五年级奥数尾数和余数的应用
五级下册数学课件奥数问题 尾数和余数西师大版ppt(精选文档)

自然数末位的数字称为自然 数的尾数;除法中,被除数减 去商与除数积的差叫做余数。 尾数和余数在运算时是有规律 可寻的,利用这种规律能解决 一些看起来无从下手的问题。
例题1
写出除333后余3的全部两位数。 以此类推,个位数字按“9,1”两个数字不断重复,那么共有51÷2=25……1,共有25个循环,余1.
例题3
444…4÷6,当商是整数时,余数是几?
[100个4]
【思路导航】如果用除法硬除,显然太麻烦。我们可以先用竖式除法一除, 看一看余数在按怎样的规律变化。从竖式中可以看出:每3个4组成的数被 6整除,这样可以把100个4组成的数划分为3个4一组,共分成100÷3=33 (组)……1,即有33组还多1个4。这多下来的4除以6后,余数应该是4, 所以444…4÷6商是整数时,余数是4。
多少?
【思路导航】因为1/7≈……,化成的小数是一个无限循 环小数,循环节“142857”共有6个数字。由于 100÷6=16……4,所以,小数点后面的第100位是第17个 循环节的第4个数字,是8。
举一反三4
1.把1/11化成小数,求小数点后面第2001位上的数字。
2.5/7写成循环小数后,小数点后第50个数字是几? 把1/7化成小数,那么小数点后面第100位上的数字是多少?
3、写出除1095后余3的全部三位数。
2、写出除349后余4的全部两位数。 [50个6]
[80个8]
[50个(31×36)]
[2001个5]
四个3相乘,积的个位数是1。
① 666…66÷4
②888…8÷7
三个9相乘,积个位数字是9;
两个3相乘,积的个位数是9;
3、写出除1095后余3的全部三位数。 2×11=22 3×11=33
五年级奥数余数的性质与运用:学习...

五年级奥数余数的性质与运用:学习...
五年级奥数余数的性质与运用:
学习和生活都离不开转化,转化就是学有所用!
转化:遇到新的问题,尝试各种手段把新问题和已经学过或已经研究过的知识体系联系起来,甚至直接把新问题变成自己熟悉的或熟练的问题!
根据余数的性质,有2种方法可以简化求余数的运算:
⑴特性求余法:除以特殊数的余数的简便方法;
⑵替换求余法:余数的可加性、可减性、可乘方性来简化求余的运算.
最重要的是适应和熟练同余的符号语言的推理,可以这么说,同余是奥数的真正门槛,跨过这个门槛的学生可以称之为开窍!。
五年级奥数举一反三第0506周之分类数图形尾数和余数

分类数图形、尾数和余数分类数图形专题简析:我们在数数的时候,遵循不重复、不遗漏的原则,不能使数出的结果准确。
但是在数图形的个数的时候,往往就不容易了。
分类数图形的方法能够帮助我们找到图形的规律,从而有秩序、有条理并且正确地数出图形的个数。
例题1 下面图形中有多少个正方形?分析:图中的正方形的个数可以分类数,如由一个小正方形组成的有6×3=18个,2×2的正方形有5×2=10个,3×3的正方形有4×1=4个。
因此图中共有18+10+4=32个正方形。
练习一1,下图中共有多少个正方形?2,下图中共有多少个正方形?3,下图中共有多少个正方形,多少个三角形?例题2 下图中共有多少个三角形?分析为了保证不漏数又不重复,我们可以分类来数三角形,然后再把数出的各类三角形的个数相加。
(1)图中共有6个小三角形;(2)由两个小三角形组合的三角形有3个;(3)由三个小三角形组合的三角形有4个;(4)由六个小三角形组合的三角形有1个。
所以共有6+3+4+1=14个三角形。
练习二1,下面图中共有多少个三角形?2,数一数,图中共有多少个三角形。
3,数一数,图中共有多少个三角形?例题3 数出下图中所有三角形的个数。
分析和三角形AFG一样形状的三角形有5个;和三角形ABF一样形状的三角形有10个;和三角形ABG一样形状的三角形有5个;和三角形ABE一样形的三角形有5个;和三角形AMD一样形状的三角形有5个,共35个三角形。
练习三数出下面图形中分别有多少个三角形。
例题4 如下图,平面上有12个点,可任意取其中四个点围成一个正方形,这样的正方形有多少个?分析把相邻的两点连接起来可以得到下面图形,从图中可以看出:(1)最小的正方形有6个;(2)由4个小正方形组合而成的正方形有2个;(3)中间还可围成2个正方形。
所以共有6+2+2=10个。
练习四1,下图中共有8个点,连接任意四点围成一个长方形,一共能围成多少个长方形?2,下图中共有6个点,连接其中的三点围成一个三角形,一共能围成多少个三角形?3,下图中共有9个点,连接其中的四个点围成一个梯形,一共能围成多少个梯形?例题5 数一数,下图中共有多少个三角形?分析我们可以分类来数:1,单一的小三角形有16个;2,两个小三角形组合的有10个;3,四个小三角形组合的有8个;4,八个小三角形组合的有2个。
五年级奥数.数论.余数的性质

余数的性质知识结构三大余数定理:(1)余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为2(2)余数的减法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4(3)余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.例题精讲【例1】在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.【巩固】号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【例2】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【巩固】用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.【例3】六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元.【巩固】商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是________千克.【例4】求478296351⨯⨯除以17的余数.【巩固】求4373091993⨯⨯被7除的余数.【例5】求12÷的余数644319【巩固】 求89143除以7的余数.【例 6】 20102009200920092009⨯⨯⨯L 14444244443个的个位数字是________.【巩固】 2007×2007×…×2007(2008个2007)的个位数字是 。
五年级奥数第讲尾数和余数

五年级奥数第讲尾数和余数Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第2讲尾数和余数一、知识要点自然数的末位数字称为自然数的尾数;除法中,被除数减去商与除数的差叫作余数。
尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。
二、精讲精练【例题1】(1)9×9×9×……×9(51个9相乘)积的个位数是几?(2)0.3×0.3×0.3×……0.3(204个0.3相乘)×25×25×25×……×25(1001个25)的个位数字是几?练习1:(1)61×61×61×……×61(2001个61相乘)积的尾数是几?(2)(31×36)×(31×36)×……×(31×36)(共50个)积的尾数是几?(3)0.7×0.7×0.7×……×0.7(2002个0.7)×0.6×0.6×0.6×……×0.6(2002个0.6)积的尾数是多少?【例题2】3×3×3×……3(2006个3相乘)+4×4×4×……4(2007个4相乘)的尾数是几?练习2:(1)5×5×5×......5(2000个5相乘)+6×6×6×......6(2001个6相乘)+7×7×7× (7)(2002个7相乘)的尾数是几?(2)52×52×52×……52(33个52相乘)-32×32×32×……32(29个32相乘)的尾数是几?【例题3】444……4(100个4)÷6,当商是整数时,余数是几?练习3:当商是整数时,余数各是几?(1)666……6(50个6)÷4(2)888……8(80个8)÷7(3)444……4(1000个4)÷74(4)111……1(1000个1)÷5【例题4】有一列数,前两个数是3与4,从第3个数开始,每一个数都是前面两个数的和。
五年级奥数尾数与余数教案

课题奥数“尾数与余数授课时间:5.29 备课时间: 5.25教学目标重点、难点考点及考试要求教学内容专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
例题一.写出除333后余3的全部两位数。
思路导航:因为333=330+3,把330分解质因数:330=2×3×5×11,所以,符号题目要求的两位数有2×5=10,2×11=22,3×5=15,3×11=33,5×11=55,2×3×5=30,2×3×11=66,加上11,一共有8个两位数。
例题二. (1)9×9×9×…×9[51个9]积的个位数是几?(2)的积的尾数是几?思路导航:(1)我们先列举前几个9相乘的积,看看个位数在怎样变化,1个9个位就是9;9×9的个位是1;9×9×9的个位是9;9×9×9×9的个位是1……由此可见,积的尾数以“1,9”两个数字在不断重复出现。
51个9相乘时,积的个位是以“9,1”两个数字不断重复,51÷2=25……1,余数是1,说明51个9本乘积的个位是9。
(2)小数乘法的运算,暂时不考虑小数点。
一个3的积,个位数字是3,两个3相乘,积的个位数字是9,三个3相乘,积的个位数字是7,四个3相乘,积的个位数字是1.以此类推,个位数字出现的规律是按“3、9、7、1”的顺序重复。
那么共有204÷4=51个循环,最后一个尾数是1.所以前后两部分相乘,尾数应是1×5=5例题三. 444…4÷6[100个4],当商是整数时,余数是几?思路导航:从竖式中的余数可以看出:每3个4组成的数被6整除。
小学奥数 尾数和余数

尾数和余数一、知识要点自然数末位的数字称为自然数的尾数。
除法中,被除数÷除数=商……余数(余数<除数),由此算式变化可知: 被除数=商×除数+余数, 被除数-商×除数=余数,,(被除数-余数)÷除数=商, (被除数-余数)÷商=除数。
整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
6. 能被11整除:奇数位上的数字和与偶数位数的数字和的差能被11整除。
7. 能被13整除:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
二、精讲精练【例题1】写出除213后余3的全部两位数。
练习1:1. 写出除109后余4的全部两位数。
2. 178除以一个两位数后余数是3, 适合条件的两位数有哪些?3. 写出除1290后余3的全部三位数。
【例题2】(1) 125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]尾数是几?练习2:1. 21×21×21×……×21[50个21]积的尾数是几?2. 15×15×15×……×15[200个15]积的尾数是几?3.(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?【例题3】(1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?练习3:1. 24×24×24×…×24[2001个24],积的尾数是多少?2. 1×2×3×…×98×99,积的尾数是多少?3. 94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位是多少?【例题4】把1/13化成小数,那么小数点后面第100位上的数字是多少?练习4:1. 把1/11化成小数,求小数点后面第2001位上的数字。
五年级奥数知识讲义-余数问题(一)

在整数的除法中,只有能整除与不能整除两种情况,当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数基本关系式:被除数÷除数=商……余数(0≤余数<除数)余数基本恒等式:被除数=除数×商+余数知识梳理1. 一般地,如果是整数,是整数(不为0),若有,也就是,,我们称上面的除法算式为一个带余除法算式。
2.与的和除以c的余数,等于a、b分别除以c的余数之和,当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
3. a与b的乘积除以c的余数,等于a、b分别除以c的余数的积,当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例1一串数1、2、4、7、11、16、22、29、……这串数的组成规律为第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推,那么这串数左起第1992个数除以5的余数是_____。
分析与解:设这串数为a1、a2、a3、…、a1992、…,依题意知a=11a=1+12a=1+1+23a=1+1+2+34a=1+1+2+3+45……a=1+1+2+3+…+1991=1+996×19911992因为996÷5=199……1,1991÷5=398……1,所以996×1991的积除以5余数为1,1+996×1991除以5的余数是2。
因此,这串数左起第1992个数除以5的余数是2。
例2除以13所得的余数是_____。
分析与解:因为222222=2×111111=2×111×1001=2×111×7×11×13 所以222222能被13整除。
又因为2000=6×333+2,=,22÷13=1……9,所以要求的余数是9。
例3有一个自然数,用它分别去除63、90、130都有余数,三个余数的和是25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年五年级上期数学思维训练姓名:
第2讲尾数和余数的应用
一、知识要点:
自然数的末尾的数字称为自然数的尾数;除法中,被除数减去商与除数的积的差叫做余数。
尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。
二、精讲精练:
例1.试比较下面两组算式中结果的尾数。
A组 B组
(1)25+3078+1049 5+8+9
(2)3281-47-108 21-7-8
(3)82×105×7 2×5×7
例2.(1)求1832-785+214×517结果的个位是几?
(2)15×15×…15(100个15)积的尾数是几?
例3.(1)3×3×3×…×3(10个3)的尾数是几?
(2)3×3×3×…×3(100个3)的尾数是几?
例4.求下面格式中结果的个位数字。
(1)-
(2)1995×1995×…×1995×1996×1996×…×1996(1995个1995,1996个1996)
(3)1×3×5×7×9×11×13×…×1997×1999×2001×2003
例5. 5555……5÷3,当商是整数时,余数是几?
课后练习
1.甲数除以9,余数是7;乙数被9除余数是6;9除丙数余数是5,那么(甲+乙+丙)÷
9还有余数吗?
2.一个数被19除余数是4,那么将被除数扩大11倍,除数不变,余数数几?
3.当商是整数时,余数各是几。
6666…6(50个6)÷4
4.求下面各式的尾数:
(31×45)×(31×45)×(31×45)×…(31×45)×(31×45)。