平方差公式导学案

合集下载

6《平方差公式》导学案

6《平方差公式》导学案

14.2乘法公式14.2.1平方差公式1.知道平方差公式,能用几何拼图的方式验证平方差公式,能灵活应用平方差公式进行计算.3.重点:平方差公式的探究及应用.问题探究平方差公式阅读教材“思考”前所有内容,解决下面的问题.1.计算: (1)(x+2)(x-2)=; (2)(y+3)(y-3)=;(3)(3y+1)(3y-1)=.2.观察上面三个等式,说说左边和右边的两个多项式各有什么特点?3.用字母表示上述几个式子反映的规律为. 【归纳总结】两个数的与这两个数的的积,等于这两个数的平方差.【讨论】根据教材“思考”中的问题验证平方差公式.1.图中②和③的面积相等吗?为什么?2.你能用a、b表示图中①和②的面积之和吗?3.由1、2中的问题,你能直接说出图中①和③的面积之和吗?4.图中①和③的面积之和还可以等于哪两个图形的面积之差?你能写出这个差吗?5.由3、4你可以得到什么结论?【预习自测】(1)(x+5)(x-5)=; (2)(a+b)(b-a)=;(3)(-3+a)(-3-a)=()2-()2=;互动探究1:下列多项式相乘时,可以用平方差公式的是() A.(a+b)(-a-b)B.(-a-b)(a-b)C.(a-b)(-a+b)D.(a-2)(a+3)互动探究2:下列计算中,结果正确的是() A.(x-3)(3+x)=x2-3 B.(3x-2)(2+x)=3x2-4C.(7ab-c)(7ab+c)=49a2b2-c2D.(-x-y)(x+y)=x2-y2【方法归纳交流】平方差公式的特征:①公式的左边是两个二项式相乘,并且这两个二项式中有一项,另项;②右边是因式中的两项的平方差(减去). 互动探究3:运用平方差公式计算:(1)(7c-2b)(7c+2b) (2)(-x-1)(1-x);(3)(x+3)(x-3)-(x-1)(x+2).互动探究4:计算:(x-3)(x2+9)(x+3).。

§8.5平方差公式导学案ok

§8.5平方差公式导学案ok

§8.5.1 平方差公式1. 理解平方差公式的结构特征.2.运用平方差公式进行整式乘法的运算。

一、预习疏导 P 86–88(3分钟)1、a 与b 的和表示为 ,a 与b 的差表为 ,a 与b 的平方差表示为 ,3x 2 与y 3的平方差表示为 (不用化简)注意:加“(小括号)”2、平方差公式:(a+b)(a-b) =二、自主探究(15分钟)探究一:认识平方差公式的几何背景请用剪刀从边长为a 的正方形纸板上,剪下一个边长为b 的小正方形(如图1),此时阴影部分的面积为(a 、b 列式表示)图(1) 图(2)然后将阴影部分沿虚线剪开;将得到的两个长方形拼成一个大长方形,如图(2)它的长为 ,宽为 。

面积为 。

根据图(1)、(2)的面积得到平方差公式: (a+b )(a-b)= 公式详解:(a+b )(a-b)= a 2–b 2① 两“项”之和乘以两“项”之差等于这两“项”的 。

应用:(l) (x+3) (x-3); (2)(5-b)(5+b);(3)(2x-y)(2x+y); (4)(2x-3y)(2x+3y).小结:②公式左边是两项相乘,并且这两项中有一项完全相同,另一项互为 ;探究二:填表③“项”可以为 、 、和看做整体的多项式,④看做整体时加“( )” 三、讨论交流:(10分钟)1、下列各式中,能用平方差公式计算的是A 、(a+b)(-a-b);B 、 (a+b) (b+a)C 、(a-b) (b-a)D 、(-a+b)(-a-b)小结:(1)应用公式的条件是:两个因式中有一项完全 ,另一项互为 ;(2)只有符合公式要求的乘法才能运用公式简化运算,其余的运算仍按乘法法则计算。

2、用平方差公式计算(1)(b+2a)(2a-b)(2)(2y-x )(-x-2y)小结:⑤有些算式表面上不能运用公式,但通过适当变形就能运用公式。

方法:“同号提前,异号靠后”⑥完全相同“项”相当于公式中的 ,互为相反数“项”相当于公式的 .四、交流展示:(12分钟) 2、用平方差公式计算:① (x+2) (x-2) ②(-x+2y )(-x-2y ) ③)12)(21(22---x x④()()()()(4)34342332x x x x +--+-2.、利用平方差公式简便方法计算:102×983、 (x -y ) (x +y )(x 2+y 2)(x 4+y 4)4、整体思想 已知x+y=4,1222=-y x 求(x -y )的值六、反馈检测:(时量:5分钟)1.计算(2a+5)(2a-5)的结果是( )A .4a 2-25B .4a 2-5C .2a 2-25D .2a 2-52.下列计算正确的是()A.(x+5)(x-5)=x2-10 B.(x+6)(x-5)=x2-30C.(3x+2)(3x-2)=3x2-4 D.(-5xy-2)(-5xy+2)=25x2y2-4 3.计算(1-m)(-m-1)= .4:计算(4a-3b)(4a+3b)5、(y+2)(y-2)-(3-y)(3+y)1、(a+2b+c)(a+2b-c)2、 30.2×29.8。

平方差公式导学案

平方差公式导学案

14.2.1 《平方差公式》导学案一、学习目标:1. 掌握平方差公式的推导及应用2. 了解平方差公式的几何意义,体会数形结合的思想方法.二、新授课堂引入:王大爷租地的故事 知识点1 合作探究 得出公式问题1(1)(x+5)(x −5)= (2)(x+1)(x −1)=(3)(m+2)(m −2)2.得出公式 (a+b)(a-b) = 文字表述 :两个数的和与这两个数的差的积,等于这两个数的平方差.3.验证公式 :数形结合4.填空:初识公式知识点2 运用公式 巩固知识1.牛刀小试()()()23231-+x x ()()()b a b a -+222练一练 (1)(x+2)(x-2) (2)(a+3b)(a-3b)2. 慧眼识珠: 如果有错,请改正过来。

(1)(x-2)(x+2)=x 2-2 (2)(21+4xy)( 21-4xy)= -16x 2y 2 (3)(-3a-2)(3a-2)=9a 2-43.再探公式 :想一想下面的式子还能用这公式计算吗?如果能,请算出结果.()()()b a a b -+221 ()()()1414-2--a a4.快乐游戏:下列式子中,哪两个式子相乘能运用“平方差公式” 进行计算.请连线知识点3 扩展提升 发展能力(1)(y+2)(y-2)-(y -1)(y+5) (2) 102×98三、课堂总结:通过本节课的学习,你学到了哪些数学知识?(y +2)(-y +2)(3x -2) (-3x +2)(-3+2a )(-3-2a )四、课后作业1.填空:(2y+5x)( )=25x2-4y22.计算:(a+1)(a-1)(a2+1)(a4+1)……(a2012+1)3.学考精练该课时内容。

平方差公式导学案

平方差公式导学案

4.3 公式法第1课时 平方差公式学习目标:1.了解运用公式法分解因式的意义;2.会用平方差公式进行因式分解;本节重难点:用平方差公式进行因式分解中考考点:正向、逆向运用平方差公式。

预习作业:请同学们预习作业教材P54~P55的内容:1. 平方差公式字母表示: .2. 结构特征:项数、次数、系数、符号活动内容:填空:(1)(x+3)(x –3) = ;(2)(4x+y )(4x –y )= ;(3)(1+2x )(1–2x )= ;(4)(3m +2n )(3m –2n )= . 根据上面式子填空:(1)9m 2–4n 2= ;(2)16x 2–y 2= ;(3)x 2–9= ;(4)1–4x 2= .结论:a 2–b 2=(a+b )(a –b )平方差公式特点:系数能平方,指数要成双,减号在中央例1: 把下列各式因式分解:(1)25–16x 2 (2)9a 2–241b变式训练:(1)24420.1649a b m n - (2)2219a b -+例2、将下列各式因式分解:(1)9(x –y )2–(x +y )2 (2)2x 3–8x变式训练:(1)22()()x m n y n m -+- (2)5a a -注意:1、平方差公式运用的条件:(1)二项式(2)两项的符号相反(3)每项都能化成平方的形式2、公式中的a 和b 可以是单项式,也可以是多项式3、各项都有公因式,一般先提公因式。

例3:已知n 是整数,证明:2(21)1n +-能被8整除。

拓展训练:1、计算:2、分解因式:22122x y -3、已知a,b,c 为△ABC 的三边,且满足222244a cbc a b -=-,试判断△ABC 的形状。

)1)......(1)(1)(1(22221001413121----。

平方差公式导学案

平方差公式导学案

14.2.1 平方差公式学习目标:1.理解平方差公式,并能灵活运用公式进行特殊类型的多项式乘以多项式的计算。

2.通过了解平方差公式的几何背景,体会数形结合的思想方法。

重点:平方差公式的运用。

导学流程:一、复习导入(约3分钟)1.你能说一说多项式与多项式相乘的运算法则吗?2.计算:(1)(x+2)(x+3)= (2)(m+n)(m-n)=观察以上小题式子和结果,从多项式的每一项进行对比观察。

你有什么发现?二、自学与指导1.计算下列多项式的积,你能发现什么规律?(约10分钟)(1)(x+1)(x-1)=;(2)(m+2)(m-2)=;(3)(2x+1)(2x-1)=.归纳:上面的几个运算都是形如的多项式与形如的多项式相乘,结果都是形如。

请利用多项式乘以多项式的运算法则进行验证:(a+b)(a-b)==对于具有此形式的多项式乘法,我们可直接写出运算结果,即( )。

也就是说:两个数的与这两个数的的积等于这两个数的,这个公式叫做平方差公式.2. 阅读教材P107“思考”,完成下面的填空(约3分钟)观察教材P107“思考”中图形,用两种方法求阴影部分的面积,体会其中的数学思想.方法一:S阴影=(a-b)( + ),方法二:S阴影=( )2-( )2.归纳:通过以上方法可以得出结论:其中用到了什么数学思想:3.下列两个多项式相乘,哪些可用平方差公式?(约2分钟)(1)(2a-3b)(3b-2a) (2)(-2a+3b)(2a+3b)(3)(-2a-3b)(-2a+3b) (4)(2a+3b)(2a-3b)(5)(-2a-3b)(2a-3b) (6)(2a+3b)(-2a-3b)思考:什么样的式子能用平方差公式进行运算?请尝试写出几个可以用平方差进行计算的式子。

(可以师徒互助学习)。

4.例题(约10分钟)例1.利用平方差公式计算:(2a-3b)(2a+3b)5.练习(温馨提示,请先确定公式中的a和b)(1) (-2a+3b)(2a+3b) (2) (-3m+2n)(-3m-2n)总结:请归纳能使用平方差公式进行运算的几种变形。

《平方差公式》的教案范文(精选11篇)

《平方差公式》的教案范文(精选11篇)

《平方差公式》的教案《平方差公式》的教案范文(精选11篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案有助于顺利而有效地开展教学活动。

那么写教案需要注意哪些问题呢?以下是小编帮大家整理的《平方差公式》的教案范文(精选11篇),希望能够帮助到大家。

《平方差公式》的教案篇1教学目标①经历探索平方差公式的过程,进一步发展学生的符号感和推理能力、归纳能力.②会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算.③了解平方差公式的几何背景,体会数形结合的思想方法.教学重点与难点重点:平方差公式的推导及应用.难点:用公式的结构特征判断题目能否使用公式.教学准备卡片及多媒体课件教学设计引入同学们,前面我们刚刚学习了整式的乘法,知道了一般情形下两个多项式相乘的法则.今天我们要继续学习某些特殊情形下的多项式相乘.下面请同学们应用你所学的知识,自己来探究下面的问题:探究:计算下列多项式的积,你能发现它们的运算形式与结果有什么规律吗?(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括.注:平方差公式是多项式乘法运算中一个重要的公式,它的得出可以直接利用多项式与多项式相乘的运算法则,利用多项式乘法推导乘法公式是从一般到特殊的过程,对今后学习其他乘法公式的推导有一定的指导意义,同时也可培养学生观察、归纳、概括等能力,因此在教学中,首先应让学生思考:你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同)、归纳(可能具有的规律)、提出猜想的过程,学生在发现规律后,还应通过符号运算对规律进行证明.举例再举几个这样的运算例子.注:让学生独立思考,每人在组内举一个例子(可口述或书写),然后由其中一个小组的代表来汇报.验证我们再来计算(a+b)(a-b)=公式的推导既是对上述特例的概括,更是从特殊到一般的归纳证明,在此应注意向学生渗透数学的思想方法:特例归纳猜想验证用数学符号表示.注:这里是对前边进行的运算的讨论,目的是让学生通过观察、归纳,鼓励他们发现这个公式的一些特点,如公式左右边的结构特征,为下一步运用公式进行简单计算打下基础.概括平方差公式及其形式特征教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明这些特点的原因.应用教科书第152页例1运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)(a+b)(a-b) a b a2b2 最后结果(3x+2)(3x-2) 2 (3x)2-22(b+2a)(2a-b)(-x+2y)(-x-2y)对本例的前面两个小题可以采用学生独立完成,然后抢答的形式完成;第三小题可采用小组讨论的形式,要求学生在给出表格所提示的解法之后,思考别的解法:提取后一个因式里的负号,将2y看作“a”,将x看作“b”,然后运用平方差公式计算.注:(1)正确理解公式中字母的广泛含义,是正确运用这一公式的关键.设计本环节,旨在通过将算式中的各项与公式里的a、b进行对照,进一步体会字母a、b的含义,加深对字母含义广泛性的理解:即它们既可以是数,也可以是含字母的整式.(2)在具体计算时,当有一个二项式两项都负时,往往不易判明a、b,如第三小题,此时可以通过小组合作交流,放手让学生去思考、讨论,有助于学生思维互补、有条理地思考和表达,更有助于学生合作精神的培养.(3)例1第(3)小题引导学生多角度思考问题,可以加深对公式的理解.教科书第152页例2计算:(1)10298(2)(y+2)(y-2)-(y-1)(y+5)此处仍先让学生独立思考,然后自主发言,口述解题思路,允许他们算法的多样化,然后通过比较,优化算法,达到简便计算的目的.注:(1)运用平方差公式进行数的简便运算的关键是根据数的形式特征,把相乘的两数化成两数和与两数差的乘积形式,教学时可让学生自己寻找相乘两数的形式特征.(2)第二小题要引导学生注意到一般形式的整式乘法与特殊形式的整式乘法的区别与联系,强调:只有符合公式要求的乘法,才能运用公式简化运算,其余的运算仍按整式乘法法则进行.教科书第153页练习1、2练习1口答完成;练习2采用大组竞赛的形式进行,其中(1)(4)由两个大组完成,(2)(3)由另两个大组完成.注:让学生通过巩固练习,达成本节课的基本学习目标,并通过丰富的活动形式,激发学习兴趣,培养竞争意识和集体荣誉感.解释你能根据下面的两个图形解释平方差公式吗?多媒体动画演示图形的变换过程,体会过程中不变的量,并能用代数恒等式表示.注:(1)重视公式的几何背景,可以帮助学生运用几何直观理解、解决有关代数问题.(2)此处将教科书的图15.3-1分解为两个图形,是考虑到学生数与形结合的思想方法掌握的不够熟练;利用两个图形可以清楚变化的过程,便于联想代数的形式.小结谈一谈:你这一节课有什么收获?注:这儿采取的是先由每个学生自己小结,然后由小组代表作答,把教师做小结变成了课堂上人人做小结,有助于学生概括能力、抽象能力、表达能力的提高.同时,由于人人都要做小结,促使学生注意力集中,学习主动性加强.作业1.必做题:教科书第156页习题15.2第1题2.选做题:计算:(1)x2+(y-x)(y+x)(2)20082-20092007(3)(-0.25x-2y)(-0.25x+2y)(4)(a+ b)(a- b)-(3a-2b)(3a+2b)《平方差公式》的教案篇2教学内容:P108—110 平方差公式例1 例2 例3教学目的:1、使学生会推导平方差公式,并掌握公式特征。

平方差公式导学案

平方差公式导学案

《平方差公式》导学案课型:探究交流课[学习目标]1、理解掌握平方差公式及其结构特征;2、会运用平方差公式进行化简、计算。

3、培养学生的观察、分析和总结能力和敏捷的思维能力。

4、让学生在公式的运用中积累解题的经验、体会成功的喜悦。

[教学重难点]重点:1、理解掌握平方差公式及其结构特征;2、会运用此公式进行计算。

难点:辨析公式的特征和公式的灵活运用。

[学法指导]从“动态的数学观”出发,根据数形结合思想,积极主动参与探究学习,对同一个问题寻求不同的思路,依靠自己的活动去探索问题、解决问题,并注意独立探究与合作学习有机结合,在交流和讨论中培养实践能力和创新意识。

[教学过程设计]一、课前延伸。

1、根据多项式乘法法则化简:(a+b)(a-b)=______________=________2、你能借助图形的面积关系来验证这个关系吗?平方差公式:________________________;语言描述:___________________________________________。

二、课内探究。

[环节1:自主探究]自主探究例题1、2.【环节2:合作交流】1、 小组交流:把自主探究例题时的收获与疑惑在组内交流解决,然后仿照例题计算课后练习。

(1)(a+6)(a-6) (2) (1+x)(1-x)(3) (x+2y)(x-2y) (4) (-x+4y 2)(-x-4y 2)2、 组际交流(班内展示)。

每组选派代表板示计算结果,然后集体订正答案。

【环节3:精讲点拨】师生共同总结平方差公式的特点、规律,应用的注意事项,注意以下变式:1、(-a – b ) ( -a + b) = a 2- b 22、(b + a )( -b + a ) = a 2- b 2【环节4:巩固检测】 (有效训练)A 组:判断下列多项式乘法中,哪些可以用平方差公式来计算.1、(x -2y )(x +2y ) ( )2、(a -2b )(-a -2b ) ( )3、(-2m -n )(n + 2m) ( )4、(2c -b)( -b -2c) ( )B 组:计算:(2x +21)(2x -21) (-x +2)(-x -2)(-2x +y )(2x +y ) (y -x )(-x -y )C 组:简便计算:(1)498×502 (2)999×1001(课堂小结)1、本节你学到了什么?2、本节课用到了哪些数学思想或方法?3、你还有什么疑惑?(当堂检测)A、判断正误,如果错误,应怎样改正?( 1 ) (-a-b)(a-b)=-a2+b2 ( ) ( 2 ) (-a+b)(-a-b)=-a2- b2 ( )( 3 ) (2x+3)(2x-3)=2x2-9 ( ) ( 4 ) (3x-1)(-3x-1)=9x2-1 ( )( 5 ) (a+b)(-a-b)=a2-b2 ( ) ( 6 ) (2x+3)(3x-3)=6x-9 ( )B、计算:(1)、( ab + 8)( ab - 8) (2)、( 3a+2b)(-3a+ 2b)(3)、 103 × 97根据集体订正的答案,本节学习情况为:A、优秀 B、一般 C、较差三、课后延伸。

平方差公式教案(共5篇)

平方差公式教案(共5篇)

平方差公式教案(共5篇)第一篇:平方差公式教案学习周报专业辅导学生学习第七节平方差公式(一)学习目的:1、通过经历探索平方差公式的过程,进一步发展符号感和推理能力。

2、会推导平方差公式、理解平方差公式的特点,并能运用公式进行简单的计算。

3、通过对平方差公式结构的认识,体会数学中的结构美、简约美。

学习重点:理解平方差公式的特点,会运用平方差公式计算学习难点:会推导平方差公式,并能灵活运用公式进行计算学习过程:一、复习探究1、请写出多项式与多项式相乘的法则:2、计算下列各题(1)(x+2)(x-2);(2)(1+3a)(1-3a)(3)(x+5y)(x-5y);(4)(y+3z)(y-3z)解:3、通过以上计算,你发现了什么规律?能不能猜想出一个一般性的结论?规律:结论:二、学习新课1、推导公式:现在要对大家提出的猜想进行证明,请试着写出证明过程:证明:我们经历了由发现——猜测——证明的过程,最后得出一个公式性的结论,根据它的特点,我们给它取个容易记的名字,就叫做平方差公式学习周报专业辅导学生学习即:(a+b)(a-b)=a-b两个数的和与这两个数的差相乘,它们的积就等于这两个数的平方差.你知道公式中的a、b表示什么?请同学们分析公式的结构并记忆。

2、应用公式例1、用平方差公式计算:(1)(5+6x)(5-6x);(2)(x-2y)(x+2y)分析:要利用平方差公式解题,必须找到相同的项和互为相反数的项,结果为相同项的平方减互为相反数的项的平方.解:(1)(5+6x)(5-6x)=5-(6x)=25-36x(2)(x-2y)(x+2y)=x-(2y)=x-4y 例2、利用平方差公式计算(1)(-m+n)(-m-n);(2)(-2x-5y)(5y-2x);222222222(3)(ab+8)(-ab+8)分析:注意找准相同项与互为相反数的项.解:(1)(-m+n)(-m-n)=(-m)-n=m-n(2)(-2x-5y)(5y-2x)=(-2x)2-(5y)2=4x2-25y2(3)(ab+8)(-ab+8)=82-(ab)2=64-a2b2 现在让我们来试试吧!练习1:下列各题能否用平方差公式来进行计算?若能,请写出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平方差公式》导学案
课题14.2.1平方差公式课型新授任课教师刘治江周次第周年级八年级班级三班章节14.2.1 课时第 2课时时间
学习目标
知识与技能1.掌握平方差公式,并能正确运用公式进行简单的运算;
2、经历探索、推导平方差公式的过程,学会观察、抽象、归纳、概括;发展符号感和
推理能力;
3、在合作交流中,体会从一般到特殊的认识事物;感悟类比、数形结合的思想方法。

过程与方法
情感态度
与价值观
学习重点平方差公式的推导和应用
学习难点理解平方差公式的结构特征,灵活应用平方差公式
学法指导自主探究合作交流
课前导



问题情境王剑同学去商店买了单价是9.8元/千克的糖块10.2千克,售货员刚拿起计算器,王剑就说出应付99.6元,结果与售货员计算出的结果相吻合。

售货员惊讶地问:“这位同学,你怎么算得这么快?”王剑同学说:“我利用了在数学上刚学过的一个公式。

”你知道王剑同学用的是一个什么样的公式吗?
知识链接多项式与多项式的乘法法则是什么?
问题一:(算一算)计算下列多项式的积
(1)(1)(1)
x x
+-=(2)(2)(2)
m m
+-=
(3)(21)(21)
x x
+-=(4)(5)(5)
x y x y
+-=
问题二:(猜一猜)不计算,你来猜一下下面的式子的结果。

(6)(6)
x x
+-=()()
x y x y
+-=
(2)(2)
a a
+-=
问题三:(说一说)从上面的运算中你发现什么规律?
①上面的算式中每个因式都是项.
②它们都是两个数的与的.
为了验证大家猜想的结果,我们再计算:
(a+b)(a-b)= = .
你能用文字语言表达这一规律吗?
(乘法的)平方差公式:

1、(乘法的)平方差公式在结构上有什么特点?你对公式中的a、b是怎么理解是
的 ?平方差公式与多项式的乘法有何关系?
2、你能用右面的几何图形的面积来解释平方差公式吗?
从中你有何体会与感悟?。

相关文档
最新文档