五年级奥数-尾数和余数
五年级奥数第6周尾数和余数

五年级奥数第6周尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
例题1 写出除213后余3的全部两位数。
分析因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。
练习一1,写出除109后余4的全部两位数。
2,178除以一个两位数后余数是3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。
例题2 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?分析(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。
因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。
练习二1,21×21×21×……×21[50个21]积的尾数是几?2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?例题3 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?分析(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。
(最新)五年级奥数分册第6周 尾数和余数

第6周尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
例题1 写出除213后余3的全部两位数。
分析因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。
练习一1,写出除109后余4的全部两位数。
2,178除以一个两位数后余数是3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。
例题2 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?分析(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。
因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。
练习二1,21×21×21×……×21[50个21]积的尾数是几?2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?例题3 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?分析(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。
【精品奥数】五年级上册数学思维训练讲义-第一讲 尾数和余数 人教版(含答案)

第一讲尾数和余数第一部分:趣味数学兄弟分绢今有孟、仲、季兄弟三人,各持绢不知匹数。
大兄谓二弟曰:“我得汝等各半,得满七点九匹。
”中弟日:“我得兄弟绢各半,得满六点八匹。
”小弟日:“我得二兄绢各半,得满五点七匹。
”问兄弟本持绢各几何?——摘自《张邱建算经》。
据考证《张邱建算经》成书时代是在5世纪中期,是北魏时期数学家张邱建著。
《张邱建算经》卷中之尾卷下之首残缺,流传到现在的有92个问题,内容继承了《九章算术》的数学遗产,另外还有等差级数问题、最大公约数和最小公倍数应用问题。
卷下最后一题是有名的百鸡问题,是中国数学史上最早出现的不定方程问题。
赏析:有兄弟三人,各有绢若干匹。
大哥对两个弟弟说:“我得到你俩每人所有绢的一半,与我有的绢合在一起就有7.9匹。
”二哥对大哥和三弟说:“我得到兄绢的一半,弟绢的一半,与我有的绢合在一起是6.8匹。
”三弟对两个哥哥说:“我得到两个哥哥每人所有绢的一半,与我有的绢合在一起是5.7匹。
”问兄弟三人原来各有绢多少匹?分析:7.9匹包括大哥的绢全部+二哥绢一半+三弟的绢一半;6.8匹包括大哥的绢一半+二哥绢全部+三弟的绢一半;5.7匹包括大哥的绢一半+二哥绢一半+三弟的绢全部;那么,7.9+6.8+5.7就包括大哥的绢2倍+二哥绢2倍+三弟的绢2倍;所以,三兄弟绢的总数为(7.9+6.8+5.7)÷2=10.2(匹),而7.9 × 2就包括大哥的绢2倍+二哥绢全部+三弟的绢全部7.9 × 2-10.2=5.6(匹)……大哥的绢数。
同理:6.8 × 2-10.2=3.4(匹)……二哥的绢数。
5.7 × 2-10.2=1.2(匹)……三弟的绢数。
解答:(7.9+6.8+5.7)÷2=10.2(匹)7.9 × 2-10.2=5.6(匹) 6.8 × 2-10.2=3.4(匹) 5.7 × 2-10.2=1.2(匹)第二部分:奥数小练一、知识要点自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
五年级奥数__尾数和余数

第6讲尾数和余数之五兆芳芳创作一、知识要点自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数.尾数和余数在运算时是有纪律可寻的,利用这种纪律能解决一些看起来无从下手的问题.二、精讲精练【例题1】写出除213后余3的全部两位数【思路导航】因为213=210+3.把210分化质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21.5×7=35,2×3×5=30,2×3×7=42.一共有7个两位数.练习1:1.写出除109后余4的全部两位数.2.178除以一个两位数后余数是3.适合条件的两位数有哪些?3.写出除1290后余3的全部三位数.【例题2】(1)125×125×125×……×125[100个125]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?【思路导航】(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位仍是5;(2)每个括号里21乘26积的个位是6,我们只要阐发100个6相乘,积的尾数是几就行了.因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位仍是6.练习2:1.21×21×21×……×21[50个21]积的尾数是几?2.1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3.(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?【例题3】(1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?【思路导航】(1)我们先列举前几个4的积,看看个位数在怎样变更,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不竭重复出现.50÷2=25没有余数,说明50个4相乘,积的个位是6.(2)用上面的办法可以发明,51个9相乘时,积的个位是以“9,1”两个数字不竭重复,51÷2=25……1.余数是1.说明51个9本乘积的个位是9.练习3:1.24×24×24×…×24[2001个24],积的尾数是多少?2.1×2×3×…×98×99,积的尾数是多少?3.94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位是多少?【例题4】把1/7化成小数,那么小数点前面第100位上的数字是多少?练习4:1.把1/11化成小数,求小数点前面第2001位上的数字.2.5/7写成循环小数后,小数点后第50个数字是几?3.有一串数:5、8、13、21、34、55、89……,其中,从第三个数起,每个数恰好是前两个数的和.在这串数中,第1000个数被3除后所得的余数是多少?【例题5】555…55[2001个5]÷13.当商是整数时,余数是几?【思路导航】如果用除法硬除显然太麻烦,我们可以先用竖式来除一除,看一看余数在按怎样的纪律变更.从竖式中可以看出,余数是按3、9、4、6、0、5这六个数字不竭重复出现.2001÷6=333……3.所以,当商是整数时,余数是4.练习5:1.444…4÷6[100个4],当商是整数时,余数是几?2.当商是整数时,余数各是几?(1)666…6÷4[100个6](2)444…4÷74[200个4](3)888…8÷7[200个8](4)111…1÷7[50个1]。
五年级奥数第讲尾数和余数

五年级奥数第讲尾数和余数Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第2讲尾数和余数一、知识要点自然数的末位数字称为自然数的尾数;除法中,被除数减去商与除数的差叫作余数。
尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。
二、精讲精练【例题1】(1)9×9×9×……×9(51个9相乘)积的个位数是几?(2)0.3×0.3×0.3×……0.3(204个0.3相乘)×25×25×25×……×25(1001个25)的个位数字是几?练习1:(1)61×61×61×……×61(2001个61相乘)积的尾数是几?(2)(31×36)×(31×36)×……×(31×36)(共50个)积的尾数是几?(3)0.7×0.7×0.7×……×0.7(2002个0.7)×0.6×0.6×0.6×……×0.6(2002个0.6)积的尾数是多少?【例题2】3×3×3×……3(2006个3相乘)+4×4×4×……4(2007个4相乘)的尾数是几?练习2:(1)5×5×5×......5(2000个5相乘)+6×6×6×......6(2001个6相乘)+7×7×7× (7)(2002个7相乘)的尾数是几?(2)52×52×52×……52(33个52相乘)-32×32×32×……32(29个32相乘)的尾数是几?【例题3】444……4(100个4)÷6,当商是整数时,余数是几?练习3:当商是整数时,余数各是几?(1)666……6(50个6)÷4(2)888……8(80个8)÷7(3)444……4(1000个4)÷74(4)111……1(1000个1)÷5【例题4】有一列数,前两个数是3与4,从第3个数开始,每一个数都是前面两个数的和。
五年级奥数尾数与余数教案

课题奥数“尾数与余数授课时间:5.29 备课时间: 5.25教学目标重点、难点考点及考试要求教学内容专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
例题一.写出除333后余3的全部两位数。
思路导航:因为333=330+3,把330分解质因数:330=2×3×5×11,所以,符号题目要求的两位数有2×5=10,2×11=22,3×5=15,3×11=33,5×11=55,2×3×5=30,2×3×11=66,加上11,一共有8个两位数。
例题二. (1)9×9×9×…×9[51个9]积的个位数是几?(2)的积的尾数是几?思路导航:(1)我们先列举前几个9相乘的积,看看个位数在怎样变化,1个9个位就是9;9×9的个位是1;9×9×9的个位是9;9×9×9×9的个位是1……由此可见,积的尾数以“1,9”两个数字在不断重复出现。
51个9相乘时,积的个位是以“9,1”两个数字不断重复,51÷2=25……1,余数是1,说明51个9本乘积的个位是9。
(2)小数乘法的运算,暂时不考虑小数点。
一个3的积,个位数字是3,两个3相乘,积的个位数字是9,三个3相乘,积的个位数字是7,四个3相乘,积的个位数字是1.以此类推,个位数字出现的规律是按“3、9、7、1”的顺序重复。
那么共有204÷4=51个循环,最后一个尾数是1.所以前后两部分相乘,尾数应是1×5=5例题三. 444…4÷6[100个4],当商是整数时,余数是几?思路导航:从竖式中的余数可以看出:每3个4组成的数被6整除。
小学五年级奥数举一反三第六周讲义尾数和余数

1、317除以一个两位数后余数是2,符合条件 的两位数有哪些?
分析:首先对317-2=315,再把315分解质因数: 315=3×3×5×7 ,所有符合条件的两位数再去组合 在一起。
2、写出除349后余4的全部两位数。
思路分析:首先对349-4=345,再把345分解质因数: 345=3×5×23 ,所有符合条件的两位数再去组合 在一起。
3,有一串数:5、8、13、21、34、55、89……, 其中,从第三个数起,每个数恰好是前两个数的 和。在这串数中,第1000个数被3除后所得的余数 是多少?
精品jing
小学五年级奥数举一反三第六周尾数 和余数
写出除333后余3的全部两位数。
思路导航: 因为333=330+3,把330分解质因数:
330=2×3×5×11,所以,符号题目要求的两位数 有2×5=10,2×11=22,3×5=15,3×11=33, 5×11=55,2×3×5=30,2×3×11=66,加上11, 一共有8个两位数。
一列数
3 10 13 23 36 59 95 154 249 403 652 1055 1707 2762 4469 …
余数
0 1 12 0
2
21
0
1
1
2
0
2
2…
思路:从这列数除以3后的余数中来寻找规律性。从表中可以 发现,这些余数是按照(0、1、1、2、0、2、2、1)顺序出现的。 因为1991÷8=248组…7,即是第249组中的第7个余数是2。
从竖式中可以看出,余数是按3、9、 4、6、0、5这六个数字不断重复出 现。因为除数是两位数,第一个5上 面没有商数字,在计算时要减去1个 5。(2001-1)÷6=333……2,所以, 当商是整数时,余数是9。
(新编)五年级奥数分册第6周 尾数和余数

第6周尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
例题1 写出除213后余3的全部两位数。
分析因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。
练习一1,写出除109后余4的全部两位数。
2,178除以一个两位数后余数是3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。
例题2 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?分析(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。
因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。
练习二1,21×21×21×……×21[50个21]积的尾数是几?2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?例题3 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?分析(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尾数和余数
专题简析:
自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
例1.写出除213后余3的全部两位数。
变式训练
1.写出除109后余4的全部两位数。
2. 178除以一个两位数后余数是3,适合条件的两位数有哪些?
3.写出除1290后余3的全部三位数。
例2.(1)125×125×125×……×125[100个25]积的尾数是几?
(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?
变式训练
1. 21×21×21×……×21[50个21]积的尾数是几?
2. 1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?
3. (12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?
例3.(1)4×4×4×…×4[50个4]积的个位数是几?
(2)9×9×9×…×9[51个9]积的个位数是几?
变式训练
1. 24×24×24×…×24[2001个24],积的尾数是多少?
2. 1×2×3×…×98×99,积的尾数是多少?
3. 94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位是多少?
例4.把1/7化成小数,那么小数点后面第100位上的数字是多少?
变式训练
1. 把1/11化成小数,求小数点后面第2001位上的数字。
2. 5/7写成循环小数后,小数点后第50个数字是几?
3.有一串数:5、8、13、21、34、55、89……,其中,从第三个数起,每个数恰好是前两个数的和。
在这串数中,第1000个数被3除后所得的余数是多少?
例5. 555…55[2001个5]÷13,当商是整数时,余数是几?
变式训练
1. 444…4÷6[100个4],当商是整数时,余数是几?
2.当商是整数时,余数各是几?
(1)666…6÷4[100个6] (2)444…4÷74[200个4](3)888…8÷7[200个8](4)111…1÷7[50个1]。