线性电阻电路分析
电路分析实验报告(电阻元件伏安特性的测量)

一、实验目的:
(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。
(2)学习直流稳压电源、万用表、电压表的使用方法。
二、实验原理及说明
(1)元件的伏安特性。
如果把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。
(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。
元件的电阻值可由下式确定:R=u/i=(m u/m i)tgα,期中m u和m i分别是电压和电流在u-i平面坐标上的比例。
三、实验原件
U s是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw
四、实验内容
(1)线性电阻元件的正向特性测量。
(2)反向特性测量。
(3)计算阻值,将结果记入表中
(4)测试非线性电阻元件D3的伏安特性
(5)测试非线性电阻元件的反向特性。
表1-1 线性电阻元件正(反)向特性测量
表1-5 二极管IN4007正(反)向特性测量
五、实验心得
(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时一定要考虑正确使用导线。
电路原理第三章 电阻电路的一般分析

例3.
I1 7 + 70V –
求支路电流(电路中含有受控源)
a I2 1 I3
解 11 + U _ 2
节点a:–I1–I2+I3=0
7I1–11I2=70-2U 11I2+7I3= 2U
7
+
2U
_ b
增补方程:U=7I3
利用支路电流与受控 电源控制量的关系
得 I1=8/3A; I2=14/3A; I3=22/3A;
6 4
+ 2 + 3 + 4 =0
上述四个方程并不相互独立,可由任意三个推 出另一个,即只有三个是相互独立的。
结论
n个结点的电路, 独立的KCL方程为n-1个。
独立方程对应的节点称为独立节点。
2.KVL的独立方程数 KVL的独立方程数=基本回路数=b-(n-1)
结 论
n个结点、b条支路的电路, 独立的 KCL和KVL方程数为:
例
图示为电路的图,画出三种可能的树及其对应的基 本回路。 1
4
8 3
5
6 7 2
5 8 6 7
4 8 3 6
4 8 2 3
3.2 KCL和KVL的独立方程数
1.KCL的独立方程数
2 1 1 4 3 5 2 3 2 3 4 1 1
i1 i4 i6 0 i1 i2 i3 0 i 2 i5 i 6 0 i3 i4 i5 0
整理得:
(R1+R2) im1 – R2 im2 = us1- uS2 -R2im1 + (R2+R3) im2 = uS2-us3 R11=R1+R2 R22=R2+R3 R11im1+ R12 im2 = us11 R21im1 + R22im2 = uS22
第3章 电阻电路的一般分析

解2. I1 7 + 70V –
a
增补方程:I2=6A 11 由于I2已知,故只列写两个方程。 a:–I1+I3=6 7
I2
1 6A b
I3
避开电流源支路取回路: 1: 7I1+7I3=70
返 回 上 页 下 页
例6.
I1 7
+ 70V –
列写支路电流方程(电路中含有受控源)。 a
I2 1 + 5U _ b 11 2 I3 + 7 U _ 解
返 回
支路、结点、路径、回路和网孔的概念。 (1)连通图 图G的任意两结点间至少有一条路径 时,称图G为连通图。非连通图至少 存在两个分离部分。
(2) 子图
若图G1中所有支路和结点都是图G中 的支路和结点,则称G1是G的子图。
返 回
上 页
下 页
(3)树 (Tree)
T是连通图G的一个子图, 并满足条件:
依据:
KCL、KVL以及元件的VCR。
方法: 根据列方程时所选变量不同,可分为支路电流法、
网孔电流法、回路电流法和结点电压法。
返 回 上 页 下 页
对于线性电阻电路,电路方程是一组线性代数方程。
例1
3
I1 R1 uS1 + –
a I2 I3
R2 + – b 2 独立? R3 求I1、I2和I3?
1 uS2
独立回路=2,选为网孔。
+ –
R3
i1 il 1 i3 il 2 i2 il 2 il 1
uS2
b
回路1:R1 il1-R2(il2- il1) +uS2-uS1=0 回路2:R2(il2- il1)+ R3 il2 -uS2=0 自电阻 (R1+ R2) il1 -R2 il2 = uS1-uS2
线性电阻网络分析

提高稳定性
选择适当的电阻值
选择适当的电阻值可以减小元件之间的电压和电流差异,从而提高 稳定性。
增加元件容差
元件容差是元件参数的允许误差范围,增加元件容差可以降低元件 参数对电路性能的影响,提高稳定性。
优化网络拓扑
通过优化网络拓扑结构,可以减小元件之间的耦合效应,提高稳定性。
优化元件参数
选择适当的电阻材料
在物联网和智能电网中的应用
物联网
在物联网领域,电阻网络可以应用于传感器网络中,用于监测各种物理量如温度、湿度、压力等,实现远程数据 采集和传输。
智能电网
在智能电网中,电阻网络可以用于实现电能计量、故障检测等功能,提高电网的智能化水平和供电可靠性。同时, 电阻网络也可以用于可再生能源并网发电系统的电能质量监测和调控。
电感元件
表示为纯电感,其电流与电压的相 位差为90度。
02
线性电阻网络的数学模型
电路方程
01
02
03
基尔霍夫电流定律
在电路中,流入节点的电 流等于流出节点的电流。
基尔霍夫电压定律
在电路中,任意两点之间 的电压等于电位降落。
欧姆定律
在电路中,电阻元件两端 的电压与流过它的电流成 正比。
节点电压法
03
线性电阻网络的性能分析
电压与电流的关系
1 2
欧姆定律
在线性电阻网络中,电压和电流成正比关系,即 V=IR,其中 V 是电压,I 是电流,R 是电阻。
串联和并联
在串联电路中,总电压等于各电阻上的电压之和; 在并联电路中,总电流等于各支路电流之和。
3
分压和分流
在串联电路中,电阻越大,其上的电压越高;在 并联电路中,电阻越小,其上的电流越大。
第2章电路分析

(3)根据KVL和VCR对(b-n+1)个独立回路列以支路电流 为变量的方程;
(4)求解各支路电流,进而求出其他所需求的量。
若电路中含有无伴电流源(无电阻与之并联),可设电流源 两端的电压为未知量, 见例2-5。
電子工業出版社
新编电气与电子信息类本科规划教材
例2-5
如图所示的电路中,已知:R1 =1 ,R2 =2 ,Us1 =5 V, Is3 =1 A。用支路电流法求各支路电流。 解:对结点①列KCL方程,有
树枝数=(n-1),连枝数=(b-n + 1)
電子工業出版社
新编电气与电子信息类本科规划教材
单连枝回路或基本回路:由一个连枝与相应的树枝构成的回路。
基本回路数 = 连枝数 = b-n+1 3.割集
满足下列两个条件的支路的集合。
① 移去该集合中的所有支路,图G将分成两个部分; ② 当少移去其中任一支路时,图G仍是连通的。
新编电气与电子信息类本科规划教材
图G的一条路径:从图G的某一结点出发,沿着 一些支路移动,从而到达另一结点(或回到原 出发点),这样的一系列支路。 连通图:任意两个结点之间至少存在一条路径。
電子工業出版社
新编电气与电子信息类本科规划教材
树和基本回路
树的定义:①包含图G中的全部结点和部分支路; ②树T是连通的,且不包含回路。
R12 R31 R1 R12 R23 R31 R23 R12 R2 R12 R23 R31 R31R23 R3 R12 R23 R32
当Y连接中3个电阻相等,即R1 = R2 = R3 = RY时,
R△= R12 = R23 = R31 = 3RY
i1 = im1,i2 = im1 -im2,i3 = im2
线性电路的分析方法解析

线性电路的分析方法解析线性电路是由被动元件(如电阻、电容、电感等)和有源元件(如电源、放大器等)组成的一种电路。
线性电路主要通过应用基本电路定律和电路分析方法来分析和解决电路问题。
以下是常见的线性电路分析方法:1.基本电路定律:线性电路分析的基础是基本电路定律,包括欧姆定律(电流与电压成正比关系)、基尔霍夫电压定律(环路电压之和为0)和基尔霍夫电流定律(节点电流之和为0)。
通过这些定律可以建立电路的等式,进一步解决电路问题。
2.等效电路:将复杂的线性电路简化为等效电路是简化分析的常见方法。
等效电路可以用简单的电路元件(如电阻、电流源等)来代替原始电路,但仍然保持电路特性不变。
常见的等效电路包括电阻串联、并联、电流源串联和电压源并联等。
3.节点电压法:节点电压法是一种常用的线性电路分析方法。
它通过将电路中的节点连接到地(或任意选定基准点)上,使用基尔霍夫电流定律分析各节点的电压。
通过列写节点电压方程,可以解得节点的电压值,进而计算电路中的电流和功率等参数。
4.微分方程法:微分方程法是分析线性电路的另一种常见方法。
通过对电路中的元件进行建模,可以得到元件之间的基本关系式,进而得到描述电路行为的微分方程。
通过求解微分方程可以得到电路中的电流和电压等参数。
5.模拟计算:模拟计算是一种常用的线性电路分析方法。
通过使用模拟计算软件,将电路图输入并设置元件参数和初始条件,软件可以自动计算电路中的电流、电压和功率等参数,并绘制相应的波形图。
模拟计算可以方便地分析复杂的线性电路,并可以进行参数的优化和灵敏度分析。
6.相量法:对于交流电路,相量法是一种便捷的分析方法。
相量法将交流电压和电流看作有大小和相位的量,通过将它们用复数表示来进行分析。
通过相量法可以方便地计算交流电路中的电路参数,如电流、电压、功率等。
7.频域分析:频域分析是分析交流电路的另一种常用方法。
频域分析通过将电路中的电压和电流信号进行傅里叶变换,将它们从时域转换为频域。
线性电阻和非线性电阻实验报告

线性电阻和非线性电阻实验报告线性电阻和非线性电阻实验报告引言:电阻是电路中常见的元件之一,它的作用是限制电流的流动。
在实际应用中,电阻可以分为线性电阻和非线性电阻两种类型。
本实验旨在通过实际测量和分析,探讨线性电阻和非线性电阻的特性和应用。
实验一:线性电阻特性测量1. 实验目的本实验旨在测量线性电阻的电流-电压特性曲线,并分析其特性。
2. 实验步骤(1)搭建线性电阻电路,将电流表和电压表连接到电路中。
(2)通过改变电源电压,记录不同电压下的电流值。
(3)根据测得的电流和电压值,绘制电流-电压特性曲线。
3. 实验结果与分析根据实验测量结果,我们绘制了线性电阻的电流-电压特性曲线。
从曲线可以看出,电流和电压之间呈现线性关系,符合欧姆定律。
线性电阻的电阻值可以通过曲线的斜率计算得出。
实验二:非线性电阻特性测量1. 实验目的本实验旨在测量非线性电阻的电流-电压特性曲线,并分析其特性。
2. 实验步骤(1)搭建非线性电阻电路,将电流表和电压表连接到电路中。
(2)通过改变电源电压,记录不同电压下的电流值。
(3)根据测得的电流和电压值,绘制电流-电压特性曲线。
3. 实验结果与分析根据实验测量结果,我们绘制了非线性电阻的电流-电压特性曲线。
与线性电阻不同,非线性电阻的电流-电压关系不是简单的线性关系。
在低电压范围内,电流随电压的增加而迅速增加,但随后增长速度逐渐减慢,形成曲线的饱和区域。
这是由于非线性电阻的电阻值随电压的改变而变化,导致电流-电压关系不再是线性的。
结论:通过本实验的测量和分析,我们深入了解了线性电阻和非线性电阻的特性和应用。
线性电阻的电流-电压关系呈现线性,符合欧姆定律;而非线性电阻的电流-电压关系则不是简单的线性关系,其电阻值随电压的改变而变化。
这些特性使得非线性电阻在电路设计和电子器件中具有广泛的应用,如温度传感器、光敏电阻等。
总结:通过本实验,我们不仅学习了线性电阻和非线性电阻的特性,还掌握了测量和分析电流-电压特性曲线的方法。
电路分析 第二章 电阻汇总

仅属于一个回路,该回路电流即IS 。
3、具有受控源情况
处理方法:对含有受控电源支路的电路,可先把受控源 看作独立电源按上述方法列方程,再将控制量用回路 电流表示。
29
2.4 节点法
节点电压法:以节点电压为未知变量列写电路方程分析电路的方法。
第二章 电阻电路分析
2.1 图与电路方程 2.2 2b法和支路法 2.3 回路法和网孔法 2.4 节点法 2.5 齐次定理和叠加定理 2.6 替代定理 2.7 等效电源定理
(2-1)
线性电路的一般分析方法 • 普遍性:对任何线性电路都适用。 • 系统性:计算方法有规律可循。
方法的基础
• 电路的连接关系—KCL,KVL定律。 • 元件的电压、电流关系特性。 复杂电路的一般分析法就是根据KCL、KVL及元 件电压和电流关系列方程、解方程。根据列方程时所 选变量的不同可分为支路电流法、回路电流法和结点 电压法。
例 2.2 - 1如图2.2 - 2的电路,求各支路电流。 解: 选节点a为独立节
点, 可列出KCL 方程为:
-i1+ i2 + i3 =0
选网孔为独立回路,如图所 示。 可列出KVL方程为:
3 i1 + i2 =9 - i2 +2 i3 =-2.5 i1 联立三个方程可解得i1 =2A, i2 =3 A, i3 =-1 A。
(2-20)
小结 (1)支路电流法的一般步骤:
①标定各支路电流(电压)的参考方向; ②选定(n–1)个结点,列写其KCL方程; ③选定b–n+1个独立回路,指定回路绕行方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春理工大学
国家级电工电子实验教学示范中心学生实验报告
2019-2020学年第2学期
实验题目:线性电阻电路分析
实验地点:东1教414
学院:电子信息工程
班级学号:*********
******
报告成绩:
一、实验目的
1、熟悉EWB工作平台的操作环境
2、练习利用EWB进行电路的创建
3、会用电压表和电流表对所设计电路进行测量
4、研究电压表、电流表内阻对电路测量的影响
5、通过对线性电路叠加定理验证实验的设计,训练工程实践思维模式
二、实验性质
验证性实验
三、实验内容
1、分压电路
(1)复制电子工作平台上的实验电路图
(2)测量数据记录
测量R1电压的
电压表内阻测量值R01R02R03R04 25M 25k 25 25m
V
R1
(V) 6 5.883 0.286 0.3
V
R2
(V) 6 6.117 11.714 12 (3)数据分析及结论
1.当R1和R2相差不大时,满足分压公式V R1=(R1/R1+R2)*U,V R2=(R2/R1+R2)*U
2.V R1+V R2=U
2、分流电路
(1)复制电子工作平台上的实验电路图
(2)测量数据记录
R1电阻(Ω)测量值R11 R12 R13 25 50 75
I
R1
5 3.33 2.5
I
R2
5 6.67 7.5 (3)数据分析及结论
1、并联电阻分流并与电阻成反比
2、并联电阻分流之和等于电路电流
3、I R1+I R2=I,I R1/I R2=R2/R1
3、叠加定理验证实验
(1)设计思路
(2)测量数据及分析
图1 图2 图3
U1 1.5 2.25 -0.75
U2 30 22.5 7.5
U3 0 1.125 -1.125
(3)理论分析及结论
分析:图二,图三数据相加等于相对应的图一的数据。
结论:在线性电路中,任一支路的电压和电流,在各个独立源的作用下,在该支路中。