固体物理第三章总结

合集下载

固体物理-第三章 金属自由电子论讲解

固体物理-第三章 金属自由电子论讲解
N=I0G(EF)+ I1G’(EF)+ I2G’’(EF)+….. 其中, I0=- (-f/E) dE, I1=-(E-EF)(-f/E)dE,
3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:

《固体物理·黄昆》第三章

《固体物理·黄昆》第三章

氢键结合的情况可写成通式:
X-H…Y。 式中 X 、 Y 代表 F 、 O 、 N 等电负 性大而原子半径较小的非金属原 子, X 和 Y 可以是两种相同的元 素,也可以是两种不同的元素。 d F l H F H F
归纳起来,氢键形成的条件是:
A)有与电负性大(X)的原子相结合的氢原子;
B) 有一个电负性也很大,含有孤对电子并带有部分负 电荷的原子(Y); C)X与Y的原子半径都要较小。
氯化钠型 —— NaCl、KCl、AgBr、PbS、MgO (配位数6) 氯化铯型 —— CsCl、 TlBr、 TlI(配位数8)
离子结合成分较大的半导体材料ZnS等(配位数4)
2. 离子晶体结合的性质
1) 系统内能的计算 晶体内能 : 1)所有离子库仑相互作用能(吸引作用)
2) 和重叠排斥能之和(排斥作用)
具体晶体的内聚能(晶格能)参见周期表,有一定的规律性: 惰性气体晶体<碱金属<过渡族金属(共价晶体)
两粒子间的相互作用 相互作用能.
f(r) 和u(r)分别表示相互 作用力和相互作用势 则:
u (r ) f (r ) r
U 排斥 r
f (r )
B rn
u (r )
pij A12= j'
12
12.13188
pij A6= j'
6
14.45392
物理意义:
晶体总的势能:
—— 非极性分子晶体的晶格常数、结合能和体变模量 晶格常数
平衡状态体变模量
晶体的结合能
分子晶体: 常温下是气态的物质如:Cl2,SO2,HCl, H2, O2, He, Ne, Ar, Xe等在低温下依靠范德瓦耳斯力结合成的晶体.

固体物理第三章总结

固体物理第三章总结

时以比T3更快的速度趋于零。 温度越低,与实验吻合的越好。
kBE
局限性
E


kB
D

D
kB
晶体的非简谐效应
1.非简谐效应:
U(
R0

)

U(
R0
)
1 2!

2U R2
R0

2

1 3!

3U R3
R0
3
c 2 g 3
im jm

b1
b2
1010 i 1010 j
m 1 m 1
3.14 1010 i m 1 3.14 1010 j m1
a3 21010 km b3 1010 k m1 3.141010 k m1
S
TO 0,
3.极化声子和电磁声子
0
因为长光学波是极化波,且只有长光学纵波才伴随着宏观
的极化电场,所以长光学纵波声子称为极化声子。 长光学横波与电磁场相耦合,它具有电磁性质,称长光学
横波声子为电磁声子。
1.已知模式密度 ( ) 求:
(1)~+d间隔内的振动模式数;
(2) ~+d间隔内的声子数及晶体中总的声子数;
2
2
2
中的 振~ 动模d式数目:2Lc
2 d ,
v
Sc
2

v2
d ,
Vc
2 2
2
v3
d
一维有一支纵波,二维有一支纵波一支横波,三维有
一支纵波两支横波,纵波与横波速度相等
:
Lc 2 d , 2 v

固体物理学第三章

固体物理学第三章
非简谐项:
3 1 !(d d 3 U 3)r a 3 ..... .n 1 !.(d d .n U .n)r .a.n
简谐近似—— 振动很微弱,势能展式中只保留到二阶项。
U (r) U (a ) (d)U 1(d 2 U ) 2 da r 2 !d2ra U(r)U(a)1 2(dd2U 2r)a2
此处N=5,代入上式即得:
ei(5a)q 1 5aqn2(n为整数)
由于格波波矢取值范围:
q
a
a
则:5n5
22
故n可取-2,-1,0,1,2这五个值
相应波矢:4,2,0,2,4
5a 5a 5a 5a
由于,2 sinqa
m2
代入,β,m及q值 则得到五个频率依次为(以rad/sec为单位) 8.06×1013,4.99×1013,0,4.99×1013,8.06×1013
f du(d2u) d 2u 为恢复力常数
dr d2r
dr 2
周期边界条件
N 2 a l q l 为 整 N /2 h N 数 /2 且
3.1 一维单原子链的振动
3.1.1 一维单原子链的振动
设原子链为一维,则:原子间距为a; 第n个原子的平衡位置为rn=na 第n个原子离开平衡位置的位移为xn
格波的应用:
晶体的弹性力常数β约为15N/m,若一个原 子的质量为6×10-27Kg,则晶格振动的最大圆频 率为ωm=1014弧度/秒,最大频率γm约为1013Hz即 10THz。THz波段在微波与红外光之间。
不同材料的晶格振动频谱具有各自的特征, 可以作为这个材料的 “指纹”,THz谱技术作为 一种有效的无损探测方法,通过晶格振动频谱可 以鉴别和探测材料。
3.1.2 格波频率与波矢关系——色散关系

固体物理 第三章_ 晶体中的缺陷

固体物理 第三章_ 晶体中的缺陷

4
由以上讨论可知: 刃位错: 外加切应力的方向、原子的滑移方向和位错 线的运动方向是相互平行的。 螺位错: 外加切应力的方向与原子的滑移方向平行, 原子的滑移方向与螺位错的运动方向垂直。 在左右两部分受到向上和向下的切应力的作 用时,位错线向前移动,直到位错线移动到 尽头表面,这时左右两部分整个相对滑移b 的距离,晶体产生形变。
固体物理第三章
1. 热缺陷:由热起伏的原因所产生的空位和填隙原 子,又叫热缺陷,它们的产生与温度直接有关
(a) 肖脱基缺陷
(b)弗伦克耳缺陷
(c) 间隙原子
固体物理第三章
( a )肖特基缺陷 (vacancy) :原子脱离正常格点 移动到晶体表面的正常位置,在原子格点位置 留下空位,称为肖特基缺陷。 (b)弗伦克尔缺陷(Frenkel defect),原子脱离格 点后,形成一个间隙原子和一个空位。称为弗 伦克尔缺陷。 (c)间隙原子(interstitial):如果一个原子从正常 表面位置挤进完整晶格中的间隙位置则称为间 隙原子,由于原子已经排列在各个格点上,为 了容纳间隙原子,其周围的原子必定受到相当 大的挤压。
固体物理第三章 固体物理第三章
产生位错的外力: 机械应力:挤压、拉伸、切割、研磨 热应力:温度梯度、热胀冷缩 晶格失配: 晶体内部已经存在位错,只用较小的外力就 可推动这些位错移动,原来的位错成为了位错 源,位错源引起位错的增殖,有位错源的晶体 屈服强度降低。 晶体的屈服强度强烈地依赖于温度的变化。 T升高,原子热运动加剧,晶体的屈服强度下 降,容易产生范性形变。
固体物理第三章
在实际晶体中,由于存在某种缺陷,所以晶 面的滑移过程,可能是晶面的一部分原子 先发生滑移,然后推动同晶面的另一部分 原子滑移。按照这样的循序渐移,最后使 上方的晶面相对于下方的晶面有了滑移。 1934 年, Taylor( 泰勒 ), orowan( 奥罗万 ) 和 Polanyi( 波拉尼)彼此独立提出滑移是借助 于位错在晶体中运动实现的,成功解释了 理论切应力比实验值低得多的矛盾。

固体物理第三章

固体物理第三章
19
格波 —— 短波极限情况 ( q →
πa)源自aq ω = 2 β / m sin( ) 2
ωmax = 2 β / m
长波极限下 ( q → 0) ,相邻两个原子之间的位相差
q(n + 1)a − qna = qa ⇒ 0
—— 一个波长内包含许多原子,晶格看作是连续介质 短波极限下 q ⇒
π
a
2π λ= = 2a q
2
17
格波 —— 长波极限情况
4β 2 aq ω = sin ( ) m 2
2
aq ω=2 sin( ) m 2
当 q→0
β
qa qa sin( ) ≈ 2 2
ω = a β /m q
ω =VElasticq
—— 一维单原子格波的色散关系与连续 介质中弹性波的色散关系一致
18
相邻原子之间的作用力 f = βδ 长波极限情况
o xij = x o − xio j
(3.1.2)
u ij = u j − u i
xn −1
•0
un −1
•0
u
n
xn xn
•0
un +1
xn +1
x
4
a
5
设两原子间的相互作用势能为 ϕ ( xij ) ,且只考虑二 体相互作用,则总的相互作用能为
1 N U = ∑ ϕ ( xij ) 2 i≠ j
4β 2 aq ω = sin ( ) m 2
2
相邻原子位相差 aq ⇒ 2π + aq
π
4a 2a 相邻原子位相差 aq1 = π / 2 2π 5π 两种波矢的格波中,原子 两种波矢的格波中, = 格波2(Green)波矢 q2 = 的振动完全相同, 4a / 5 2a 的振动完全相同,相邻原 相邻原子的位相差 aq2 = 2π + π / 2 子的位相差 − π < aq ≤ π

固体物理第三章:能带论I

固体物理第三章:能带论I

此式表明,晶体中总的 He 是N个单电子的哈密 顿之和,即N体问题简化为单体问题。 单电子近似在很多情况下是一个很好的近似, 其原因后面讲。 3.周期场近似(periodic potential approximation) 单电子势能:
e2 V (r ) = ve (r ) − ∑ Rn 4πε 0 r − Rn 1
3 假定晶体体积 V = L ,含有N个带正电荷Ze的离子 实,Z为单原子的价电子数目,因而,晶体中有NZ个价电子。 即:
N个离子实,每个离子实带正电荷Ze,其位矢用 Rn 表示; NZ个价电子,简称为电子,其位矢用 ri 表示。
NZ ∑ ∇i2 + ∑ 2 i , j 4πε 0 ri − rj i =1 2m 1 / 1 (Ze)2 2 −∑ ∇n + ∑ 2 n,m 4πε 0 Rn − Rm n =1 2M
ψ (r + Rn ) = e
ik ⋅( r + Rn )
=e
ik ⋅ Rn
e
ik ⋅ r
=e
ik ⋅ Rn
NZ 1 1 e Vee (ri , rj ) = ∑∑ = ∑ ve (ri ) 2 i =1 j ≠i 4πε 0 ri − rj i =1 NZ 2
为简单起见,取单原子的价电子数目Z=1。 则电子体系的哈密顿进一步简化为: 2 单电子势能 N 1 e2 2
i =1
H e = ∑[ −
∇i + ve (ri ) − ∑ ] 2m Rn 4πε 0 r − Rn i
∇r = ∂x
2
+
∂y
2
+
∂z
2
= ∇ r + Rn
∂2 ∂2 ∂2 = + + 2 2 ∂( x + n1a1 ) ∂( y + n2a2 ) ∂( z + n3a3 )2

固体物理各章节知识点详细总结

固体物理各章节知识点详细总结

3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32

2π Kh
d h1h2h3

d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

eu d kBT
3 4
g c2
kBT
1 3
CV
v
高温时:
1 T
低温时: T3
长波近似
长声学支格波可以看成连续波,晶体可以看成连续介质。
1.黄昆方程
离子晶体的长光学波
W b1W 1 b12E
( 1)
---黄昆方程
Pb2W 1 b22E (2)
(1)式代表振动方程,右边第一项 b11W为准弹性恢复力,
解:(1) ()d
(2)
1
()d
e 1 kBT
d 0
1
e kBT
()d
1
(3) ekB 1T 112 ()d
D 0
ekB 1T 112
()d
2.应用德拜模型计算一维、二维和三维情况下晶格振 动的模式密度、德拜频率、德拜温度、零点能、平均
晶格能、晶格比热及其高低温极限。
解:(1)模式密度:
波矢空间波矢密度:
0
因为长光学波是极化波,且只有长光学纵波才伴随着宏观
的极化电场,所以长光学纵波声子称为极化声子。
长光学横波与电磁场相耦合,它具有电磁性质,称长光学
横波声子为电磁声子。
1.已知模式密度 () 求:
(1)~+d间隔内的振动模式数;
(2) ~+d间隔内的声子数及晶体中总的声子数;
(3) ~+d间隔内的谐振子的能量及晶体的能量;
(D为德拜频率)。
E0De kB T112()d
9N2
D3
爱因斯坦模型
德拜模型
CV
3NkBfETE
f
E
T
E
T
2
E
eT
eET
2
1
高温时与实验相吻合,低温
CV
3NkB
f
D
T
fTD3TD3
D
T
0
exex12x4dx
高低温时均与实验相吻合,且
时以比T3更快的速度趋于零。 温度越低,与实验吻合的越好。
❖晶体的非简谐效应 非简谐近似、正常过程、反常过程、 ❖长波近似
黄昆方程、铁电软模(光学软模)、极化声子、电磁声子
一维晶格振动 格波:晶体中的原子在其平衡位置附近作微振动, 由于原子间的相互作用,原子振动在晶体中传播,形 成波。由于晶体中原子排列的周期性,相邻原子间存 在着固定的位相关系,这种波称为格波。
ds
s qq
3.晶体比热的爱因斯坦模型和德拜模型
爱因斯坦模型
德拜模型
(1)晶体中原子的振动相互独立;(1)晶体视为连续介质,格波视
为弹性波(vq);
(2)所有原子具有同一频率; (2)有一支纵波两支横波;
(3)设晶体由N个原子组成,共
有3N个频率为的振动。
E3NekBT 112
(3)晶格振动频率在 0~D之间
L
,
L
2
,
L
3
2 2 2
中q的~q波矢dq数目:2 L d q, 2 L 22 qq d , 2 L 34 q 2d q
中的振~ 动 模d式数目:2 L cv 2d, 2 S cv 2d, 2 V c2 v3 2d
kBE
局限性
E
kB
D
D
kB
晶体的非简谐效应
1.非简谐效应:
U (R 0)U (R 0)2 1 ! R 2U 2 R 023 1 ! R 3U 3 R 03 c2 g3
2.声子与声子相互作用:
q11q22q 33Kh
Kh Kh
0 正常过程 0 反常过程
eu kBT d
3.晶体的热膨胀现象: 4.晶体的热传导现象:
振动很微弱时,势能展式中只保留到2项,3次方
以上的高次项均忽略掉的近似为简谐近似(忽略掉作
用力中非线性项的近似)。
fnkd dr2u2r0 xnknkxnk
nk
d2u dr 2
r0
在简谐近似下,格波可以分解成许多简谐平面波的
线性叠加。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
确定晶格振动谱的实验方法
1.方法: 中子的非弹性散射、光子散射、X射线散射。
2.原理(中子的非弹性散射) 由能量守恒和准动量守恒得:
P'2
P2
(q)
2Mn 2Mn
“+”表示吸收一个声子
P ' P q K h “-”表示发射一个声子
3.仪器: 三轴中子谱仪。
晶体比热
1.固体比热的实验规律
第二项表示电场 E 附加了恢复力。 (2)式代表极化方程,b21W表示离子位移引起的极化,第
二项表示电场 E 附加了极化。
2.LST关系
2 T
0
2 L0
s
光频介电常量
---著名的LST关系
静电介电常量
(1 )s , L o To
(2)铁电软模(光学软模) 1/2
S
TO 0,
3.极化声子和电磁声子
π q π
2a
2a
x x , 2n
2(nN)
三维晶格振动、声子
晶格振动的波矢数目 =晶体的原胞数N, 格波振动频率数目=晶体的自由度数mNn, 独立的振动模式数=晶体的自由度数mNn。
N是晶体的原胞个数,n是原胞内原子个数,m是维数。
声子:晶格振动的能量量子。能量为 , 准动量为 q 。
3nN个振动模式 3nN种声子 3N种声学声子, (3n-3)N种光学声子。
M
m
a
..
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
x ..
m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x 2 n 1A ie t 2 n 1 aq
O
A
x2n Biet2naq
π
o
πq
2a
2a
2 {m ( M )m 2 M 2 2 m cM 2 o a}s q mM
Cv
3NTkB3
高温 0 低温
E
3N i1
E
i
3N
i
i
e i1
kBT
3N
1 i1
1 2
i
i
CV
E T
3N
kB
i1
e kBT
i e
kBT
2 1
i
kBT2
CV 0mkBe ekBTkB T12kBT2()d
2.频率分布函数
定义:
()
n
li m 0
计算: 3 n 12 V π c3
第三章 晶格振动 ❖一维晶格振动
格波、光学支格波、声学支格波、简谐近似、 色散关系(晶格振动谱)、B-K边界条件 方程、试探解、求色散关系及画曲线、波矢取值及范围
❖三维晶格振动
声子、格波支数、振动模式数、频率数、波矢数、声子种数
❖确定晶格振动谱的实验方法 能量守恒和准动量守恒
❖晶体比热
模式密度(频率分布函数)、爱因斯坦模型、德拜模型
一维无限长原子链,m,a,
n-2 n-1 n n+1 n+2
mm
a
..
m x n x n x n 1 x n x n 1
xnAeitnaq
2 sinaq
m2
2 m
π q π
a
a
xn xnN
π a
o
πa
晶格振动波矢的数
目=晶体的原胞数
维双原子链振动
2n-2 2n-1 2n 2n+1 2n+2
相关文档
最新文档