积分变换第1讲
第六章积分变换法1nx

(6)积分性质
x 1 F f d F f x x0 i
(7)卷积定理
F f1 x f 2 x F f1 x F f 2 x
其中:
二、傅立叶变换:
由
1 f x 2
f e i d ei x d
令:
G f x e
i x
dx
(1)
则:
1 f x 2
G e d
i x
(2)
为此,我们定义:(1)式为傅立叶变换,(2)式为傅立叶逆 变换
它表明函数f(x)沿 x 轴位移 x0,相当于它的傅立叶变换乘以因 子
f x x0 e
i ( x x0 )
d ( x x0 )
ei x0 。同样,傅立叶逆变换也具有类似的位移性质,即
(3)延迟性质
F e
证明:由定义有
i0 x
f x G 0
证明:由定义和分部积分法有
F f ' x
f x e
f ' x ei x dx
i x i x f x i e dx
因为当 | x | 时, f x 0
,因此
F e
i0 x
i0 x i x f x e f x e dx i 0 x f x e dx G 0
(4)相似性质 : 设 a 为不为零的常数
复变函数与积分变换第1章复数与复变函数

点z1,z2之间的距离. 利用复数z的指数表示式作复数乘法与除法运算很方便.
假设
,则由式(1.5)可得
于是
页 退出
复变函数与积分变换
出版社 理工分社
由此可知:
①两个复数乘积的模等于它们各自模的乘积,两个复数乘积的辐角等于
它们各自辐角的和;
②两个复数商的模等于它们各自模的商,两个复数商的辐角等于分子辐
显然z和 是关于实轴
图1.6
页 退出
复变函数与积分变换
例1.6设 解因为
所以
,试求Re z,lm z和
出版社 理工分社
页 退出
复变函数与积分变换
例1.7求证:若|a|=1,则
证由
得
出版社 理工分社
页 退出
复变函数与积分变换
例1.8设复数
满足条件
求证
是内接于单位圆|z|=1的一个正三角形的顶点.
页 退出
复变函数与积分变换
出版社 理工分社
定义1.4设 为一点集,
如果对
,点集
是无穷点
集,则称z0为E的聚点或极限点,E的聚点全体通常记为E′;若
,但
则称z0为E的孤立点;若
,使得
,则称z0为E的外点.
定义1.5若点集E能完全包含在以原点为圆心,以某一个正数R为半径的圆域
内部,则称E为有界集,否则称E为无界集.
求其第三个顶
点.
解如图1.4将向量z2-z1绕z1旋转
得另一个向量,其终点就是所
求的第三个顶点z3(或z′3),根据复数乘法的几何意义可得
图1.3
图1.4
页 退出
复变函数与积分变换
所以 类似可得
出版社 理工分社
积分变换.ppt

L [ekt ] 1 (P145) sk
1
f (t ) L 1[F (s)]
t
24
有
f
(t
)
1 t
L
1
1[
s1
1] s1
1 (et et ) 1 (et et )
t
t
积分性质 1
设Ff(s()t )=L[ tf(Lt)],1则[F有(s)]
t
2t
解 L [ sht ] =L [1 et 1 et ] 22
1 ( 1 1 ) F(s) 2 s1 s1
由像函数的积分性质, 有 L [ekt ] 1
f (t)
sk
L [ t ] s F (s)ds
27
sht 1 1 1
L
[
t
]
2 s
( s1
但在工程实际应用中, 许多以时间t 作为自 变量的函数往往在 t 0时是无意义的或者 是不需要考虑的. 这样的函数都不能取傅 氏变换. 因此, 傅氏变换的应用范围受到相 当大的限制.
对这些函数f(t)能否经过适当地改造, 使其 进行傅氏变换时克服上述两个缺点呢? 答案是可以的, 就是拉普拉斯变换.
L [ t f (t)dt] 1F (s)
0
s
此外, 我们还有象函数的积分性质
L [ f (t)]
f (t ) est dt
F (s)ds
t
0t
s
26
或
f(t) = tL 1[ F (s)ds] s
例 求 f (t ) sht et et 的拉氏变换
积分变换第1讲

§1 Fourier积分公式
1.1 Recall:周期函数的 Fourier 级数
定理 (Dirichlet 定理)设 fT (t)是以 T 为周期的实值函数,且在 区间 [T/2 , T/2] 上满足如下条件(称为 Dirichlet 条件):
(1) 连续或只有有限个第一类间断点;
(2) 只有有限个极值点(不能震荡太厉害) .
t t
( ) c e 1 f ( )e d e fT t
in t
n
T n
n
T2 T 2 T
int
分析
由
c0
a0 2
,
cn
an
2
ibn
,
cn
an
ibn 2
,
得 c0 A0 ,
|cn
| | cn
|
1 2
an2
bn2
An , 2
An
n an
in t 2c n
bn
argcn argcn θn , (n 0) .
F ()
2
k sin 0
2 3
25
例2
求指数衰减函数f
(t)
0, et ,
积分表达式,其中 0.
t 0的傅氏变换及其 t0
2
0
1 2sin costd 2 sin cost d
0
0
机动 目录 上页 下页 返回 结束
24
0
sin cost
d
24 0
| t | 1 | t | 1 | t | 1
因此可知当t 0时,有
sin x d x sinc(x) d x
0x
20
2
《积分变换法》课件

信号处理
在频域中,积分变换法可用于 滤波、降噪和信号分析。
电路分析
积分变换法可帮助分析电路的 稳定性、频率响应和系统性能。
总结
优缺点
积分变换法具有数学表达简单、普适性强等优点,但对初始条件敏感。
与其他方法的比较
相比其他方法,积分变换法可以更方便地处理连续和离散函数。
发展趋势
未来,积分变换法将继续应用于自动控制、信号处理和电子技术等领域,不断发展和完善。
《积分变换法》PPT课件
欢迎来到本次《积分变换法》PPT课件。让我们一起探索积分变换法的定义、 分类、常见方法以及在控制工程、信号处理和电路分析中的应用。
什么是积分变换法?
定义
积分变换法是一种数学方法,通过对函数的积分来研究和处理一些问题。
分类
积分变换法分为拉普拉斯变换、傅里叶变换和Z变换等不同类型。
1 参考文献
常见的积分变换频域,可用于信号
处理和频谱分析。
3
拉普拉斯变换
将函数从时域转换到频域,广泛应用于 控制系统和信号分析。
Z变换
将离散信号从时域转换到Z域,在数字信 号处理和系统分析中有重要应用。
积分变换法的应用
控制工程
积分变换法可用于控制系统的 建模、参数估计和控制器设计。
复变函数与积分变换第1章

*
复数 复平面点集 扩充复平面及其球面表示
第一章 复数和复平面
*
§1.1 复数
1.复数的概念
在实数范围, 方程 x2=-1是无解的. 引进一个新数i, 称为虚数单位, 并规定 i2 =-1 从而i是方程x2=-1的一个根. 对于任意二实数x,y, 称z=x+iy或z=x+yi为复数, x,y分别称为z的实部和虚部, 记作 x=Re(z), y=Im(z)
汇报人姓名
*
在复平面上, 复数z还与从原点指向点z=x+iy的平面向量一一对应, 因此复数z也能用向量OP来表示. 向量的长度称为z的模或绝对值, 记作
O
x
y
x
y
q
P
z=x+iy
|z|=r
*显然, 下列各式成立来自Oxy
x
y
q
P
z=x+iy
|z|=r
*
在z0的情况, 以正实轴为始边, 以表示z的向量OP为终边的角的弧度q称为z的幅角, 记作 Arg z=q 这时, 有
上述结论可简明地表示为
*
乘幂 n个相同复数z的乘积称为z的n次幂,记作zn
zn=rn(cos nq+isin nq). (1.14)
如|z|=1,则(棣莫弗(De Moivre)公式).
(cos q+isin q)n = cos nq+isin nq. (1.15)
则对任意正整数n, 我们有
如果E内的每个点都是它的内点, 则称E为
开集。
01
03
02
平面点集D称为一个区域, 如果它满足下列 两个条件: 1) D是一个开集; 2) D是连通的, 就是说D中任何两点都可以用完全属于D的一条折线连接起来.
积分变换第一章

变换域分析
从本章开始由时域转入变换域分析
频域分析:---傅里叶变换,自变量为j 复频域分析:---拉氏变换, 自变量为 S = +j Z域分析:---Z 变换,自变量为z
傅里叶变换
首先讨论傅里叶变换。傅里叶变换是在傅里叶 级数正交函数展开的基础上发展而产生的,这方面 的问题也称为傅里叶分析(频域分析)。将信号进 行正交分解,即分解为三角函数或复指数函数的组 合。
单位时间振动的次数,单位是赫兹(Hz).
最常用的一种周期函数是三角函数
fT(t)=Asin(wt+j) 其中w=2p/T
t
而Asin(wt+j)又可以看作是两个周期函数 sinwt和coswt的线性组合 Asin(wt+j)=asinwt+bcoswt
实际上,所有的工程中使用的周期函数都可以用 一系列的三角函数的线性组合来逼近.
2
w 为 求 出 a n ,计 算 [ f T ,c o s n t ] ,即
T
2 T
f T ( t ) cos
2
nwtd t
T 2
a0
cos
2 T 2
nwtd t
T
am
2 cos
T
m w t cos
nwtd t
m 1
2
n
T
bm
2 sin
T
m w t cos
nwtd t
m 1
2
an
2 T
T
2 T
fT (t) cos nwt d t(n
1, 2,
2
)
bn
2 T
T
2 T
fT (t) sin nwt d t(n
高等数学复变函数与积分变换第一章 复数与复变函数

第一章 复数与复变函数第一节 复数1.复数域每个复数z 具有x iy +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,分别记作z x Re =,z y Im =。
复数111iy x z +=和222iy x z +=相等是指它们的实部与虚部分别相等。
如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,那么z 称为一个虚数;如果0Im ≠z ,而0Re =z ,则称z 为一个纯虚数。
复数的四则运算定义为:)21()21()22()11(b b i a a ib a ib a ±+±=+±+)1221()2121()22)(11(b a b a i b b a a ib a ib a ++-=++ ()()11121221122222()222222a ib a a b b a b a b i a ib a b a b ++-=++++ 复数在四则运算这个代数结构下,构成一个复数域,记为C 。
2.复平面C 也可以看成平面2R ,我们称为复平面。
作映射:),(:2y x iy x z R C +=→,则在复数集与平面2R 之建立了一个1-1对应。
横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一般称为z -平面,w -平面等。
3.复数的模与辐角复数z x iy =+可以等同于平面中的向量。
向量的长度称为复数的模,定(,)x y义为:||z向量与正实轴之间的夹角称为复数的辐角,定义为:Arg arctan 2y z i xπ=+(k Z ∈)。
复数的共轭定义为:z x iy =-;复数的三角表示定义为:||(cos sin )z z Argz i Argz =+;复数加法的几何表示:设1z 、2z 是两个复数,它们的加法、减法几何意义是向量相加减,几何意义如下图:关于两个复数的和与差的模,有以下不等式:(1)、||||||1212z z z z +≤+;(2)、||||||||1212z z z z +≥-; (3)、||||||1212z z z z -≤+;(4)、||||||||1212z z z z -≥-; (5)、|Re |||,|Im |||z z z z ≤≤;(6)、2||z zz =;例1.1试用复数表示圆的方程:22()0a x y bx cy d ++++= (0a ≠)其中a,b,c,d 是实常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p T 2
ejnwtejmwtdt
=T
pej(n-m)d
=0
-T 2
2 -p
其中 =wt=2T pt,则 d=2pTdt,dt=2Tpd
a0
=
2 T
T
2 -T
fT (t) d t
2
15
为求an, 计算[fT(t), cosnwt], 即
T
2 -T
f T ( t ) cos
2
nwtd t =
T 2
a0
cos
2 - T 2
nwtd t
T
am
2 cos
-T
m w t cos
nwtd t
m =1
2
n
T
bm
2 sin
-T
m w t cos
2 - T 2
nwtd t
T
am
2 cos
-T
m w t sin
nwtd t
m =1
2
n
T
bm
2 sin
-T
m w t sin
nwtd t =
m =1
2
= a n
T
2 cos
-T 2
2 nwt d t =
T an 2
即
an
=
2 T
T
2 -T
f T ( t ) cos
2
nwtd t
16
同理, 为求bn, 计算[fT(t), sin nwt], 即
T
2 -T
f T ( t ) sin
2
nwtd t =
T 2
a0
sin
11
这是因为
p e j(n-m ) d =
1
p
e j(n-m )
-p
j(n - m)
-p
=
1
[e j(n-m )p - e - j(n-m )p ]
j(n - m)
=
1
e - j( n - m )p [e j2 ( n - m )p - 1] = 0
j(n - m)
p p e 2 ipk = c2 o k s is2 ikn = 1
cosnwt =
T
2 cos2 nwtdt =
T 2
1cos2nwt
dt
=
T
-T 2
-T 2
2
2
sinnwt =
T
2 sin2 nwtdt =
T 2
1-cos2nwt
dt
=
T
-T 2
-T 2
2
2
14
因此, 任何满足狄氏条件的周期函数fT(t), 可表示
为三角级数的形式如下:
fT
(t )
=
数.
6
第一类间断点和第二类间断点的区别:
第二类间断点
第一类间断点
7
不满足狄氏条件的例:
f (t) = tgt
存在第二类间断点
f (t) =sin(1t)
在靠近 0处存在着无限多个极值点 而在工程上所应用的函数, 尤其是物理量的变
化函数, 全部满足狄氏条件. 实际上不连续函 数都是严格上讲不存在的, 但经常用不连续函 数来近似一些函数, 使得思维简单一些.
12
由此不难验证
T
2 cos nwt d t = 0 -T 2
(n = 1,2,3, ),
T
2 sin nwt d t = 0 -T 2
(n = 1,2,3, ),
T
2 sin nwt cos mwt d t = 0 -T 2
(n, m = 1,2,3, ),
T
2 sin nwt sin mwt d t = 0 -T 2
8
在区间[-T/2,T/2]上满足狄氏条件的函数的全体也构成
一个集合, 这个集合在通常的函数加法和数乘运算上也
构成一个线性空间V, 此空间的向量就是函数, 线性空间
的一切理论在此空间上仍然成立. 更进一步地也可以在
此线性空间V上定义内积运算, 这样就可以建立元素(即
函数)的长度(范数), 及函数间角度, 及正交的概念. 两个
(n, m = 1,2,3, , nos mwt d t = 0 (n, m = 1,2,3, , n m ), -T 2
13
而1, coswt, sinwt, ..., cos nwt, sin nwt, ...
的函数的长度计算如下:
T
1 = 2 12 dt = T -T 2
a0 2
(an cos nwt bn sin nwt)
n =1
(1.1)
为求出 a0 , 计算[ fT ,1], 即
T
2 -T
fT (t) d t =
2
T 2
a0
dt
2 -T 2
(an
n =1
T
2 -T
cos
nwt
d
t
bn
2
T
2 sin nwt d t) =
-T 2
a0 T 2
即
T
2 f 2 ( t ) d t 2 g 2 ( t ) d t
-T
-T
2
2
cos = [ f , g ] 是 f , g 间的夹角余弦
,
f g
则如果 [ f , g ] = 0 称为 f 与 g 正交 .
10
而在区间[-T/2,T/2]上的三角函数系
1, coswt, sinwt, cos 2wt, sin 2wt, ...,
积分变换
1
傅里叶(Fourier)级 数展开
2
在工程计算中, 无论是电学还是力学, 经常要和随
时间而变的周期函数fT(t)打交道. 例如:
t
具有性质fT(t+T)=fT(t), 其中T称作周期, 而1/T代表单 位时间振动的次数, 单位时间通常取秒, 即每秒重复 多少次, 单位是赫兹(Herz, 或Hz).
函数f和g的内积定义为:
T
[f,g]= 2 f(t)g(t)dt -T 2
9
一个函数f(t)的长度为
|| f ||= [ f , f ] = 而许瓦兹不等式成立 [f,g] f g
T
2 f 2 (t) d t -T 2
:
T
即 2 f ( t ) g ( t ) d t -T 2
这样可令
T
3
最常用的一种周期函数是三角函数
fT(t)=Asin(wt+j) 其中w=2p/T
t
而Asin(wt+j)又可以看作是两个周期函数 sinwt和coswt的线性组合 Asin(wt+j)=asinwt+bcoswt
4
人们发现, 所有的工程中使用的周期函数都可以用 一系列的三角函数的线性组合来逼近.
方波
4个正弦波的逼近
100个正弦波的逼近
5
研究周期函数实际上只须研究其中的一个周期内
的情况即可, 通常研究在闭区间[-T/2,T/2]内函
数变化的情况. 并非理论上的所有周期函数都可 以用傅里叶级数逼近, 而是要满足狄利克雷
(Dirichlet)条件, 即在区间[-T/2,T/2]上
1, 连续或只有有限个第一类间断点 2, 只有有限个极值点 这两个条件实际上就是要保证函数是可积函