烯烃的结构和顺反异构
合集下载
烯烃

二、烷烃、烯烃的结构和化学性质比较
烷烃 通式 代 表 物 结构 特点 CnH2n+2(n≥1) CH4 全部单键;饱和链烃;四面体 结构 烯烃 CnH2n(n≥2) CH2 CH2
含碳碳双键;不饱和链烃;平面形分子, 键角 120°
续表 烷烃 取代反 应 加成反 化 学 性 质 应 光照卤代 — 燃烧火焰 氧化 反应 较明亮 不 与 KMnO4 酸 性溶液反应 加聚 反应 不能发生 能发生 烯烃 — 能与 H2、X2、HX、H2O、HCN 等发生加 成反应 燃烧火焰明亮,带黑烟
解析:解答时,关键是要充分考虑单烯烃结构的对称性。 答案:(1)7 单烯烃结构以 C CHCH(CH3)2 C 为中心对称 (2)CH3CH2CH (CH3)2CHCH CHCH2CH3
知识点 3 烯烃的顺反异构
【例题 3】下列各组物质中,能形成顺反异构体的是( A.1,2 二氯丙烯 B.丙烯 C.1,1 二氯丙烯 D.1 丁烯 )。
解析:1,2 二氯丙烯存在顺 1,2 二氯丙烯(
)和反 1,2 二氯
丙烯(
)。
答案:A 点拨:若有机物分子存在顺反异构,一要含有碳碳双键,二是两个不饱和碳原 子上,一定分别连有不同的原子或原子团,若同一个不饱和碳原子上连有相 同原子或原子团,则不存在顺反异构。
一、烯烃的物理性质及其变化规律
烯烃都是无色物质,不溶于水而易溶于苯、乙醚等有机溶剂,密度比水 小。 (1)分子中的碳原子数≤4 的烯烃在常温常压下都是气体,其他烯烃在常 温常压下是液体或固体。 且随着分子中碳原子数的增加,常温下烯烃的状态 也由气态逐渐过渡到液态或固态。 (2)熔沸点一般较低,其变化规律是: ①组成与结构相似的物质(即同系物),相对分子质量越大,其熔沸点越 高。 ②相对分子质量相近或相同的物质(如同分异构体),支链越多,其熔沸 点越低。 ③组成与结构不相似的物质,当相对分子质量相同或相近时分子的极 性越大,其熔沸点越高。
烯烃(二)

2
+ HOCl
CH 3 -CH-CH OH Cl
2
反应遵守马氏规则,因卤素与水作用成次卤酸(H-OCl),在次卤酸分子中氧原子的电负性较强,使之极化 成
HO
δ
Cl
δ
,氯成为了带正电荷的试剂。
3、加水反应 烯烃直接水合生成醇的反应需在酸催化下进行(常用
的酸为硫酸或磷酸)。
CH
2 = CH 2
+
H 2O
起反应。故烯烃的加卤素实际上是指加氯或加溴。
应当指出的是:烯烃还可与I—Cl、I—Br按马氏规则加 成。
2)烯烃也能与卤水等(混合物)起加成反应,
CH 2 =CH
2
+ HOCl (Cl 2 +H 2 O)
CH 2 OH
CH Cl
2
是制取重要有机合成原料 环氧乙烷( O )的中间体
氯乙醇
CH 3 CH=CH
(E )-1 - 氯 -2 - 溴 丙 烯
CH
3
CH
3
CH 2 CH 2 CH C=C
2
3
CH 3 CH 2 - > CH (CH 3 ) 2 CH- > CH
33 CH 2 CH 2 -
2、
CH 3 CH
CHCH CH
3
3
(Z)-3-甲基-4-异丙基庚烷
Br
3、
Cl C=C H
Br > Cl
Cl
Cl > H
H2 O 2
硼氢化 – 氧化反应,是用末端烯烃来制取伯醇的好方法, 其操作简单,副反应少,产率高。在有机合成上具有重要
的应用价值。
硼氢化反应是美国化学家布朗(Brown)与1957年发现的,
烯烃

(CH3)3C
+
>
(CH3)2CH
+
>
CH3CH2
+
>
CH3
+
这是因为带正电荷的碳原子具有吸电子能力, 而甲基是斥电子基,中心碳上连接的甲基越多,正电
荷就越低,分散程度越高,体系越稳定。
+ CH3CHCH3 + CH3CH2CH2
CH3CH CH2+ H+
CH3
CH X
CH3 主产物
碳碳双键上所连基团(或原子),不仅影响加HX 的取向,还影响双键的反应活性。
X C C + H—X
H C C
H C C
+
H C C
+
H +X C C X
H C C X
2、 区域选择性和反应活性
CH3 CH CH2 + HBr CH3 CH CH3 Br 2-溴丙烷
CH3 CH2 CH2 Br 1-溴丙烷
1869 年马尔可夫尼可夫( Markovnikov)得出一条 经验规律:当不对称烯烃与不对称试剂进行加成时,试 剂中的氢原子或带正电荷的部分加到含氢较多的双键碳 原子上,而试剂中带负电荷的部分加到含氢较少的双键 碳原子上。这一规则称为马尔可夫尼可夫规则,简称马 氏规则。
CH3 CH CH2 H Br
反马氏规则:氢加到含氢较少的碳原子上。
(二) 加硫酸
CH3CH CH2+ HOSO3H
H—OH
CH3CH CH3 OSO3H
CH3
CH OH
CH3
烯烃间接水合法
烯烃在催化剂、高温、高压下可以直接水化:
CH2
CH2+ H2O
04 烯 烃

RCH OH
CH2
注:
加成产物符合马氏规则。
应用:①间接法合成符合马氏规则的醇; ②硫酸氢烷基酯能溶于浓硫酸, 可用于鉴别、分离提纯烯烃。
(3)与H2O的加成
水是一种弱酸,需在H+作催化剂的条件下才能进行。
CH2 CH2
+ H H2O
CH3 CH2OH
H
+
CH3CH CH2
+H2O
(CH3)2CHOH
CH 2=CH 2
Br2 H2O NaCl
CH 2 CH 2 + Br Br
CH 2 CH 2 + CH 2 CH 2 Br Cl Br OH
3)有重排现象 4)符合马氏规则 5)反式加成
3、自由基加成——过氧化效应
CH3CH CH2
+ +
HBr
hν 或 过氧化物
CH3CHBrCH3+ CH3CH2CH2Br
表5-2 一些烯烃的氢化热
名 称 乙烯 丙烯 1-丁烯 顺-2-丁烯 反-2-丁烯 2,3-二甲基 -2-丁烯 构 造 式 氢 化 热 △H/kJ· mol-1 137 126 127 120 115 112
CH2
CH3CH
CH2
CH2
CH 2
CH 3 H
CH 3CH 2CH
CH 3 H
C
C
CH3 H
烯 烃
烯烃--分子中有一个碳碳双键的开链不饱和烃. 烯烃的通式--CnH2n
>C=C< 是烯烃的官能团.
第四章 烯 烃
一、烯烃的结构
物理方法证明
1. 碳、氢原子共平面。 2.键角接近120°; 3.双键键长0.133nm,比单键键 长0.154nm短;
第6章烯烃

CC
HX
C C + HX -消除
二、 醇脱H2O
CH3CH2CH(OH)CH3
H2SO4 加热
CH3CH
81%
OH
-消除,符合扎 依采夫规则
CHCH3 + CH3CH2CH CH2 19%
H2SO4 , 140℃
三、消除反应机理
1.双分子消除反应 — E2机理
H
RO-
CC
X
-
RO H
C C -
(5)反-2-丁烯
CH3C CH2 CH3
ΔHr=114.7kJ/mol
碳干异构 (3)异丁烯
结论 置异构 烯烃稳定性顺序:双键碳上烷基越多的烯烃越稳定。
R2C=CR2 > R2C=CHR > R2C=CH2 > RCH=CHR > RCH=CH2 > CH2=CH2
第三节 烯烃的制法
一、一卤代烃脱HX
(4) 反应温度的影响:温度高,有利于消去
CH3CHCH3 + OH- 80%C2H5OH Br
OH
OC2H5
CH3CHCH3 + CH3CHCH3 + CH3CH=CH2
SN
E
50oC
42%
58%
80oC
39%
61%
100oC
34%
66%
结论 采用体积较大的强碱,在较高的温度下反 应,主要得到消去产物。
CH3
C CH3 + CH2=C CH3 OCH2CH3
9%
91%
SN2
难
易
3oRX 2oRX 1oRX CH3X
易
E1、E2
烯烃

H C H H
丙烯分子中的超共轭效应
CH3 稳定性: CH3C=CHCH3 CH3
C
C H
H H H
H C H
δ+
δ
-
CH = CH 2
CH3
>
CH2 = CCH2CH3
>
CH3CHCH=CH2
上海交通大学化学化工学院
1.亲电加成: 1.亲电加成 亲电加成: (1)加卤素 ) 烯烃容易与卤素进行加成反应。 烯烃容易与卤素进行加成反应。
H H
上海交通大学化学化工学院
上海交通大学化学化工学院
二. 烯烃的同分异构和命名 1.构造异构:包括碳干异构和双键的位置异构。通式 构造异构:包括碳干异构和双键的位置异构。 构造异构 CnH2n 例如: 例如:
CH3 CH2 CH3
上海交通大学化学化工学院
CH2
CH(CH2)15CH3
1-十八碳烯 乙烯基
CH2
CH
CH3CH
CH2
CH2
CH
C CH3
CH2
丙烯基
异丙烯基
CHΒιβλιοθήκη 烯丙基(2).顺反异构体的命名 对于取代基不同的烯烃,很难用顺或反来表示,则用Z, 表示 表示。 对于取代基不同的烯烃,很难用顺或反来表示,则用 ,E表示。
上海交通大学化学化工学院
氢化热大小的次序为: 甲基 甲基–1–丁烯 丁烯>2–甲基 丁烯 甲基-1–丁烯 氢化热大小的次序为:3–甲基 丁烯 甲基 丁烯>2–甲基 甲基 -2–丁烯,就是说碳碳双键上烷基越多,氢化热越小,烯烃也就 丁烯, 丁烯 就是说碳碳双键上烷基越多,氢化热越小, 越稳定。 越稳定。
C C X2 X C C X
第六章 烯烃

H3C
2) 单分子消除反应,E1 ) 单分子消除反应, (CH3)3C―Cl + C2H5OH
υ = k [(CH3)3C-Cl]
(CH3)2C = CH2 单分子历程
E1反应与S 反应有相似的历程,都是通过形成碳正离子进行。 E1反应与SN1反应有相似的历程,都是通过形成碳正离子进行。 反应与
E1反应机理 E1反应机理
eg 1
CH3 CH3 C CH CH2 CH3
BrCH2 CH3
C
C
CH3 CH2CH3
3,3-二甲基3,3-二甲基-1-丁烯
反-2,3-二甲基-1-溴-2-戊烯 2,3-二甲基2,3-二甲基(E)- 2,3-二甲基-1-溴-2-戊烯
顺反:相同基团在双键同侧为顺式,反之为反式; 区 顺反:相同基团在双键同侧为顺式,反之为反式; 别 Z E:按“顺序规则”排序,较优基团在双键同侧为 , 顺序规则”排序,较优基团在双键同侧为Z, : 反之为E。 反之为 。
反应机理表明 *1 E2机理的反应遵循二级动力学。 机理的反应遵循二级动力学。 机理的反应遵循二级动力学 *2 卤代烷 反应必须在碱性条件下进行。 卤代烷E2反应必须在碱性条件下进行。 反应必须在碱性条件下进行 *3 两个消除基团必须处于反式共平面位置。 两个消除基团必须处于反式共平面位置。 *4 在E2反应中,不会有重排产物产生。 反应中, 反应中 不会有重排产物产生。
CH3CH2O─+ H-CH2CH2–Br
[CH3CH2O δ─…H…CH2–CH2…Br δ─] 过渡态
CH2 = CH2 + CH3CH2OH
E2反应的能线图与S 反应类似。 E2反应的能线图与SN2反应类似。 反应的能线图与
烯烃的结构 顺反异构`e-z标记法次序规则

例如:
5.5.2 亲电加成反应
亲电试剂——具有亲电性能的试剂。 亲电加成反应——由亲电试剂作用而引起的反应。
(1)与卤化氢的加成
RCH=CHR’ + HX RCH2-CHXR’
亲电试剂
卤烷
X=Cl,Br,I
卤化氢对双键加成的活性次序一般为: HIHBrHCl
亲电加成反应历程:
碳 正 离 子
第一步是决定反应速度的步骤
第五章
烯烃
主要内容
❖ 烯烃的构造异构,命名,烯基 ❖ 烯烃的结构 ❖ 顺反异构、E-Z标记法—次序规则 ❖ 烯烃的来源和制法
❖ 烯烃的物理性质
❖ 烯烃的化学性质、亲电加成反应历程
不饱和烃(unsaturated hydrocarbons)
含有碳碳双键或碳碳叁键的脂肪族碳氢化 合物称为不饱和脂肪烃,简称不饱和烃。
引发剂——自由基链反应引发剂,如过氧化物
乙丙橡胶
共聚反应
jSgPdLaI7F3C0y)v&s#pXmUiR fNcK9H5E2B+ x(u$rZ oWkT hQeMbJ8G4D 1z- w*t!qYnVjSgOdLaI6F3C0y) v%s#pXlUi RfNcK8H5E2A+ x(u$r ZnWkT hPeMbJ7G4C 1z- w&t!qYmVj RgOdL9I6F3B0y) v% s#oXlU iQfNcK8H5D2A+ x*u$rZnWkShPeMaJ7G4C1z) w&t!pYmVjRgOcL9I6E3B0y( v%r#oXl TiQfN bK8G5D2A- x* u$qZnWkShPdMaJ7F 4C1z) w&s!pYmUjRgOcL9H 6E3B+ y( v%r#oWlTi QeNbK8G5D1A- x*t$q
5.5.2 亲电加成反应
亲电试剂——具有亲电性能的试剂。 亲电加成反应——由亲电试剂作用而引起的反应。
(1)与卤化氢的加成
RCH=CHR’ + HX RCH2-CHXR’
亲电试剂
卤烷
X=Cl,Br,I
卤化氢对双键加成的活性次序一般为: HIHBrHCl
亲电加成反应历程:
碳 正 离 子
第一步是决定反应速度的步骤
第五章
烯烃
主要内容
❖ 烯烃的构造异构,命名,烯基 ❖ 烯烃的结构 ❖ 顺反异构、E-Z标记法—次序规则 ❖ 烯烃的来源和制法
❖ 烯烃的物理性质
❖ 烯烃的化学性质、亲电加成反应历程
不饱和烃(unsaturated hydrocarbons)
含有碳碳双键或碳碳叁键的脂肪族碳氢化 合物称为不饱和脂肪烃,简称不饱和烃。
引发剂——自由基链反应引发剂,如过氧化物
乙丙橡胶
共聚反应
jSgPdLaI7F3C0y)v&s#pXmUiR fNcK9H5E2B+ x(u$rZ oWkT hQeMbJ8G4D 1z- w*t!qYnVjSgOdLaI6F3C0y) v%s#pXlUi RfNcK8H5E2A+ x(u$r ZnWkT hPeMbJ7G4C 1z- w&t!qYmVj RgOdL9I6F3B0y) v% s#oXlU iQfNcK8H5D2A+ x*u$rZnWkShPeMaJ7G4C1z) w&t!pYmVjRgOcL9I6E3B0y( v%r#oXl TiQfN bK8G5D2A- x* u$qZnWkShPdMaJ7F 4C1z) w&s!pYmUjRgOcL9H 6E3B+ y( v%r#oWlTi QeNbK8G5D1A- x*t$q
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•键没有轴对称,不能左右旋转.
*
乙烯的成键轨道和 *反键轨道
反 键 轨 道
成 键 轨 道 乙烯的成键轨道和 *反键轨道形成示意图
•组成键的电子称为 电子; •组成 键的电子称为 电子;
(4) 碳碳单键和双键电子云分布的比较
C-C 键
C-C 键
电子云不易与外界接近 电子云暴露在外.易接近亲电试剂
I>Br>Cl>S>P>F>O>N>C>D(氘1中子)>H
-Br > -OH > -NH2 > -CH3 > -H (2)若双键碳原子直接相连第一原子的原子序数相同,则 比较以后的原子序数
-CH2CH3 > -CH3 (3)取代基为不饱和基团,应把双键或三键原子看成是它 以单键和多个原子相连:
CC
CCC C
347kJ/mol
断裂双键需要611kJ/mol; 双键使烯烃有较大的活性
说明碳碳 键断裂需要264kJ/mol
CC
CC
键能: 610 kJ / mol
345.6 kJ / mol
键长: 0.134。nm
键角: ~120
0.154 。nm
109.5 键键能:264 kJ/mol
π键的特性
1. C=C 双键不能自由旋转 ----没对称轴
-CH=CH2 相当于-CH-CH2 ,-CC 相当于 -C - CH
4. 顺 / 反或(Z)/(E)-----放在最前面
CH3 C
CH3CH2
1 23
CH3 CH-CH3 C
CH2CH2CH2CH3
4567 8
(E)-3-甲基-4-异丙基-3-辛烯
CH3 C
H
CH3 C
C2H5
顺- 3-甲基-2-戊烯 (E )-3-甲基-2-戊烯
-CCl3>-CHCl2>-COCl>-CH2Cl>-COOR>COOH>....
例1:
Br
Cl
C=C
(Z) -1-氯-2-溴丙烯
例2:
H3C
H
H3C
CH2CH2CH3
C=C
(E)-3-甲基-4-乙基-3-庚烯
CH3CH2
CH2CH3
例3: Br
Cl
C=C
(Z)-1,2-二氯-1-溴乙烯
Cl
H
注意: 顺式不一定是Z构型;反式不一定是E构型.
•双键上的碳采取 sp2杂化,形成处于 同一平面上的三个 sp2 杂化轨道
(2) sp2杂化轨道
sp2杂化轨道和乙烯的键
sp2杂化轨道形状
(3) 乙烯的键
C: 2s12px12py12pz1 碳原子上未参加杂化的p轨道,
它们的对称轴垂直于乙烯分子 所在的平面,它们相互平行以侧 面相互交盖而形成键.
a
a
C=C
a
b
a
c
C=C
a
d
• 顺反异构体,因几何形状(结构)不同,物理 性质不同。
例如:
顺-(cis )
(相同的原子或基团在同侧)
CH3 C=C
H
CH3 H
CH3
CH3
C=C
H
Cl
顺-2-丁烯
顺-2-氯-2-丁烯
CH3
H
C=C
H
CH3
CH3CH2
CH3
C=C
H
H
反-2-丁烯
顺-2-戊烯
反- (trans )
(1)Z构型
a
b
C=C
a’
b’
(a>a’,b<b’;a<a’,b>b’)
(2) E 构型
Z-次序在前的取代基(a和 b)在双键的同侧; E- 次序在前的取代基(a和 b)在双键的异侧
a,a’,b,b’为次序,由次序规则定.
•E-Z标记法—次序规则
(1)首先由和双键碳原子直接相连原子的原子序数决定, 大的在前:
•键电子云集中在两核之间,不易与外界试剂接近;
•双键是由四个电子组成,相对单键来说,电子云密度更大; 且构成键的电子云暴露在乙烯分子所在的平面的上方和 下方,易受亲电试剂(+)攻击,所以双键有亲核性 (-).
(5) 乙烯的结构对键长,键角的影响
甲烷的H-C-H键角109.5º C-C单键长:0.154nm C=C双键键长:0.133nm 断裂乙烷C-C 单键需要
补充——二烯烃的命名
(作业P63第5题)
H CH3
C=C H
C=C H
H CH3
(1)(2Z,4Z)-2,4-己二烯 (北大)
2. π键比σ键不稳定
从键能看 610 - 345.6 =264.4 kJ / mol
双键能 单键能 破坏π键的能量
从结构看
3. π电子流动性较大,π电子云容易被极化
键的特点是:成键不牢固,易断裂,是发生化学反应的部 位。以键相连的二个原子不能做相对旋转。
σ键和π键的主要特点
存在
σ键
可以单独存在
形成
(相同的原子或基团在异侧)
3.3 E-Z标记法—次序规则
若顺反异构体的双键碳原子上没有相同基团,顺反 的命名发生困难.
Br
Cl
Br
H
C=C
C=C
CH3
H
CH3
Cl
IUPAC规定: E - Entgegen-表示“相反” Z - Zusammen-表示“共同”
同碳上下比较
a
b
C=C
a’
b’
(a>a’,b>b’; a<a’ ,b<b’)C=C Nhomakorabeab
b
a
b
C=C
b
a
顺式(两个相同基团处于双键同侧) 反式(异侧)
• 只要任何一个双键上的同一个碳所连接的两个 取代基是相同的,就没有顺反异构.
• 命名:在前加一顺(cis-)或反(trans-)字表示.
注意: 只要任何一个双键上的同一个碳所连接的两
个取代基是相同的,就没有顺反异构.
•下列结构没有顺反异构
第三章 烯烃和炔烃
蒋金龙
淮阴工学院化学工程学院
3.2 烯烃的结构
3.2.1 乙烯的结构
一、物理方法测定的实验数据
H。 00..113343nm H
117 H
C 。C 00.1.10089nnmm
121.7 H
H
H
0.154nm
H H
C 。C
109.5 H
H 0.11nm
平面分子:
H C
H
H C
H
(1)乙烯分子所有的碳和氢原子都分布在同一平面.
成键轨道沿键轴“头碰头”
肩”
重叠 ,重叠程度较大
电子云分布 电子云呈柱状、对键轴呈
圆柱形对称,密集于两原
子核间,
键能
较大、键较稳定
键的极化度 较小
键的旋转 成键原子可沿键轴“自由”
旋转
π键
不能单独存在,只能与σ 键共存于双键或叁键中
成键轨道从侧面“肩并
重叠 ,重叠程度较小 电子云呈块状、垂直对称 分布在通过键轴的平面上 下较为扩散 较小、键较不稳定 较大
成键原子不能沿键轴旋转
3.2.2 顺反异构现象(立体异构现象)
由于双键不能自由旋转,当双键的两个碳原子各连
接不同的原子或基团时,可能产生不同的异构体.
顺反异构现象(立体异构现象)
条件:—构成双键的任何一个碳原子上所连接的两个 原子或基团都要不同;分子中有限制旋转的因素(如双 键、脂环)存在。
a
a
*
乙烯的成键轨道和 *反键轨道
反 键 轨 道
成 键 轨 道 乙烯的成键轨道和 *反键轨道形成示意图
•组成键的电子称为 电子; •组成 键的电子称为 电子;
(4) 碳碳单键和双键电子云分布的比较
C-C 键
C-C 键
电子云不易与外界接近 电子云暴露在外.易接近亲电试剂
I>Br>Cl>S>P>F>O>N>C>D(氘1中子)>H
-Br > -OH > -NH2 > -CH3 > -H (2)若双键碳原子直接相连第一原子的原子序数相同,则 比较以后的原子序数
-CH2CH3 > -CH3 (3)取代基为不饱和基团,应把双键或三键原子看成是它 以单键和多个原子相连:
CC
CCC C
347kJ/mol
断裂双键需要611kJ/mol; 双键使烯烃有较大的活性
说明碳碳 键断裂需要264kJ/mol
CC
CC
键能: 610 kJ / mol
345.6 kJ / mol
键长: 0.134。nm
键角: ~120
0.154 。nm
109.5 键键能:264 kJ/mol
π键的特性
1. C=C 双键不能自由旋转 ----没对称轴
-CH=CH2 相当于-CH-CH2 ,-CC 相当于 -C - CH
4. 顺 / 反或(Z)/(E)-----放在最前面
CH3 C
CH3CH2
1 23
CH3 CH-CH3 C
CH2CH2CH2CH3
4567 8
(E)-3-甲基-4-异丙基-3-辛烯
CH3 C
H
CH3 C
C2H5
顺- 3-甲基-2-戊烯 (E )-3-甲基-2-戊烯
-CCl3>-CHCl2>-COCl>-CH2Cl>-COOR>COOH>....
例1:
Br
Cl
C=C
(Z) -1-氯-2-溴丙烯
例2:
H3C
H
H3C
CH2CH2CH3
C=C
(E)-3-甲基-4-乙基-3-庚烯
CH3CH2
CH2CH3
例3: Br
Cl
C=C
(Z)-1,2-二氯-1-溴乙烯
Cl
H
注意: 顺式不一定是Z构型;反式不一定是E构型.
•双键上的碳采取 sp2杂化,形成处于 同一平面上的三个 sp2 杂化轨道
(2) sp2杂化轨道
sp2杂化轨道和乙烯的键
sp2杂化轨道形状
(3) 乙烯的键
C: 2s12px12py12pz1 碳原子上未参加杂化的p轨道,
它们的对称轴垂直于乙烯分子 所在的平面,它们相互平行以侧 面相互交盖而形成键.
a
a
C=C
a
b
a
c
C=C
a
d
• 顺反异构体,因几何形状(结构)不同,物理 性质不同。
例如:
顺-(cis )
(相同的原子或基团在同侧)
CH3 C=C
H
CH3 H
CH3
CH3
C=C
H
Cl
顺-2-丁烯
顺-2-氯-2-丁烯
CH3
H
C=C
H
CH3
CH3CH2
CH3
C=C
H
H
反-2-丁烯
顺-2-戊烯
反- (trans )
(1)Z构型
a
b
C=C
a’
b’
(a>a’,b<b’;a<a’,b>b’)
(2) E 构型
Z-次序在前的取代基(a和 b)在双键的同侧; E- 次序在前的取代基(a和 b)在双键的异侧
a,a’,b,b’为次序,由次序规则定.
•E-Z标记法—次序规则
(1)首先由和双键碳原子直接相连原子的原子序数决定, 大的在前:
•键电子云集中在两核之间,不易与外界试剂接近;
•双键是由四个电子组成,相对单键来说,电子云密度更大; 且构成键的电子云暴露在乙烯分子所在的平面的上方和 下方,易受亲电试剂(+)攻击,所以双键有亲核性 (-).
(5) 乙烯的结构对键长,键角的影响
甲烷的H-C-H键角109.5º C-C单键长:0.154nm C=C双键键长:0.133nm 断裂乙烷C-C 单键需要
补充——二烯烃的命名
(作业P63第5题)
H CH3
C=C H
C=C H
H CH3
(1)(2Z,4Z)-2,4-己二烯 (北大)
2. π键比σ键不稳定
从键能看 610 - 345.6 =264.4 kJ / mol
双键能 单键能 破坏π键的能量
从结构看
3. π电子流动性较大,π电子云容易被极化
键的特点是:成键不牢固,易断裂,是发生化学反应的部 位。以键相连的二个原子不能做相对旋转。
σ键和π键的主要特点
存在
σ键
可以单独存在
形成
(相同的原子或基团在异侧)
3.3 E-Z标记法—次序规则
若顺反异构体的双键碳原子上没有相同基团,顺反 的命名发生困难.
Br
Cl
Br
H
C=C
C=C
CH3
H
CH3
Cl
IUPAC规定: E - Entgegen-表示“相反” Z - Zusammen-表示“共同”
同碳上下比较
a
b
C=C
a’
b’
(a>a’,b>b’; a<a’ ,b<b’)C=C Nhomakorabeab
b
a
b
C=C
b
a
顺式(两个相同基团处于双键同侧) 反式(异侧)
• 只要任何一个双键上的同一个碳所连接的两个 取代基是相同的,就没有顺反异构.
• 命名:在前加一顺(cis-)或反(trans-)字表示.
注意: 只要任何一个双键上的同一个碳所连接的两
个取代基是相同的,就没有顺反异构.
•下列结构没有顺反异构
第三章 烯烃和炔烃
蒋金龙
淮阴工学院化学工程学院
3.2 烯烃的结构
3.2.1 乙烯的结构
一、物理方法测定的实验数据
H。 00..113343nm H
117 H
C 。C 00.1.10089nnmm
121.7 H
H
H
0.154nm
H H
C 。C
109.5 H
H 0.11nm
平面分子:
H C
H
H C
H
(1)乙烯分子所有的碳和氢原子都分布在同一平面.
成键轨道沿键轴“头碰头”
肩”
重叠 ,重叠程度较大
电子云分布 电子云呈柱状、对键轴呈
圆柱形对称,密集于两原
子核间,
键能
较大、键较稳定
键的极化度 较小
键的旋转 成键原子可沿键轴“自由”
旋转
π键
不能单独存在,只能与σ 键共存于双键或叁键中
成键轨道从侧面“肩并
重叠 ,重叠程度较小 电子云呈块状、垂直对称 分布在通过键轴的平面上 下较为扩散 较小、键较不稳定 较大
成键原子不能沿键轴旋转
3.2.2 顺反异构现象(立体异构现象)
由于双键不能自由旋转,当双键的两个碳原子各连
接不同的原子或基团时,可能产生不同的异构体.
顺反异构现象(立体异构现象)
条件:—构成双键的任何一个碳原子上所连接的两个 原子或基团都要不同;分子中有限制旋转的因素(如双 键、脂环)存在。
a
a