五年级奥数――尾数和余数

合集下载

五年级奥数第6周尾数和余数

五年级奥数第6周尾数和余数

五年级奥数第6周尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。

尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。

例题1 写出除213后余3的全部两位数。

分析因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。

练习一1,写出除109后余4的全部两位数。

2,178除以一个两位数后余数是3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。

例题2 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?分析(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。

因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。

练习二1,21×21×21×……×21[50个21]积的尾数是几?2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?例题3 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?分析(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。

(最新)五年级奥数分册第6周 尾数和余数

(最新)五年级奥数分册第6周  尾数和余数

第6周尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。

尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。

例题1 写出除213后余3的全部两位数。

分析因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。

练习一1,写出除109后余4的全部两位数。

2,178除以一个两位数后余数是3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。

例题2 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?分析(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。

因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。

练习二1,21×21×21×……×21[50个21]积的尾数是几?2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?例题3 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?分析(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。

五年级奥数__尾数和余数之欧阳引擎创编

五年级奥数__尾数和余数之欧阳引擎创编

第6讲尾数和余数欧阳引擎(2021.01.01)一、知识要点自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。

尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。

二、精讲精练【例题1】写出除213后余3的全部两位数【思路导航】因为213=210+3.把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21.5×7=35,2×3×5=30,2×3×7=42.一共有7个两位数。

练习1:1.写出除109后余4的全部两位数。

2.178除以一个两位数后余数是3.适合条件的两位数有哪些?3.写出除1290后余3的全部三位数。

【例题2】(1)125×125×125×……×125[100个125]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?【思路导航】(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。

因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。

练习2:1.21×21×21×……×21[50个21]积的尾数是几?2.1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3.(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?【例题3】(1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?【思路导航】(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。

五年级奥数第讲尾数和余数

五年级奥数第讲尾数和余数

五年级奥数第讲尾数和余数Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第2讲尾数和余数一、知识要点自然数的末位数字称为自然数的尾数;除法中,被除数减去商与除数的差叫作余数。

尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。

二、精讲精练【例题1】(1)9×9×9×……×9(51个9相乘)积的个位数是几?(2)0.3×0.3×0.3×……0.3(204个0.3相乘)×25×25×25×……×25(1001个25)的个位数字是几?练习1:(1)61×61×61×……×61(2001个61相乘)积的尾数是几?(2)(31×36)×(31×36)×……×(31×36)(共50个)积的尾数是几?(3)0.7×0.7×0.7×……×0.7(2002个0.7)×0.6×0.6×0.6×……×0.6(2002个0.6)积的尾数是多少?【例题2】3×3×3×……3(2006个3相乘)+4×4×4×……4(2007个4相乘)的尾数是几?练习2:(1)5×5×5×......5(2000个5相乘)+6×6×6×......6(2001个6相乘)+7×7×7× (7)(2002个7相乘)的尾数是几?(2)52×52×52×……52(33个52相乘)-32×32×32×……32(29个32相乘)的尾数是几?【例题3】444……4(100个4)÷6,当商是整数时,余数是几?练习3:当商是整数时,余数各是几?(1)666……6(50个6)÷4(2)888……8(80个8)÷7(3)444……4(1000个4)÷74(4)111……1(1000个1)÷5【例题4】有一列数,前两个数是3与4,从第3个数开始,每一个数都是前面两个数的和。

五年级奥数尾数与余数教案

五年级奥数尾数与余数教案

课题奥数“尾数与余数授课时间:5.29 备课时间: 5.25教学目标重点、难点考点及考试要求教学内容专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。

尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。

例题一.写出除333后余3的全部两位数。

思路导航:因为333=330+3,把330分解质因数:330=2×3×5×11,所以,符号题目要求的两位数有2×5=10,2×11=22,3×5=15,3×11=33,5×11=55,2×3×5=30,2×3×11=66,加上11,一共有8个两位数。

例题二. (1)9×9×9×…×9[51个9]积的个位数是几?(2)的积的尾数是几?思路导航:(1)我们先列举前几个9相乘的积,看看个位数在怎样变化,1个9个位就是9;9×9的个位是1;9×9×9的个位是9;9×9×9×9的个位是1……由此可见,积的尾数以“1,9”两个数字在不断重复出现。

51个9相乘时,积的个位是以“9,1”两个数字不断重复,51÷2=25……1,余数是1,说明51个9本乘积的个位是9。

(2)小数乘法的运算,暂时不考虑小数点。

一个3的积,个位数字是3,两个3相乘,积的个位数字是9,三个3相乘,积的个位数字是7,四个3相乘,积的个位数字是1.以此类推,个位数字出现的规律是按“3、9、7、1”的顺序重复。

那么共有204÷4=51个循环,最后一个尾数是1.所以前后两部分相乘,尾数应是1×5=5例题三. 444…4÷6[100个4],当商是整数时,余数是几?思路导航:从竖式中的余数可以看出:每3个4组成的数被6整除。

五年级奥数余数与尾数

五年级奥数余数与尾数

奥数练习(3)余数和尾数姓名_________例❶(1)951的个位数字是()?(2)0.3204×251001积的尾数是()?练习1、612011积的尾数是()? 2、991积的个位数是()?3、(31×36)50积的尾数是()?例❷(1)444…4 ÷6当商是整数时,余数是()?(2)81999除以7的余数是()。

100个4练习1、555…55÷13,当商是整数时,余数是( )?2、71991除以5的余数是()。

2001个53、888…88÷7 的余数是()4、91985除以5的余数是()。

80个8例❸有一列数,前两个数是3与4,从第三个数开始,每一个数都是前两个数的和。

这一列练习1、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰2、一列数1,2,4,7,11,16,22,29,…。

这一列数的规律第二个数比第一个数多1;第三个数比第二个数多2;第四个数比第三个数多3,依次类推,这列数左起第1996个数被53、有一串数:5,8,13,21,34,55,89,…。

其中,从第三个数起,每个数恰好是前两个奥数综合练习姓名__________1、两箱茶叶共96千克,如果从甲箱取出12千克放入乙箱,那么乙箱的质量是甲箱的3倍,两箱原来各有茶叶多少千克?答:甲箱原来有茶叶()千克,乙箱原来有茶叶()千克。

2、甲、乙两班共有图书150册,如果甲班送20册图书给乙班,那么甲班拥有图书的册数正好是乙班的2倍,甲、乙两班原来各有图书多少册?答:甲班原来有图书()册,乙班原来有图书()册。

3. 甲、乙两人共储蓄2000元,甲取出160元,乙又存入240元,这时甲储蓄的钱数比乙的2倍少20元,甲、乙两人原来各储蓄多少元?答:甲原来储蓄()元,乙原来储蓄()元。

4. 甲、乙、丙三个同学做数学题,已知甲比乙多做5道,丙做的是甲的2倍,比乙多做20道,他们一共做了多少道数学题?答:他们一共做了()道数学题。

(新编)五年级奥数分册第6周 尾数和余数

(新编)五年级奥数分册第6周  尾数和余数

第6周尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。

尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。

例题1 写出除213后余3的全部两位数。

分析因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。

练习一1,写出除109后余4的全部两位数。

2,178除以一个两位数后余数是3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。

例题2 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?分析(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。

因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。

练习二1,21×21×21×……×21[50个21]积的尾数是几?2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?例题3 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?分析(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。

(最新)五年级奥数分册第6周 尾数和余数

(最新)五年级奥数分册第6周  尾数和余数

第6周尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。

尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。

例题1 写出除213后余3的全部两位数。

分析因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。

练习一1,写出除109后余4的全部两位数。

2,178除以一个两位数后余数是3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。

例题2 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?分析(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。

因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。

练习二1,21×21×21×……×21[50个21]积的尾数是几?2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?例题3 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?分析(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲 尾数和余数
例1、20122
的个位数字是几?
练习:1、44443444421Λ9519999999个⨯⨯⨯⨯⨯⨯⨯的积的个位数字是几?
2、第6周举一反三2第2题。

例2、2019321⨯⨯⨯⨯Λ的积的尾数是几?
练习:3、1089848382818⨯⨯⨯⨯⨯⨯Λ的积的尾数是几?
4、求444344421Λ4434421Λ4
.01002.1960.40.40.4-2.12.12.1个个⨯⨯⨯⨯⨯⨯的差的尾数。

例3、788888
100÷321Λ个,当商是整数时,余数是几?
练习:5、第6周举一反三3第2题。

例4、有一列数,前两个数是3与4,从第三个数开始,每一个数都是前两个数的和。

这一列数中第2001个数除以4,余数是多少?
练习:6、一列数1,2,4,7,11,16,22,29,…,按此列数的规律,这列数中的第1996个数除以5,余数是几?
例5、甲数除以8余7,乙数除以8余6,丙数除以8余5,那么(甲+乙+丙)÷8的余数是几?
练习:7、第6周举一反三5第1题。

8、第6周举一反三5第3题。

作业(1题,2题必做,3题选做):
1、4444443
44444421Λ)
1811(11518)(1118)(1118)(11⨯⨯⨯⨯⨯⨯⨯个的积的尾数是多少?
2、6111111
1111÷4342
1Λ个,当商是整数时,余数是几?
3、求102101100432
++的和的个位数字。

相关文档
最新文档