。
问(1)球壳B 所带的净电荷Q ’ 为多少?(2)如用导线将导体球A 与球壳B 相连,球壳所带电荷Q ” 为多少? 解:(1)根据静电平衡条件,A 球上电荷q 分布在A 球表面上,B 球壳内表面带电荷-q 。
由高斯定理可得,R r R 21<<:0204r r q E ϖϖπε=A 球电势 10210208)11(4d 4d 21R q R R q r rq l E U R R BAA πεπεπε=-==⋅=⎰⎰ϖϖ 设B 球壳外表面带电荷q ’,由电势叠加原理,A 球球心处电势40302010044'44R Q R q R q R q U πεπεπεπε++-+=1010********'244RR q R q R q πεπεπεπε++-= 1010104434'8R Q R q R q πεπεπε++=108R q U A πε==, Q q 43'-=∴ B 球壳所带净电荷 q Q q q Q --=-=43''(2)用导线将和相连,球上电荷与球壳内表面电荷相消。
Q q Q 43'"-==∴ 8-3两带有等量异号电荷的金属板A 和B ,相距5.0mm ,两板面积都是150cm 2,电量大小都是2.66×l0-8C ,A 板带正电并接地(电势为零),如图8-3所示。
略去边缘故应,求(1)两板间的电场强度E ϖ;(2)B 板的电势;(3)两板间离A 板1.0mm 处的电势。
解:建立如图所示的坐标系,左右板的电荷面密度分别为σ+和σ-。
(1)两板间的电场强度i SQ i i i E E E ϖϖϖϖϖϖϖ000022εεσεσεσ==+=+=右左N/C 100.2105.11085.81066.252128i i C ϖϖ⨯=⨯⨯⨯⨯=--- 图8-1(2)V 100.1100.5100.2d d 3350⨯-=⨯⨯⨯-=⋅-=-=⋅=-⎰⎰B x ABB x E x E l E U Bϖϖ(3)V 0.200d 00.1310-=-=⎰-⨯x E U 8-4点电荷q 处在导体球壳的中心,壳的内外半径分别为R 1和R 2(见图8-4)。
求电场强度和电势的分布,并画出E - r 和U - r 曲线.。
解:将空间分为三个区域,根据静电平衡时电荷分布和高斯定理可得 1R r <: 02014r r q E ϖϖπε=; R r R 21<<: 02=E ϖ;2R r >: 02034r r q E ϖϖπε=电势分布1R r <:)111(4d d d 2103121R R r qr E l E l E U r R rr+-=⋅+⋅=⋅=⎰⎰⎰∞∞πεϖϖϖϖϖϖ 21R r R ≤≤:2034d d 2R q r E l E U r rπε=⋅=⋅=⎰⎰∞∞ϖϖϖϖ2R r >:rq l E U r034d πε=⋅=⎰∞ϖϖ电介质8-5三平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 间相距2.0mm ,B 、C 两板都接地(见图8-5)。
如果使A 板带正电3.0×10-7C ,在忽略边缘效应时,(1)求B 和C 板上的感应电荷以及A 板的电势;(2)若在A 、B 板间充满相对介电常数为εr =5的均匀电介质,求B 和C 板上的感应电荷以及A 板的电势。
解:(1)外侧面上电荷为零,其它面由左至右分别设为1、2、3、4面。
A q S S =+32σσΘ,AB AC U U ∆=∆,即 AB AC d d 0302εσεσ= 322σσ=∴,得:S q A 33=σ,SqA 322=σ S q A 3221-=-=∴σσ, SqA 334-=-=σσ3C 1023271-⨯-=-==∴A C q S q σ,C 101374-⨯-=-==A B qS q σ V 1026.2323002⨯===AC AAC A d Sq d U εεσ (2)AB r AC d d εεσεσ0302=Θ3252σσ=∴ 可得 S q A 753=σ Sq A 722=σ S q A 7221-=-=∴σσ,S q A 7534-=-=σσ,C 10767271-⨯-=-==∴A C q S q σ C 107157574-⨯-=-==A B q S q σ,V 1070.9722002⨯===AC A AC A d S q d U εεσ 8-6在一半径为R 1的长直导线外,套有内外半径分别为R 1和R 2、相对介电常数为εr 的护套。
设导线沿轴线单位长度上的电荷为λ,求空间的P E D ϖϖϖ、、。
解:取同轴长为l ,半径为r 的圆柱面为高斯面,由高斯定理rl D S D Sπ2d ⋅=⋅⎰ϖϖ1R r <:02=⋅rl D π,0=∴D ϖ,0=E ϖ,0=P ϖR r R 21<<:l rl D λπ=⋅2,02r rD ϖϖπλ=∴,0002r r DE r r ϖϖϖεπελεε== 002)11(r rE P r e ϖϖϖπλεεχ-==2R r >:l rl D λπ=⋅2, 02r rD ϖϖπλ=∴,0002r r D E ϖϖϖπελε==, 00==E P e ϖϖεχ 8-7半径为R 0的金属球,带电+Q ,置于一内外半径分别为R 1和R 2的均匀介质球壳中,介质的相对介电常数为εr ,如图8-7所示。
求:(1)电场强度和电位移分布;(2)电势分布;*(3)介质中的电极化强度;*(4)介质壳内外表面上的极化电荷面密度。
解:(1)作一半径为r 的同心球面为高斯面,由高斯定理0R r <:01=E ϖ10R r R <<: Q r D S D S =⋅=⋅⎰2224d πϖϖ,0224r rQ D ϖϖπ=∴,0200224r r Q D E ϖϖϖπεε== 21R r R <<: Q r D S D S =⋅=⋅⎰2334d πϖϖ,0234r r Q D ϖϖπ=∴,0200334r r Q D E r r ϖϖϖεπεεε== 2R r >:Q r D S D S =⋅=⋅⎰2444d πϖϖ,0244r r Q D ϖϖπ=∴,0200344r r Q D E ϖϖϖπεε==3(2)0R r <:r E r E r E l E l E U R R R R R R rrϖϖϖϖϖϖϖϖϖϖd d d d d 221143211⋅+⋅+⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞⎰⎰⎰∞++=2211d 4d 4d 4202020R R R r R R r r Q r r Q r r Q πεεπεπε]1)11(1)11[(4221100R R R R R Q r +-+-=επε 10R r R <<:r E r E r E l E U R R R R rrϖϖϖϖϖϖϖϖd d d d 22114322⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞]1)11(1)11[(422110R R R R r Qr +-+-=επε 21R r R <<:r E r E l E U R R rrϖϖϖϖϖϖd d d 22433⋅+⋅=⋅=⎰⎰⎰∞∞]1)11(1[4220R R r Q r +-=επε 2R r >: r E l E U rrϖϖϖϖd d 44⋅=⋅=⎰⎰∞∞rQ 04πε=(3)02304)11(rr Q E P r e ϖϖϖπεεχ-== (4)R 1处介质壳内表面的法向指向球心,与P ϖ反向 n P ϖϖ⋅=∴'1σ214)11(R Qrπε--= R 2处介质壳外表面的法向向外,与P ϖ同向,n P ϖϖ⋅=∴'2σ224)11(R Q r πε-=电容器8-8平行板电容器,极板而积为S ,板间距为d 。
相对介电常数分别为εr1和εr2的两种电介质各充满板间的一半,如图8-8所示。
(1)此电容器带电后,两介质所对的极板上自由电荷面密度是否相等?为什么?(2)此时两介质内的电位移大小D 是否相等?(3)此电容器的电容多大? 解:(1)设左右两侧极板上的电荷面密度分别为1σ±和2σ±,因两侧电势差相等d E d E 21=∴ 即 21E E =,有 202101r r εεσεεσ= 即2211r r εσεσ=,21r r εε≠Θ 21σσ≠∴ (2)对平行板 σ=D ,由21σσ≠ 可知 21D D ≠图8-8图8-7(3)左右两侧电容分别为dSC r 2101εε=,dSC r 2202εε=,两电容并联 )(221021r r dDC C C εεε+=+=8-9由半径为R 2的外导体球面和半径为R 1的内导体球面组成的球形电容器中间,有一层厚度为d 、相对介电常数为εr 的电介质,其中d <R 2—R 1,求该电容器的电容。
解:设两倒替球面分别带电荷Q +和Q -。
由高斯定理d R r R +<<11:02014r r Q E r ϖϖεπε=;21R r d R <<+:02024r r Q E ϖϖπε=两球壳间的电势差为r E r E l E U R dR dR R R R ϖϖϖϖϖϖd d d 21112121⋅+⋅=⋅=∆⎰⎰⎰++⎰⎰+++=2111d 4d 42020R dR dR R r r r Q r r Q πεεπε)]11()11(1[421110R d R d R R Qr-+++-=επε)(4)]([12101212d R R R d R R R d R Q r r +--+=επεε )()(412121210d R R R d R d R R R U QC r r --++=∆=∴εεπε 电场能量8-10一个电容器电容C 1=20.0μF ,用电压V =1000V 的电源给该电容器充电,然后拆下电源,并用另一不带电的电容器C 2接于原来电源处,已知C 2=5.00 μF 。