五年级奥数第讲尾数和余数

合集下载

五年级奥数第6周尾数和余数

五年级奥数第6周尾数和余数

五年级奥数第6周尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。

尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。

例题1 写出除213后余3的全部两位数。

分析因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。

练习一1,写出除109后余4的全部两位数。

2,178除以一个两位数后余数是3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。

例题2 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?分析(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。

因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。

练习二1,21×21×21×……×21[50个21]积的尾数是几?2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?例题3 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?分析(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。

(最新)五年级奥数分册第6周 尾数和余数

(最新)五年级奥数分册第6周  尾数和余数

第6周尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。

尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。

例题1 写出除213后余3的全部两位数。

分析因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。

练习一1,写出除109后余4的全部两位数。

2,178除以一个两位数后余数是3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。

例题2 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?分析(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。

因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。

练习二1,21×21×21×……×21[50个21]积的尾数是几?2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?例题3 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?分析(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。

五年级奥数.数论.余数的性质

五年级奥数.数论.余数的性质

余数的性质知识结构三大余数定理:(1)余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为2(2)余数的减法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4(3)余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.例题精讲【例1】在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.【巩固】号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【例2】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【巩固】用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.【例3】六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元.【巩固】商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是________千克.【例4】求478296351⨯⨯除以17的余数.【巩固】求4373091993⨯⨯被7除的余数.【例5】求12÷的余数644319【巩固】 求89143除以7的余数.【例 6】 20102009200920092009⨯⨯⨯L 14444244443个的个位数字是________.【巩固】 2007×2007×…×2007(2008个2007)的个位数字是 。

五年级奥数第讲尾数和余数

五年级奥数第讲尾数和余数

五年级奥数第讲尾数和余数Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第2讲尾数和余数一、知识要点自然数的末位数字称为自然数的尾数;除法中,被除数减去商与除数的差叫作余数。

尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。

二、精讲精练【例题1】(1)9×9×9×……×9(51个9相乘)积的个位数是几?(2)0.3×0.3×0.3×……0.3(204个0.3相乘)×25×25×25×……×25(1001个25)的个位数字是几?练习1:(1)61×61×61×……×61(2001个61相乘)积的尾数是几?(2)(31×36)×(31×36)×……×(31×36)(共50个)积的尾数是几?(3)0.7×0.7×0.7×……×0.7(2002个0.7)×0.6×0.6×0.6×……×0.6(2002个0.6)积的尾数是多少?【例题2】3×3×3×……3(2006个3相乘)+4×4×4×……4(2007个4相乘)的尾数是几?练习2:(1)5×5×5×......5(2000个5相乘)+6×6×6×......6(2001个6相乘)+7×7×7× (7)(2002个7相乘)的尾数是几?(2)52×52×52×……52(33个52相乘)-32×32×32×……32(29个32相乘)的尾数是几?【例题3】444……4(100个4)÷6,当商是整数时,余数是几?练习3:当商是整数时,余数各是几?(1)666……6(50个6)÷4(2)888……8(80个8)÷7(3)444……4(1000个4)÷74(4)111……1(1000个1)÷5【例题4】有一列数,前两个数是3与4,从第3个数开始,每一个数都是前面两个数的和。

五年级下册讲义 01讲 尾数和余数B版(含答案、奥数板块)--北师大版.doc

五年级下册讲义 01讲 尾数和余数B版(含答案、奥数板块)--北师大版.doc

尾数和余数【名师解析】自然数末尾的数字称为自然数的尾数;除法中,被除数减去商与除数积的差。

尾数与余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。

【例题精讲】例1、写出除333后余3的全部两位数。

练习、317除以一个两位数后余数是2,符合条件的两位数有哪些?例2、9519...999个⨯⨯⨯⨯积的个位数字是几?练习、61201161...616161个⨯⨯⨯⨯积的尾数是几?例3、 64...4444100÷个,当商是整数时,余数是多少?练习、1355 (5555)2001÷个,当商是整数时,余数是多少?例4、有一列数,前两个数是3与4,从第三个数开始,每一个数都是前两个数的和。

这一列数中第2001个数除以4,余数是多少?练习、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。

在这一串数字中,第1991个数被3除,所得的余数是几?例5、已知,甲数除以9余7,乙数除以9余5,甲数比乙数大。

(1)甲、乙两数的和除以9余数是几?(2)甲、乙两数的差除以9余数是几?(3)甲、乙两数的积除以9余数是几?练习、甲数除以5余3,乙数除以5余2,甲数比乙数大,那么甲、乙两数的和除以5余数是几?甲、乙两数的差除以5余数是几?甲、乙两数的积除以5余数是几?例6、有一个自然数,用它分别去除70,98,143,都有余数(余数不为0),三个余数的和是25。

这个数是。

练习、有一个自然数,用它分别去除63,80,32都有余数,得到的三个余数的和是10,这个数是。

【选讲】有一个(大于1)数,除122,148,187得到相同的余数,这个数是 。

练习、某个大于1的自然数分别去除442,297,210得到相同的余数,则该自然数是 。

【综合精练】1、写出除349后余4的全部两位数。

2、写出除1095后余3的全部三位数。

3、)3631(50)3631(...)3631()3631(⨯⨯⨯⨯⨯⨯⨯个积的尾数是几?4、9919...999个⨯⨯⨯⨯积的个位数是多少?5、下列各小题中,当商是整数时,余数各是多少?(1)46...666650÷ 个 (2)78 (8888)80÷个(3)744...44441000÷ 个 (4)51 (1111)1000÷个6、把71化成小数,那么小数点后面第100位上的数字是多少?7、一列数1,2,4,7,11,16,22,29,...。

五年级奥数尾数与余数教案

五年级奥数尾数与余数教案

课题奥数“尾数与余数授课时间:5.29 备课时间: 5.25教学目标重点、难点考点及考试要求教学内容专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。

尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。

例题一.写出除333后余3的全部两位数。

思路导航:因为333=330+3,把330分解质因数:330=2×3×5×11,所以,符号题目要求的两位数有2×5=10,2×11=22,3×5=15,3×11=33,5×11=55,2×3×5=30,2×3×11=66,加上11,一共有8个两位数。

例题二. (1)9×9×9×…×9[51个9]积的个位数是几?(2)的积的尾数是几?思路导航:(1)我们先列举前几个9相乘的积,看看个位数在怎样变化,1个9个位就是9;9×9的个位是1;9×9×9的个位是9;9×9×9×9的个位是1……由此可见,积的尾数以“1,9”两个数字在不断重复出现。

51个9相乘时,积的个位是以“9,1”两个数字不断重复,51÷2=25……1,余数是1,说明51个9本乘积的个位是9。

(2)小数乘法的运算,暂时不考虑小数点。

一个3的积,个位数字是3,两个3相乘,积的个位数字是9,三个3相乘,积的个位数字是7,四个3相乘,积的个位数字是1.以此类推,个位数字出现的规律是按“3、9、7、1”的顺序重复。

那么共有204÷4=51个循环,最后一个尾数是1.所以前后两部分相乘,尾数应是1×5=5例题三. 444…4÷6[100个4],当商是整数时,余数是几?思路导航:从竖式中的余数可以看出:每3个4组成的数被6整除。

五年级奥数专题第一讲 尾数和余数

五年级奥数专题第一讲 尾数和余数

五年级奥数专题第一讲 尾数和余数【一】 写出除85后余1的数有哪些?练习1、写出除98余2的数有哪些?2、写出除105后余3的数有哪些?【二】 2×2×2×2×2×2×2×2积的尾数是几?练习1、5×5×5×5×5×5×5积的尾数是几?2、16×16×16×16×16×16积的尾数是几?【三】 写出除214后余4的全部两位数。

练习1、写出除111后余6的全部两位数。

2、180除以一个两位数后余数是5,适合条件的两位数有哪些?【四】 ”个“125100125125125125⨯⨯⨯⨯积的尾数是几?练习1、)个()()262110026212621()2621(⨯⨯⨯⨯⨯⨯⨯积的尾数是几?2、”个“45044444⨯⨯⨯⨯的积的个位数字是几?【五】”个“41004444÷6当商是整数时,余数是几?练习1、”个“5200855555÷13当商是整数时,余数是几?2、当商是整数时,余数是几?(1) ”个“6506666÷4 (2)”个“8808888÷7(3) ”个“410004444÷74 (4)”个“110001111÷5【六】 有一列数,前两个数是3与4,从第3个数开始,每一个数都是前两个数的和。

这一串数中第2000个数除以4,余数是多少?练习1、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。

在这一串数中,第2006个数被3除,所得的余数是几?2、一列数1、2、4、7、11、16、22、29……这一列数的规律是第二个数比第一个数多1;第三个数比第二个数多2;第四个数比第三个数多3,依次类推。

这列数左起第1000个数被5除余数是几?【七】 甲数除以11余9,乙数除以11余7。

小学五年级奥数举一反三第六周讲义尾数和余数

小学五年级奥数举一反三第六周讲义尾数和余数

1、317除以一个两位数后余数是2,符合条件 的两位数有哪些?
分析:首先对317-2=315,再把315分解质因数: 315=3×3×5×7 ,所有符合条件的两位数再去组合 在一起。
2、写出除349后余4的全部两位数。
思路分析:首先对349-4=345,再把345分解质因数: 345=3×5×23 ,所有符合条件的两位数再去组合 在一起。
3,有一串数:5、8、13、21、34、55、89……, 其中,从第三个数起,每个数恰好是前两个数的 和。在这串数中,第1000个数被3除后所得的余数 是多少?
精品jing
小学五年级奥数举一反三第六周尾数 和余数
写出除333后余3的全部两位数。
思路导航: 因为333=330+3,把330分解质因数:
330=2×3×5×11,所以,符号题目要求的两位数 有2×5=10,2×11=22,3×5=15,3×11=33, 5×11=55,2×3×5=30,2×3×11=66,加上11, 一共有8个两位数。
一列数
3 10 13 23 36 59 95 154 249 403 652 1055 1707 2762 4469 …
余数
0 1 12 0
2
21
0
1
1
2
0
2
2…
思路:从这列数除以3后的余数中来寻找规律性。从表中可以 发现,这些余数是按照(0、1、1、2、0、2、2、1)顺序出现的。 因为1991÷8=248组…7,即是第249组中的第7个余数是2。
从竖式中可以看出,余数是按3、9、 4、6、0、5这六个数字不断重复出 现。因为除数是两位数,第一个5上 面没有商数字,在计算时要减去1个 5。(2001-1)÷6=333……2,所以, 当商是整数时,余数是9。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数第讲尾数和
余数
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
第2讲尾数和余数
一、知识要点
自然数的末位数字称为自然数的尾数;除法中,被除数减去商与除数的差叫作余数。

尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。

二、精讲精练
【例题1】(1)9×9×9×……×9(51个9相乘)积的个位数是几?
(2)0.3×0.3×0.3×……0.3(204个0.3相乘)×25×25×25×……×25(1001个25)的个位数字是几?
练习1:
(1)61×61×61×……×61(2001个61相乘)积的尾数是几?
(2)(31×36)×(31×36)×……×(31×36)(共50个)积的尾数是几?
(3)0.7×0.7×0.7×……×0.7(2002个0.7)×0.6×0.6×0.6×……×0.6(2002个0.6)积的尾数是多少?
【例题2】3×3×3×……3(2006个3相乘)+4×4×4×……4(2007个4相乘)的尾数是几?
练习2:
(1)5×5×5×......5(2000个5相乘)+6×6×6×......6(2001个6相乘)+7×7×7× (7)
(2002个7相乘)的尾数是几?
(2)52×52×52×……52(33个52相乘)-32×32×32×……32(29个32相乘)的尾数是几?
【例题3】444……4(100个4)÷6,当商是整数时,余数是几?
练习3:当商是整数时,余数各是几?
(1)666……6(50个6)÷4(2)888……8(80个8)÷7
(3)444……4(1000个4)÷74(4)111……1(1000个1)÷5
【例题4】有一列数,前两个数是3与4,从第3个数开始,每一个数都是前面两个数的和。

这一列数中第2001个数除以4,余数是多少?
练习4:
(1)有一串数排成一行,其中第一个数是3,第二个数是10.从第三个数七,每个数恰好是前面两个数的和。

在这一串数种,第1991个数被3除,所得的余数是几?
(2)一列数1、2、4、7、11、16、22、29、……这一列数的规律是第二个数比第一个数多1;第三个数比第二个数多2;第四个数比第三个数多3,依次类推。

这列数左起第1996个数被5除余
数是几?
【例题5】已知:甲数除以9余7,乙数除以9余5.
(1)甲、乙两数的和除以9余数是几?
(2)甲、乙两数的差除以9余数是几?
(3)甲、乙两数的积除以9余数是几?
练习5:甲数除以5余3,乙数除以5余2,那么甲、乙两数的和除以5余数是几?甲、乙两数的差除以5余数是几?甲、乙两数的积除以5余数是几?
三、课后练习
1、4×4×4×……×4(50个4相乘)积的尾数数是几?
2、18×28×38×……×98×108的积的尾数数是几?
3、(21×26)×(21×26)×……×(21×26)(1000个)积的尾数是几?
4、有一串数:
5、8、13、21、34、55、89……其中,从第三个数起,每个数恰好是前两个数的和。

在这串数中,地1000个数被3除后的余数是多少?
5、甲数除以9余7:乙数除以9余6,丙数除以9余5,那么(甲┼乙┼丙)÷9还有余数吗?。

相关文档
最新文档