平方差公式学案
平方差公式-优秀教案

平方差公式-优秀教案【教学目标】1. 理解平方差公式的含义和应用2. 学会运用平方差公式化简一元二次方程3. 培养学生运用公式解决实际问题的能力【教学重点】理解平方差公式的含义和应用,学会运用公式化简一元二次方程【教学难点】运用平方差公式化简一元二次方程【教学内容】1. 平方差公式的含义和应用2. 运用平方差公式化简一元二次方程3. 实际问题解析【教学过程】一、引入1. 教师通过提示,让学生回忆二次方程的解法以及解法的局限性,引出平方差公式。
2. 展示平方差公式的公式表达式,让学生观察该公式的形式和含义。
3. 将一个简单的二次方程转化为标准形式,使用平方差公式求解,让学生理解和掌握该公式的具体应用。
二、知识讲解1. 平方差公式的含义和应用(1)平方差公式的定义:在代数学中,平方差公式用于将二次多项式写成一个平方项和一个差项的和的形式。
(2)平方差公式的公式表达式:(a+b)² = a²+2ab+b²和(a-b)² = a²-2ab+b²。
(3)平方差公式的应用:主要用于化简一元二次方程和求解两个数的平方之差等问题。
2. 运用平方差公式化简一元二次方程(1)将一元二次方程转化为标准形式:ax²+bx+c=0;(2)将公式中的a、b、c代入平方差公式;(3)化简得二次方程的解。
(4)特别地,当二次方程中有平方项且系数a=1时,可以直接使用平方差公式。
三、练习与实际问题解析1. 练习题:练习一元二次方程的化简和求解2. 实际问题解析:通过实际问题的分析与计算,激发学生的兴趣,帮助学生理解和掌握平方差公式的应用。
【教学总结】通过本节课的学习,学生可以理解平方差公式的含义和应用,掌握平方差公式化简一元二次方程的方法,并能够通过实际问题的解析,运用所学知识解决实际问题。
同时,本节课旨在培养学生的问题解决能力,提高学生的数学素养与实际应用能力。
平方差公式学案

平方差公式学案一、学案概述平方差公式是数学中的一条重要公式,常用于求解数列、函数等数学问题。
本学案旨在帮助学生全面理解平方差公式的概念与应用,并通过习题练习,提升学生的解题能力和应用能力。
二、学习目标1. 掌握平方差公式的定义和基本形式;2. 理解平方差公式的几何意义;3. 能够熟练运用平方差公式解决数学问题。
三、学习内容1. 平方差公式的定义和基本形式;平方差公式是指对于任意实数a和b,有以下等式成立:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^2其中,a和b可以是常数、变量或表达式。
2. 平方差公式的几何意义;平方差公式可以理解为一个数的平方与两倍该数与另一个数的乘积之和。
从几何的角度来看,平方差公式可以描述出一个正方形的面积等于其边长的平方。
3. 平方差公式的应用。
平方差公式在数学中有广泛的应用,特别是在代数学、几何学和物理学中。
在代数学中,平方差公式可以用于简化多项式的乘法运算,展开和因式分解。
在几何学中,平方差公式可以用于计算图形的面积或边长。
在物理学中,平方差公式可以用于计算力的大小以及物体的加速度等。
四、学习方法1. 通过课本、参考书等学习材料,理解平方差公式的定义和基本形式;2. 利用几何图形,直观感受平方差公式的几何意义;3. 大量练习习题,巩固平方差公式的运用能力。
五、学习步骤1. 理解平方差公式的定义和基本形式;2. 探索平方差公式的几何意义;3. 阅读相关的应用例题,学习平方差公式的应用;4. 完成习题练习,检验平方差公式的掌握程度;5. 分组讨论,分享自己的学习心得与体会;6. 总结平方差公式的应用方法和注意事项。
六、学习评价1. 通过学生的课堂表现、练习习题和讨论等形式,评价学生对平方差公式的理解程度;2. 通过学生独立解决实际问题的能力,评价学生对平方差公式的应用能力。
七、学习延伸1. 进一步探究平方差公式与其他数学知识的联系,如二次方程、勾股定理等;2. 拓展应用,了解平方差公式在工程、经济等领域中的实际应用。
《平方差公式》教案(精选15篇)

《平方差公式》教案(精选15篇)《平方差公式》教案1教学目的进一步使学生理解把握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:公式的应用及推广。
教学过程:一、复习提问1.(1)用较简洁的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规章的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但肯定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.期望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点。
(1)公式详细,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。
但数学表达式中的a与b有概括性及抽象性,这样也就造成对详细问题存在一个判定a、b的问题,否则简单对公式产生各种主观上的误会。
依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,敏捷运用公式的'两种表达式,比如用文字公式推断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又敏捷.3.推断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1运用平方差公式计算:(1)102×98;(2)(y+2)(y-2)(y2+4).解:(1)102×98(2)(y+2)(y-2)(y2+4)=(100+2)(100-2)=(y2-4)(y2+4)=1002-22=10000-4=(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;(4)(x-)(x2+)(x+).3.请每位同学自编两道能运用平方差公式计算的题目.例2填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习填空:1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3计算:(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样推断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69×71;(2)53×47;(3)503×497;(4)40×39.《平方差公式》教案2平方差公式一、学习目标:1.经历探究平方差公式的过程.2.会推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?12001×19992998×1002导入新课:计算下列多项式的积.1x+1x-12m+2m-232x+12x-14x+5yx-5y结论:两个数的和与这两个数的差的`积,等于这两个数的平方差.即:a+ba-b=a2-b2四、精讲精练例1:运用平方差公式计算:13x+23x-22b+2a2a-b3-x+2y-x-2y例2:计算:1102×982y+2y-2-y-1y+5随堂练习计算:1a+b-b+a2-a-ba-b33a+2b3a-2b4a5-b2a5+b25a+2b+2ca+2b-2c6a-ba+ba2+b2五、小结:a+ba-b=a2-b2《平方差公式》教案3学习目标:1、经历探究完全平方公式的过程,发展学生观察、交流、归纳、猜想、验证等能力。
平方差公式教案

平方差公式导学案一、学习目标1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.3.在探索平方差公式的过程中,培养符号感和推理能力.4.培养学生观察、归纳、概括的能力.二、学习重点:平方差公式的推导和应用.学习难点:理解平方差公式的结构特征,灵活应用平方差公式.三、学法指导(一)探究平方差公式自主探究:计算下列多项式的积.(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=(4)(x+5y)(x-5y)=观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?同学们分别用文字语言和符号语言叙述这个公式.用字母表示:平方差公式是多项式乘法运算中一个重要的公式,用它直接运算会很简便,但必须注意符合公式的结构特征才能应用.在应用中体会公式特征,感受平方差公式给运算带来的方便,从而灵活运用平方差公式进行计算(二)平方差公式的应用例1:运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)在例1的(1)中可以把3x看作a,2看作b.即:(3x+2)(3x-2)=(3x)2-22(a+b)(a-b)=a2-b2同样的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些简单的转化工作,使它符合平方差公式的特征.比如(2)应先作如下转化:(b+2a)(2a-b)=(2a+b)(2a-b).如果转化后还不能符合公式特征,则应考虑多项式的乘法法则.解:(1)(3x+2)(3x-2)=(2)(b+2a)(2a-b)=(3)(-x+2y)(-x-2y)=例2:计算:(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)解:(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)应注意以下几点:(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,•但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.(4)运算的最后结果应该是最简巩固练习1、下列计算对不对?如不对,应当怎样改正(1)(x+2)(x-2)= x2 - 2(2) (-3a-2)(3a-2)= 9a2 -41、计算:(1) (a+3b)(a-3b)=(2) (3+2a)(-3+2a)=(3)(-a-b)(a-b)=(4)(a5-b2)(a5+b2)=(5)(a-b)(a+b)(a2+b2)=(6) 51 49 =四、学习反思五、课堂检测:计算:(1)(xy+1)(xy-1)=(2) (2a-3b)(3b+2a)=(3) (-2b-5)(2b-5) =(4) ( x-y)( x+y)=(5) (3x+4)(3x-4)-(2x+3)(2x-2)(6) 998 1002 =(7) 2001 1999 =。
平方差公式优秀教案

完成教学任务后,我引导学生进行自我小结,把本节课中自己最得意的部分展示给大家,继而结束了本课。对于本课的作业我采用分层布置和自由选择相结合的办法,激发了学生的积极性,提高了学生的参与意识,突出了学生的主体地位。
教后反思
平方差公式是初中数学的核心公式之一,它是特殊的整式的乘法,运用这一公式,可以迅速而简捷地计算出符合公式特征的多项式乘法结果。我想要学好这个公式,首先是让学生学会判断,哪些乘法算式能用平方差公式,运用公式计算时一定要看是否符合公式的特征,其次我知道培养学生数形结合思想方法和能力的重要性,通过几何意义说明平方差方式的探究过程,学生可以切实感受到两者之间的联系,学会一些探究的基本方法与思路,并体会到数学证明的灵巧间法与和谐美。
教学
目标
(一)教学知识点
1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
(二)能力训练要求
1.在探索平方差公式的过程中,培养符号感和推理能力.
2.培养学生观察、归纳、概括的能力.
(三)情感与价值观要求
在计算过程中发现规律,并能用符号表示,从而体会数学的简洁美.
重点
平方差公式的推导和应用.
练习二:
2.运用平方差公式计算.
(
(四)综合拓展:
1.计算:
2.请你利用平方差公式求出 的值.
(五)课堂小结:
1.平方差公式是特殊的多项式乘法,要理解并掌握公式的结构特征.
2.在混合运算中,用平方差公式直接计算所得的结果可以写在一个括号里,以免发生符号错误.
3.我们还学到一种数学思想方法——从特殊到一般和学以致用的方法
难点
理解平方差公式的结构特征,灵活应用平方差公式.
平方差公式教案平方差公式优秀教案

06
教学评价与反馈
设计评价策略
课堂表现观察
观察学生在课堂上的参与度、积 极性和互动情况,以评估他们对
平方差公式的理解程度。
练习题完成情况
检查学生完成课堂练习和课后作业 的情况,了解他们是否掌握了平方 差公式的应用方法。
引导学生认识数学在现实生活 中的应用价值,培养学生的数 学应用意识。
02
教学内容与步骤
导入新课
回顾旧知
首先回顾之前学过的完全平方公 式和多项式乘法,为学习平方差 公式打下基础。
引入新课
通过具体的数学问题,如计算两 个数的平方差,引出平方差公式 的概念和重要性。
探究新知
公式理解
解释平方差公式的含义和应用条件, 帮助学生理解并掌握公式。
学生对平方差公式的理解不够深入,容易混淆公式中 的各项,导致计算错误。
学生在解决复杂问题时,缺乏综合分析能力和解决问 题的能力,需要加强训练和指导。
针对不同层次学生教学策略
对于基础较差的学生,应注重基础知识的教学和训练,通过大量 的练习和反复强调,帮助学生熟练掌握平方差公式的基本运用。
对于中等水平的学生,应注重提高学生的思维能力和解题技巧, 引导学生通过观察、比较、分析等方法发现数学规律,培养学生 的创新意识和实践能力。
公式应用
通过举例和练习,让学生熟悉平方差 公式的应用,如因式分解、化简求值 等。
巩固练习
01
02
03
基础练习
给出一些简单的计算题, 让学生运用平方差公式进 行计算,加深对公式的理 解和记忆。
平方差公式导学案

14.2.1 《平方差公式》导学案一、学习目标:1. 掌握平方差公式的推导及应用2. 了解平方差公式的几何意义,体会数形结合的思想方法.二、新授课堂引入:王大爷租地的故事 知识点1 合作探究 得出公式问题1(1)(x+5)(x −5)= (2)(x+1)(x −1)=(3)(m+2)(m −2)2.得出公式 (a+b)(a-b) = 文字表述 :两个数的和与这两个数的差的积,等于这两个数的平方差.3.验证公式 :数形结合4.填空:初识公式知识点2 运用公式 巩固知识1.牛刀小试()()()23231-+x x ()()()b a b a -+222练一练 (1)(x+2)(x-2) (2)(a+3b)(a-3b)2. 慧眼识珠: 如果有错,请改正过来。
(1)(x-2)(x+2)=x 2-2 (2)(21+4xy)( 21-4xy)= -16x 2y 2 (3)(-3a-2)(3a-2)=9a 2-43.再探公式 :想一想下面的式子还能用这公式计算吗?如果能,请算出结果.()()()b a a b -+221 ()()()1414-2--a a4.快乐游戏:下列式子中,哪两个式子相乘能运用“平方差公式” 进行计算.请连线知识点3 扩展提升 发展能力(1)(y+2)(y-2)-(y -1)(y+5) (2) 102×98三、课堂总结:通过本节课的学习,你学到了哪些数学知识?(y +2)(-y +2)(3x -2) (-3x +2)(-3+2a )(-3-2a )四、课后作业1.填空:(2y+5x)( )=25x2-4y22.计算:(a+1)(a-1)(a2+1)(a4+1)……(a2012+1)3.学考精练该课时内容。
平方差公式 导学案

5) (-0.3x+y)(y+0.3x) 6) (- a-b)( a-b)
课后反思:
(3)(-a+b)(a-b)( )(4)(a+b)(a-c)( )
3、参照平方差公式“(a+b)(a-b)= a2-b2”填空
(1)(t+s)(t-s)=(2) (3m+2n)(3m-2n)=
(3) (1+n)(1-n)=(4) (10+5)(10-5)=
四、总结反思:
1.公式:
2.法则:
五、课后练习:
课题:1.5平方差公式(1)
学习目标:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的计算,进一步发展符号感和推理能力.
一、自主预习:
1、计算下列各式的积
(1)、 (2)、
=
2.观察算式结构,你发现了什么规律?结果中又发现了什么规律?
①上面四个算式中每个因式都是项.
(1) (2) (3)
例2:计算
(x +1)(x +1)(x+1)(x-1)
三、当堂检测:
1、判断正误:
(1)(4x+3b)(4x-3b)=4x2-3b2;() (2)(4x+3b)(4x-3b)=16x2-9;()
2、判断下列式子是否可用平方差公式
(1)(-a+b)(a+b)( )(2)(-2a+b)(-2a-b)( )
②它们都是两个数的与的.(填“和”“差”“积”)
根据大家作出的结果,你能猜想(a+b)(a-b)的结果是多少吗?
为了验证大家猜想的结果,我们再计算:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平方差公式(1)》
学习目标
1.会推导平方差公式,知道推导平方差公式的理论依据;
2.掌握平方差公式的结构特征,能运用公式进行简单的计算。
重点:平方差公式的推导及应用
难点:用公式的结构特征判断题目能否使用公式
学习过程
一、 练习检测:
(5分钟,利用多项式乘多项式学生独立完成,并在组内交流,组长点评组内部分学生出现的问题。
教师巡视,有针对性地指明个别组长展示点评。
)
1.计算:
(1)(x+2)(x-2)=______________ (2)(2x+1)(2x-1)
=______________
(3) (-x+y)(-x-y)=______________
二、自学探究;
1.根据以上计算题思考:
(1)根据以上计算,我发现了这样的规律,可以用字母表示为什么?(2)式子的左边具有什么共同特点?(3)它们的结果有什么特征?(4)试试用文字语言表示所发现的规律。
三、合作互学:(学生独立完成,讨论交流。
教师巡视指导各组讨论。
)
1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )A.数 B.单项式 C.多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是( )
A.(a+b)(b+a) B.(-a+b)(a-b)
C.( a+b)(b-a) D.(a2-b)(b2+a)
3.判断下列计算是否正确?错了的更正。
(1)(2a-3b)(2a-3b)=4a -9b ( )
(2)(x+2)(x-2)=x-2 ( )
(3)(-3a-2)(3a-2)=9a-4 ( )
4. 运用平方差公式计算:
(1)(3a+b)(3a-b);(2) (x+2a2)(x-2a2);(3)(- x-2y)(-x+2y) ;(4)(-4a-b)(-4a+b)
5.若a2-b2 =12,a+b=6,则x-y=
《平方差公式(2)》
学习目标:
1.差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力。
2.平方差公式的结构特征,能运用公式进行简单的运算。
3.几何图形说明公式的意义,体会数形结合的思想方法。
学习重难点:
1.学习重点:了解几何图形说明平方差公式的意义,并能运用公式进行简单的运算。
2.学习难点:利用数形结合的数学思想方法解释平方差公式,理解其结构特征,灵活运用平方差公式进行计算。
一、自主探究,进入新课
问题1:用字母表示平方差公式__________________
问题2:利用平方差计算下列单项式的积。
(1)(x+1)(x-1);(2)(m+2)(m-2);(3)(2x-6)(2x+6);(4)(2x-y)(2x+y)
二、数形结合,
几何说明
图1 图2
如图1,边长为a的大正方形中有一个边b长为的小正方形。
(1)图1中阴影部分的面积是
(2)小尹将阴影部分拼成一个长方形(如图2),这个长方形的长是 ,宽是 ,面积是 。
(3)比较上面的结果,你能验证平方差公式吗?
三、巩固新知,内化新知
1、用平方差公式进行计算
103ⅹ97=(100+ )(100- )=1002- =
118ⅹ122=(200+ )(200- )=2002- =
四、挑战自我
1.简便计算:
(1)704ⅹ696; (2)1007ⅹ993; (3)108ⅹ112
2.计算:
(1)(x-4y)(-4y-x); (2)a2 (a+b)(a-b)+ a2b2; (3)(2x-5) (2x+5)-2x(2x-3)
五、自我测评
计算:(1)101×99 (2)9.8×10.2; (3)x(x-1)-(x-0.5)(x+0.5); (4)(x+2y)(x-2y)+(x-1)(x+2y)。