【优质文档】平行四边形经典证明题例题讲解

合集下载

(完整)平行四边形的判定典型例题及练习

(完整)平行四边形的判定典型例题及练习

平行四边形一、知识点复习1、平行四边形的判定平行四边形的判定方法①两组对边分别平行的四边形是平行四边形。

②一组对边平行且相等的四边形是平行四边形。

③两组对边分别相等的四边形是平行四边形。

④对角线相互平分的四边形是平行四边形。

2、平行线等分线段和三角形中位线定理(1)平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等.(2)平行线等分线段定理的推论:经过三角形一边中点与另一边平行的直线必平分第三边.(3)三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。

(4)三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半。

3、三角形的重心(1)重心的定义:三角形的三条中线交于一点,这点就是三角形的重心.(2)重心的性质:三角形的三条中线相交于一点,这点和各边中点的距离等于相应各边上中线的三分之一。

二、典型例题讲解模块1:平行四边形的判定题型1:平行四边形的判定例题1:如图所示,在平行四边形ABCD 中,CF AE ,分别是DAB ∠,BCD ∠的平分线,求证:四边形AFCE 是平行四边形.例题2:如图,在等边三角形ABC 中,D 是BC 的中点,以AD 为边向左侧作等边三角形ADE 。

(1)求CAE ∠的度数.(2)取AB 的中点F ,连接CF 、EF 。

试证明四边形CDEF 是平行四边形.例题3:如图,在平行四边形ABCD 中,BD 为对角线,F E ,是BD 上的点,且DF BE =. 求证:四边形AECF 是平行四边形。

变式练习:1。

如图,在ABC ∆中,中线BD ,CE 相交于点O ,F 、G 分别是OB 、OC 的中点,连接DE GD FG EF ,,,,求证:四边形DEFG 是平行四边形。

2。

如图,已知DE AB //,DE AB =,DC AF =,求证:四边形BCEF 是平行四边形.3.如图,四边形ABCD 中,BC AD //,作DC AE //交BC 于E 。

平行四边形常见证明题

平行四边形常见证明题

平行四边形常见证明题1.在四边形ABCD中,若AE=CF且DEBF是平行四边形,则EF平行于AD和BC。

理由:DEBF是平行四边形,因此DE平行于BF,EF平行于DB和FA,而AD和BC分别平分DE和BF,因此EF也平分AD和BC。

2.在四边形ABCD中,若ED=BF且EF与AC相交于O,则OA=OC。

理由:由题意可知,EF是AD和BC的平分线,因此O是AC的中点,即OA=OC。

3.在平行四边形ABCD中,若CF=AE且EF与BD交于O,则EF平分BD,BD也平分EF。

理由:连接OF和OE,由平行四边形的性质可知,OF=BE,OE=DF,因此EF=BD。

同时,由相似三角形可知,OE/OF=AE/CF=1,因此OE=OF,即EF被OE和OF平分。

4.在四边形ABCD中,若AE=CF且DF=BE且DF∥BE,则(1)△ADF≌△CBE;(2)ABCD是平行四边形。

理由:(1)由题意可知,△ADF和△CBE分别为DEA和BFC的全等三角形,因此它们相等。

(2)由AE=CF和DF∥BE可知,△ADF和△CBE是等腰三角形,因此AD=BC,AB∥DC,即ABCD是平行四边形。

5.在四边形ABCD中,若∠ABC=70度,∠ABC的平分线交AD于E,BE的平行线交BC于F,则∠CDF的度数为60度。

理由:由角平分线定理可知,∠ABE=35度,∠AEB=145度,又因为BE∥CF,所以∠BFC=35度,∠BCF=145度,由平行线性质可知,∠___∠BCF=145度,因此∠CDF=180度-145度-35度=60度。

6.在四边形ABCD中,若∠ABC的平分线交AD于E且CE⊥BE,则BC=2CD。

理由:连接CE和BD,由垂直平分线定理可知,CE=BE,因此三角形CBE为等腰三角形,∠___∠CEB,又因为∠ABC的平分线AE平分∠CAB,所以∠___∠ABC/2,又因为∠ABC+∠ADC=180度,所以∠ADC=360度/3-∠ABC/2=60度-∠ABC/2,由正弦定理可知,___∠ADC/sin∠ACD=2sin∠ABC/2,因此BC=2CD。

平行四边形判定经典题型

平行四边形判定经典题型

平行四边形判定经典题型摘要:一、平行四边形的定义和性质二、平行四边形的判定方法1.两组对边分别平行2.两组对边分别相等3.一组对边平行且相等4.两组对角分别相等5.对角线互相平分三、经典题型解析1.题目一2.题目二3.题目三4.题目四5.题目五正文:平行四边形是初中数学中一个重要的基本图形,它具有许多独特的性质,其中最重要的性质之一就是可以通过一些特定的条件来判定一个四边形是否为平行四边形。

这些判定方法包括两组对边分别平行、两组对边分别相等、一组对边平行且相等、两组对角分别相等以及对角线互相平分。

首先,如果一个四边形的两组对边分别平行,那么这个四边形就是平行四边形。

这是最直接的判定方法。

其次,如果两组对边分别相等,那么这个四边形也是平行四边形。

这种情况下,四边形的一组对边可能相等,也可能不等。

再者,如果一组对边平行且相等,那么这个四边形也是平行四边形。

这种情况下,另一组对边可能平行,也可能相等。

此外,如果两组对角分别相等,那么这个四边形也是平行四边形。

最后,如果对角线互相平分,那么这个四边形也是平行四边形。

在实际做题过程中,我们需要根据题目给出的条件,灵活运用这些判定方法。

下面,我们通过五个经典题型来具体解析这些判定方法的应用。

题目一:如果一个四边形的两组对边分别平行,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。

题目二:如果一个四边形的两组对边分别相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。

题目三:如果一个四边形的一组对边平行且相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。

题目四:如果一个四边形的两组对角分别相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。

题目五:如果一个四边形的对角线互相平分,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。

平行四边形证明题精选(初中数学)

平行四边形证明题精选(初中数学)

平行四边形证明题精选(初中数学)1. 证明平行四边形的性质已知四边形ABCD,证明ABCD是平行四边形的方法有:- 证明对角线互相平分- 证明对边平行- 证明对边长度相等且对角线互相垂直证明对角线互相平分证明方法如下:1. 连接对角线AC和BD;2. 证明线段AC与线段BD的中点E重合,即AE=CE及BE=DE;3. 通过副诱导线的证明,得出结论:ABCD是平行四边形。

证明对边平行证明方法如下:1. 假设AB∥CD;2. 通过诱导线的证明,得出结论:ABCD是平行四边形。

证明对边长度相等且对角线互相垂直证明方法如下:1. 假设AB=CD且AC⊥BD;2. 通过诱导线的证明,得出结论:ABCD是平行四边形。

2. 平行四边形的性质应用在解决平行四边形证明题时,可以根据平行四边形的性质进行推导。

以下是一些常见的平行四边形证明题:证明1已知平行四边形ABCD,证明△ACF≌△EBD。

证明方法:1. 延长AC和BD相交于点F;2. 通过对角线互相平分的证明,得出△ACF≌△EBD。

证明2已知平行四边形ABCD,证明AF=CD。

证明方法:1. 连接AF;2. 通过对边平行的证明,得出AF≥CD;3. 通过对角线互相平分的证明,得出AF≤CD;4. 综合以上两个结论,得出AF=CD。

证明3已知平行四边形ABCD,证明∠DAB=∠BCD。

证明方法:1. 延长AD和BC相交于点E;2. 通过对角线互相平分的证明,得出∠DAB=∠BCD。

以上是初中数学中的一些平行四边形证明题示例及解题方法。

希望能对你的学习有所帮助!。

平行四边形10道经典例题

平行四边形10道经典例题

平行四边形经典例题一、已知平行四边形的性质求角度例题:在平行四边形ABCD 中,∠A 的度数比∠B 的度数小40°,求∠A 和∠B 的度数。

解析:因为平行四边形的邻角互补,即∠A + ∠B = 180°。

又已知∠A 比∠B 小40°,即∠B - ∠A = 40°。

联立这两个方程可得:∠A = 70°,∠B = 110°。

二、利用平行四边形的性质求边长例题:平行四边形ABCD 的周长为40,AB = 6,求BC 的长。

解析:平行四边形的对边相等,所以AB = CD = 6,BC = AD。

周长为40,则2(AB + BC) = 40,即2×(6 + BC) = 40,解得BC = 14。

三、判断四边形是否为平行四边形例题:已知四边形ABCD 中,AB∠CD,AB = CD,判断四边形ABCD 是否为平行四边形。

解析:一组对边平行且相等的四边形是平行四边形,所以四边形ABCD 是平行四边形。

四、根据平行四边形的性质求线段长度例题:在平行四边形ABCD 中,AC、BD 是对角线,AC = 10,BD = 8,且AC 与BD 的夹角为60°,求AB 的长度。

解析:过 A 作AE∠BD 于E。

设O 为AC 与BD 的交点,则AO = 5,BO = 4。

在直角三角形AOE 中,因为∠AOE = 60°,所以OE = AO×cos60° = 5×1/2 = 2.5,AE = AO×sin60° = 5×√3/2。

在直角三角形ABE 中,根据勾股定理可得AB = √(AE² + BE²) = √[(5×√3/2)²+(4 + 2.5)²]。

五、利用平行四边形的性质证明线段相等例题:在平行四边形ABCD 中,E、F 分别是AB、CD 的中点,连接DE、BF。

平行四边形的判定证明题

平行四边形的判定证明题

四、运用判定3“对角线互相平分的四边形是平行四边形” 判定,证对角线互相平分。 1、如图,在平行四边形ABCD中,E、F在对角线AC上,且 AE=CF,试说明四边形DEBF是平行四边形.
解:连接BD交AC于点O. ∵四边形ABCD是平行四边形, ∴AO=CO,BO=DO. 又AE=CF, ∴AO-AE=CO-CF, 即EO=FO. ∴四边形DEBF是平行四边形.(对角线互相平分 的四边形是平行四边形)
证明:∵四边形ABCD是正方形,
∴AB = CD,AD = BC, ∠A =∠C =∠ABC =∠ADC =90° ∵AE = AD ,CF = BC,
∴AE = CF. ∴△ABE≌△CDF. ∴∠ABE =∠CDF,∠AEB =∠CFD. ∴∠BED =∠DFB. ∴∠EBF =∠EDF. ∴四边形BFDE是平行四边形. (两组对角 分别相等的四边形是平行四边形)
例2、已知:如图,在△ABC中,AB=AC,E是AB的中 点,D在BC上,延长ED到F,使ED = DF = EB. 连结FC. 求证:四边形AEFC是平行四边形.
证明:∵AB=AC, ∴∠B =∠ACB. ∵ED = EB, ∴∠B =∠EDB. ∴∠ACB =∠EDB. ∴EF∥AC. ∵E是AB的中点, ∴BD = CD. ∵∠EDB =∠FDC,ED = DF, ∴△EDB≌△FDC. ∴∠DEB =∠F. ∴AB∥CF. ∴四边形AEFC是平行四边形. (两组对边
证明:∵四边形ABCD 是平行四边形, ∴∠DAB=∠BCD, 又∵∠1= ∠DAB,∠2= ∠BCD,
∴∠1=∠2, ∵AB//CD, ∴∠3=∠1,∠4=∠2, ∴∠3=∠4, ∴∠5=∠6, ∴四边形AECF是平行四边形.(两组对角分 别相等的四边形是平行四边形)

专题 平行四边形的性质和判定(解析版)

专题 平行四边形的性质和判定(解析版)

八年级下册数学《第十八章平行四边形》专题平行四边形的性质与判定【例题1】如图,在平行四边形ABCD中,CE平分∠BCD,交AB于点E,AE=3,EB=5,ED=4.则CE的长是( )A.B.C.D.【分析】由平行四边形的性质和角平分线的性质可证BE =BC =5,由勾股定理的逆定理可求∠AED =90°,由勾股定理可求CE 的长.【解答】解:∵AE =3,EB =5,∴AB =8,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD =BC ,AB =CD =8,∴∠DCE =∠BCE ,∠AED =∠EDC ,∵CE 平分∠BCD ,∴∠DCE =∠BCE ,∴∠BCE =∠BEC ,∴BE =BC =5,∴AD =5,∵AD 2=25=16+9=DE 2+AE 2,∴∠AED =90°,∴∠AED =∠EDC =90°,∴CE =故选:D .【点评】本题考查了平行四边形的性质,角平分线的性质,勾股定理及勾股定理的逆定理,证明∠AED =90°是解题的关键.【变式1-1】如图,在平行四边形ABCD 中,AB =5,AD =7,AE 平分∠BAD 交BC 于点E ,作DG ⊥AE 于点G 并延长交BC 于点F ,则线段EF 的长为( )A .2B .52C .3D .【分析】据平行四边形的性质证明∠DAE =∠BEA ,∠ADF =∠CFD ,进而证明∠BAE =∠BEA 得到BE =BA=5,∠CDF=∠CFD得到CF=CD=5,由此即可得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,CD=AB=6,BC=AD=7,∴∠BAD+∠ADC=180°,∠DAE=∠BEA,∠ADF=∠CFD,∵AG⊥DG,∴∠AGD=90°,∴∠DAE+∠ADF=90°,∴∠BAE+∠CDF=∠BAD+∠ADC﹣∠DAE﹣∠ADF=90°,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∵∠BEA+∠CFD=90°,∴BE=BA=5,∠CDF=∠CFD,∴CE=BC﹣BE=2,CF=CD=5,∴EF=CF﹣CE=3,故选:C.【点评】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,证明BE=BA=5,CF=CD=5是解题的关键.【变式1-2】如图,在▱ABCD中,O为对角线AC与BD的交点,AC⊥AB,E为AD的中点,并且OF ⊥BC,∠D=53°,则∠FOE的度数是( )A.143°B.127°C.53°D.37°【分析】先由等角的余角相等证明∠FOC=∠D=53°,再根据三角形的中位线定理证明OE∥CD,则∠COE=180°﹣∠ACD=90°,即可求得∠FOE=143°,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠CAD=∠OCF,∵AC⊥AB,OF⊥BC,∴∠ACD=∠CAB=∠OFC=90°,∵∠D+∠CAD=90°,∠FOC+∠OCF=90°,∴∠FOC=∠D=53°,∵O为对角线AC与BD的交点,∴O为AC的中点,∵E为AD的中点,∴OE∥CD,∴∠COE=180°﹣∠ACD=180°﹣90°=90°,∴∠FOE=∠FOC+∠COE=53°+90°=143°,故选:A.【点评】此题重点考查平行四边形的性质、平行线的性质、等角的余角相等、直角三角形的两个锐角互余、三角形的中位线定理等知识,证明OE∥CD是解题的关键.【变式1-3】如图,将平行四边形OABC放置在平面直角坐标系xOy中,O为坐标原点,若点C的坐标是(1,3),点A的坐标是(5,0),则点B的坐标是( )A.(5,3)B.(4,3)C.(6,3)D.(8,1)【分析】由平行四边形的性质可得BC∥OA,BC=OA=5,即可求解.【解答】解:∵点A的坐标是(5,0),∴OA=5,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=5,∵点C的坐标是(1,3),∴点B坐标为(6,3),故选:C.【点评】本题考查了平行四边形的性质,坐标与图形性质,掌握平行四边形的性质是解题的关键.【变式1-4】如图,在平行四边形ABCD中P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是( )A.18B.24C.23D.14【分析】根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=12(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP=6,∴△APB的周长=6+8+10=24;故选:B.【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.【变式1-5】如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠ACE的度数是( )A.30°B.35°C.40°D.45°【分析】证△ABE是等边三角形,得AB=AE,再证△BAC≌△AED中(SAS),得∠BAC=∠AED=80°,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠ADC=60°,AD∥BC,∴∠BAD=180°﹣∠B=180°﹣60°=120°,∵AE平分∠BAD,∴∠BAE=∠DAE=12∠BAD=60°,∴∠B=∠DAE,△ABE是等边三角形,∴AB=AE,∠AEB=∠BAE=60°,在△BAC和△AED中,AB=EA∠B=∠DAEBC=AD,∴△BAC≌△AED(SAS),∴∠BAC=∠AED=80°,∴∠EAC=∠BAC﹣∠BAE=80°﹣60°=20°,∴∠ACE=∠AEB﹣∠EAC=60°﹣20°=40°.故选:C.【点评】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的性质,证明△BAC≌△AED是解题的关键.【变式1-6】▱ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是( )A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7【分析】根据平行四边形对角线互相平分可得AO=4,BO=3,再根据三角形的三边关系可得4﹣3<AB<4+3,再解即可.【解答】解:∵四边形ABCD是平行四边形,∴AO=12AC,BO=12BD,∵AC=8,BD=6,∴AO=4,BO=3,∴4﹣3<AB<4+3,解得1<AB<7.故选:C.【点评】此题主要考查了三角形的三边关系以及平行四边形的性质,关键是掌握“平行四边形的对角线互相平分”的性质.【变式1-7】在平行四边形ABCD中,∠A的角平分线把边BC分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定【分析】设∠A的平分线交BC于点E,可证明AB=EB,再分两种情况讨论,一是EB=5,EC=4,则AB =EB=5,BC=EB+EC=9;二是EB=4,EC=5时,则AB=EB=4,BC=EB+EC=9,分别求出平行四边形ABCD的周长即可.【解答】解:设∠A的平分线交BC于点E,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∵∠BAE=∠DAE,∴∠BEA=∠BAE,∴AB=EB,当EB=5,EC=4时,如图1,则AB=EB=5,BC=EB+EC=9,∴2AB+2BC=2×5+2×9=28;当EB=4,EC=5时,如图2,则AB=EB=4,BC=EB+EC=9,∴2AB+2BC=2×4+2×9=26,∴平行四边形ABCD的周长为26或28,故选:B.【点评】此题重点考查平行四边形的性质、平行线的性质、等腰三角形的判定等知识,熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键.【变式1-8】如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,∠FDO=∠EBOOD=OB∠FOD=∠EOB,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴▱ABCD的周长=2(BC+AB)=20.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.【例题2】(2022•南京模拟)如图,在平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =EF =FC .(1)求证:DE ∥BF ;(2)若BE ⊥BC ,DE =6,求对角线AC 的长.【分析】(1)根据平行四边形的性质得出AD =BC ,AD ∥BC ,AB =CD ,∠BAC =∠DCA ,利用全等三角形的判定和性质得出∠AFB =∠CED ,再由平行线的判定即可证明;(2)根据(1)中全等三角形的性质得出DE =BF =6,再根据直角三角形斜边上的中线等于斜边的一半得出BF =CF =EF =6,即可得出结果.【解答】(1)证明:∵四边形ABCD 为平行四边形,∴AD =BC ,AD ∥BC ,AB =CD ,∴∠BAC =∠DCA ,∵AE =FC ,∴AE +EF =FC +EF ,即AF =EC ,∴△ABF ≌△CDE (SAS ),∴∠AFB =∠CED ,∴DE ∥BF ;(2)解:由(1)得△ABF ≌△CDE ,∴DE =BF =6,∵BE ⊥BC ,CF =EF ,∴点F 为△BEC 的中点,∴BF =CF =EF =6,∵CF =EF =AE,∴AC=18.【点评】此题主要考查平行四边形的性质,全等三角形的判定和性质,直角三角形斜边上的中线的性质等,理解题意,综合运用这些知识点是解题关键.【变式2-1】(2022春•西吉县校级月考)如图.已知四边形ABCD是平行四边形,BE⊥AC,DF⊥AC,求证:BE=DF.【分析】证两条线段所在的两个三角形全等.根据“AAS”可证△ABE≌△CDF或△ADF≌△CBE.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF中,∠DFC=∠BEA∠FCD=∠EAB,AB=CD∴△ABE≌△CDF(AAS),∴BE=DF.【点评】此题考查了平行四边形的性质和全等三角形的判定及性质,熟练掌握“平行四边形的对边平行且相等”是解题关键.【变式2-2】(2022•泉山区校级三模)已知,如图,在平行四边形ABCD中,点E、F分别在AB、CD的延长线上,BE=DF,连接EF,分别交BC、AD于G、H.求证:EG=FH.【分析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,∠E=∠FBE=DF,∠EBG=∠FDH∴△BEG≌△DFH(ASA),∴EG=FH.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.【变式2-3】(2022秋•北碚区校级期末)如图,平行四边形ABCD中,CB=2AB,∠DCB的平分线交BA 的延长线于点F.(1)求证:DE=AE;(2)若∠DAF=70°,求∠BEA的度数.【分析】(1)根据平行四边形的性质证明A为BF的中点,然后证明△DEC≌△AEF(AAS),进而得出结论;(2)由平行四边形的对边平行证出∠CBF=∠DAF=70°,∠BEA=∠EBC,由等腰三角形的性质得出∠CBE=∠ABE,即可得出答案.【解答】(1)证明:∵CE是∠DCB的平分线,∴∠DCE=∠BCF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=DC,∴∠DCE=∠CFB,∴∠BCF=∠CFB,∴BC=BF,∵BC=2AB,∴BF=2AB,∴A为BF的中点,∴AB=AF,∴AB=DC=AF,在△DEC和△AEF中,∠DCE=∠F∠DEC=∠AEFDC=AF,∴△DEC≌△AEF(AAS),∴DE=AE;(2)解:∵四边形ABCD是平行四边形,∴DA∥CB,∴∠CBF=∠DAF=70°,∠BEA=∠EBC,∵△DEC≌△AEF,∴CE=EF,∵BC=BF,∴∠EBC=∠FBE=12∠CBF=35°,∴∠BEA=35°.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握平行四边形的性质和等腰三角形的性质,证明三角形全等是解题的关键.【变式2-4】(2022秋•道里区校级月考)在平行四边形ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:DE=BF;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以G为顶点并且与△EHC全等的所有三角形.【分析】(1)由平行四边形的性质得出AB∥CD,∠ADE=∠CBF,AD=BC,由ASA证明△ADE≌△CBF,得出DE=BF;(2)由中点的定义得出DE=CE,由平行四边形的判定方法即可得出平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADE=∠CBF,AD=BC,在△ADE和△CBF中,∠ADE=∠CBFAD=BC,∠DAE=∠BCF∴△ADE≌△CBF(ASA),∴DE=BF;(2)解:∵E是CD的中点,∴DE=CE,∴以GH为边的平行四边形有平行四边形GHFA、平行四边形GHBF、平行四边形GHED、平行四边形GHCE.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出DE=BF是解决问题(1)的关键.【变式2-5】(2021春•九龙坡区校级期中)在▱ABCD中,∠ABC=45°,过A作AE⊥CD于E,连接BE,延长EA至F,使CE=AF,连接DF.(1)求证:DF=BE;(2)若DF=AD=ADEB的周长.【分析】(1)由已知证得AB=EF,DE=AE,根据全等三角形的判定证得△FDE≌△BEA,根据全等三角形的性质可得结论;(2)由勾股定理得求得DE=3,EF=5,由(1)知,AB=EF,BE=DF,即可求得结论.【解答】(1)证明:∵AE⊥CD,∴∠FED=90°,∵四边形ABCD是平行四边形,∠ABC=45°,AB=DC,∴∠BAE=∠FED=90°,∠ADE=∠ABC=45°,∴AE=DE,∵CE=AF,∴AB=EF,△FDE和△BEA中,DE=AE∠FED=∠BAE EF=AB,∴△FDE≌△BEA(SAS),∴DF=BE;(2)在Rt△ADE中,AE=DE,AD=由勾股定理得:DE=3,在Rt△FDE中,DE=3,DF=∴EF=5,由(1)知,AB=EF=5,BE=DF∴四边形ADEB的周长为:AD+DE+BE+AB=35=【点评】本题主要考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,证得AB=EF,DE=AE,是解决问题的关键.【变式2-6】(2022春•济南期中)如图,将▱ABCD的边BC延长到点E,使BE=CD,连接AE交CD 于点F.(1)求证:AE平分∠BAD;(2)已知BC=CE=3,EF=4,FG⊥AB,求FG的长.【分析】(1)利用平行四边形的性质得AB=CD,AD∥BE,再证明∠BAE=∠E得到AB=BE,然后利用等边对等角等知识证得结论即可;(2)根据平行四边形的性质得到AD=BC,AD∥BE,求得∠D=∠DCE,∠DAF=∠FEC,根据全等三角形的性质得到AF=EF=4,根据勾股定理得到BF=到结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠E,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠E,∴AB=BE,∴∠BAE=∠E,∴∠BAE=∠DAE,∴AE平分∠BAD;(2)解:由BE=CD,AB=CD,∴△ABE为等腰三角形,∴AB=BE=6,∵四边形ABCD为平行四边形,∴AD=BC,AD∥BE,∴∠D=∠DCE,∠DAF=∠FEC,∵BC =CE =3,∴AD =CE ,∴△ADF ≌△ECF (ASA ),∴AF =EF =4,∴BF ⊥AE ,∵AB =BE =6,∴BF==∵S △ABF =12AB •FG =12AF •BF ,∴FG =故FG【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.【例题3】如图,平行四边形ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A.CE=AF B.BE=DF C.∠DAF=∠BCE D.AF∥CE 【分析】由平行四边形的性质或全等三角形的性质进行逐一判断即可.【解答】解:若CE=AF,则无法判断OE=OE,故A选项符合题意;如图,连接AC,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项B不符合题意;∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AD∥BC,∴∠ADF=∠CBE,在△ADF和△CBE中,∠ADF=∠CBEAD=BC,∠DAF=∠BCE∴△ADF≌△CBE(ASA),∴BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项C不符合题意;∵AF∥CE,∴∠AFB=∠CED,∴∠AFD=∠CEB,在△ADF和△CBE中,∠ADF=∠CBE∠AFD=∠CEB,AD=BC∴△ADF≌△CBE(AAS),∴BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项D不符合题意;故选:A.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,掌握平行四边形的判定方法是解题的关键.【变式3-1】在下列条件中,能够判定一个四边形是平行四边形的有( )①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.【解答】解:①错误.这个四边形有可能是等腰梯形;②正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形;③错误.不满足三角形全等的条件,无法证明相等的一组对边平行;④正确.可以利用三角形全等证明平行的一组对边相等且平行.故是平行四边形.故选:B.【点评】本题考查平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是记住全等三角形的判定方法以及平行四边形的判定方法,属于中考常考题型.【变式3-2】下列条件能判定四边形ABCD是平行四边形的是( )A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【分析】根据平行四边形的判定方法分别对各个选项进行判断即可.【解答】解:A、由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不符合题意;B、由AB=AD,BC=CD,不能判定四边形ABCD是平行四边形,故本选项不符合题意;C、由AB=CD,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D、由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不符合题意;故选:C.【点评】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.【变式3-3】四边形ABCD中,对角线AC,BD交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB∥CD,∠BAD=∠BCD;③AO=CO,BO=DO;④AB∥CD,AD=BC.一定能判定四边形ABCD 是平行四边形的条件有( )A.1组B.2组C.3组D.4组【分析】根据平行四边形的5个判断定理:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,即可作出判断.【解答】解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:一组对边平行,一组对角相等的四边形可得是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行,一组对边相等的四边形不一定是平行四边形,还可能是等腰梯形,可知④不能判断这个四边形是平行四边形;故给出下列四组条件中,①②③能判断这个四边形是平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定定理,解题关键是准确无误的掌握平行四边形的判定定理.【变式3-4】如图,在△ABC中,D,F分别是AB,AC上的点,且DF∥BC.点E是射线DF上一点,若再添加下列其中一个条件后,不能判定四边形DBCE为平行四边形的是( )A.∠ADE=∠E B.∠B=∠E C.DE=BC D.BD=CE【分析】由平行四边形的判定分别对各个选项进行判断即可.【解答】解:A、∵∠ADE=∠E,∴AB∥CE,又∵DF∥BC,∴四边形DBCE为平行四边形;故选项A不符合题意;B、∵DF∥BC,∴∠ADE=∠B,∵∠B=∠E,∴∠ADE=∠E,∴AB∥CE,∴四边形DBCE为平行四边形;故选项B不符合题意;C、∵DF∥BC,∴DE∥BC,又∵DE=BC,∴四边形DBCE为平行四边形;故选项C不符合题意;D、由DF∥BC,BD=CE,不能判定四边形DBCE为平行四边形;故选项D符合题意;故选:D.【点评】本题考查了平行四边形的判定、平行线的判定与性质等知识;熟练掌握平行四边形的判定是解题的关键.【变式3-5】如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是( )A .∠B =∠F B .DE =EFC .AC =CFD .AD =CF【分析】利用三角形中位线定理得到DE ∥AC ,DE =12AC ,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC ,DE =12AC ,A 、当∠B =∠F ,不能判定AD ∥CF ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;B 、∵DE =EF ,∴DE =12DF ,∴AC =DF ,∵AC ∥DF ,∴四边形ADFC 为平行四边形,故本选项符合题意;C 、根据AC =CF ,不能判定AC =DF ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;D 、∵AD =CF ,AD =BD ,∴BD =CF ,由BD =CF ,∠BED =∠CEF ,BE =CE ,不能判定△BED ≌△CEF ,不能判定CF ∥AB ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;故选:B .【点评】本题考查了平行四边形的判定、三角形的中位线定理以及平行线的判定等知识;熟练掌握平行四边形的判定和三角形中位线定理是解题的关键.【变式3-6】如图,在▱ABCD 中,E ,F 分别是边AD ,BC 上的点,连接AF ,CE ,只需添加一个条件即可证明四边形AFCE 是平行四边形,这个条件可以是 (写出一个即可).【分析】根据▱ABCD的性质得到AD∥BC,然后由“对边相等且平行的四边形是平行四边形”添加条件即可.【解答】解:如图,在▱ABCD中,AD∥BC,则AE∥FC.当添加AE=FC时,根据“对边相等且平行的四边形是平行四边形”可以判定四边形AFCE是平行四边形,故答案是:AE=FC(答案不唯一).【点评】此题考查了平行四边形的性质与判定.解题过程中注意平行四边形的判定与平行四边形的性质的综合运用.【变式3-7】平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF一定为平行四边形的条件 .(用题目中的已知字母表示)【分析】在平行四边形ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边,只需证明OE=OF.【解答】解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识,熟练掌握平行四边形的性质,证明OE=OF是解题的关键.【例题4】(2021•江华县一模)如图,△ABC 为等边三角形,D 、F 分别为BC 、AB 上的点,且CD =BF ,以AD 为边作等边△ADE .(1)求证:△ACD ≌△CBF ;(2)点D 在线段BC 上何处时,四边形CDEF 是平行四边形且∠DEF =30°.【分析】(1)在△ACD 和△CBF 中,根据已知条件有两边和一夹角对应相等,可根据边角边来证明全等.(2)当∠DEF =30°,即为∠DCF =30°,在△BCF 中,∠CFB =90°,即F 为AB 的中点,又因为△ACD ≌△CBF ,所以点D 为BC 的中点.【解答】证明:(1)由△ABC 为等边三角形,AC =BC ,∠FBC =∠DCA ,在△ACD 和△CBF 中,AC =BC ∠DCA =∠FBC CD =BF,所以△ACD ≌△CBF (SAS );(2)当D 在线段BC 上的中点时,四边形CDEF 为平行四边形,且角DEF =30度按上述条件作图,连接BE,在△AEB和△ADC中,AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,∴△AEB≌△ADC(SAS),又∵△ACD≌△CBF,∴△AEB≌△ADC≌△CFB,∴EB=FB,∠EBA=∠ABC=60°,∴△EFB为正三角形,∴EF=FB=CD,∠EFB=60°,又∵∠ABC=60°,∴∠EFB=∠ABC=60°,∴EF∥BC,而CD在BC上,∴EF平行且相等于CD,∴四边形CDEF为平行四边形,∵D在线段BC上的中点,∴F在线段AB上的中点,∴∠FCD=12×60°=30°则∠DEF=∠FCD=30°.【点评】本题考查了平行四边形的判定和三角形全等的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【变式4-1】如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.【分析】(1)根据BC=EF求出BC=EF,根据垂直定义得出∠ACB=∠DFE=90°,再根据全等三角形的判定定理SAS推出即可;(2)根据全等三角形的性质得出AB=DE,∠ABC=∠DEF,根据平行线的判定得出AB∥DE,再根据平行四边形的判定定理推出即可.【解答】证明:(1)∵BE=CF,∴BE﹣CE=CF﹣CE,即BC=EF,又∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,AC=DF∠ACB=∠F,BC=EF∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF,∴AB=DE,∠ABC=∠DEF,∴AB∥DE,∴四边形ABED是平行四边形.【点评】本题考查了全等三角形的判定定理和性质定理,平行线的判定,平行四边形的判定等知识点,能熟记有一组对边平行且相等的四边形是平行四边形是解此题的关键.【变式4-2】如图所示,△ABC中,D是BC边上中点,AE是∠BAC的平分线,CE⊥AE,EF∥BC交AB于点F,求证:四边形BDEF是平行四边形.【分析】延长CE交AB于M,证两三角形全等,推出E为CM中点,根据三角形中位线推出DE∥AB,根据平行四边形的判定推出即可.【解答】证明:延长CE交AB于M,∵AE⊥CE,∴∠AEC=∠AEM=90°,∵AE是∠BAC的平分线,∴∠MAE=∠CAE,在△MAE和△CAE中,∠AEM=∠AECAE=AE,∠MAE=∠CAE∴△MAE≌△CAE(ASA),∴CE=EM,∵D为BC中点,∴DE∥AB,∵EF∥BC,∴四边形BDEF是平行四边形.【点评】本题考查了全等三角形的性质和判定,三角形的中位线,平行四边形的判定的应用,注意:有两组对边分别平行的四边形是平行四边形.【变式4-3】(2021秋•海阳市期末)如图,在△ABC中,AD是BC边的中线,F是AC上一点,且满足2AF=CF,连接BF与AD相交于点E.若G为线段BF上一动点,试分析当点G在何位置时,四边形AFDG为平行四边形?【分析】证DG是△BCF的中位线,得DG∥CF,2DG=CF,则DG∥AF,再证DG=AF,即可得出四边形AFDG为平行四边形.【解答】解:点G为线段BF的中点时,四边形AFDG为平行四边形,理由如下:∵AD是BC边的中线,∴BD=CD,∵点G为线段BF的中点,∴DG是△BCF的中位线,∴DG∥CF,2DG=CF,∴DG∥AF,∵2AF=CF,∴DG=AF,∴四边形AFDG为平行四边形.【点评】本题考查了平行四边形的判定以及三角形中位线定理等知识,熟练掌握平行四边形的判定,证明DG为△BCF的中位线是解题的关键.【变式4-4】(2022春•顺义区校级月考)如图,四边形ABCD中,BD垂直平分AC,垂足为点F、E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=3,AD=4,求AC的长.【分析】(1)分别证明AB∥ED,AE∥BD,得出结论;(2)利用勾股定理求出BH AF,即可得出结论.【解答】(1)证明:∵∠ADE=∠BAD,∴AB∥ED,∵AE⊥AC,∴∠EAC=90°,∵BD垂直平分AC,∴∠BFA=90°,∴∠EAC=∠BFA,∴AE∥BD,∴四边形ABDE是平行四边形,(2)解:∵DA平分∠BDE,∴∠ADE=∠ADB,∵∠ADE=∠BAD,∴∠ADB=∠BAD,∴BA=BD,∵AB=3,∴BD=3过B作BH⊥AD,∴AH=HD=12AD=2,∴BH=∵BD垂直平分AC,则AF=FC,∵S△ABD =12DA⋅BH=12DB⋅AF,∴AF =DA⋅BH DB∴AC 【点评】本题考查平行四边形的判定以及利用勾股定理解直角三角形,利用等积法求高是解决问题的关键.【变式4-5】(2021春•西安期末)如图,在△AFC 中,∠FAC =45°,FE ⊥AC 于点E ,在EF 上取一点B ,连接AB 、BC ,使得AB =FC ,过点A 作AD ⊥AF ,且AD =BC ,连接CD ,求证:四边形ABCD 是平行四边形.【分析】证Rt △AEB ≌Rt △FEC (HL ),得BE =CE ,则∠CBE =∠BCE =45°,再证出∠BCE =∠CAD ,得BC ∥AD ,即可证出四边形ABCD 是平行四边形;【解答】证明:∵FE ⊥AC ,∴∠FEA =∠FEC =90°,∵∠FAC =45°,∴△AEF 是等腰直角三角形,∴AE =EF ,∠AFE =∠FAE =45°,在Rt △AEB 和Rt △FEC 中,AB =FC AE =FE ,∴Rt △AEB ≌Rt △FEC (HL ),∴BE =CE ,∴∠CBE =∠BCE =45°,∵AD ⊥AF ,∴∠FAD =90°,∴∠CAD =90°﹣45°=45°,∴∠BCE=∠CAD,∴BC∥AD,又∵BC=AD,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握平行四边形的判定,证明Rt△AEB≌Rt△FEC是解题的关键.【变式4-6】(2022春•礼泉县期末)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)求证:△AEF≌△BAC;(2)四边形ADFE是平行四边形吗?请说明理由.【分析】(1)由含30°角的直角三角形的性质得AB=2BC,再由等边三角形的性质得AB=AE,AB=2AF,则AF=BC,由HL即可得出结论;(2)由等边三角形的性质得∠DAC=60°,AC=AD,再证EF∥AD,然后由全等三角形的性质得EF=AC,则EF=AD,即可得出结论.【解答】(1)证明:∵Rt△ABC中,∠BAC=30°,∴AB=2BC,∵△ABE是等边三角形,EF⊥AB,∴AB=AE,AB=2AF,∴AF=BC,在Rt△AFE和Rt△BCA中,AE=BAAF=BC,∴Rt△AEF≌Rt△BAC(HL);(2)解:四边形ADFE是平行四边形,理由如下:∵△ACD是等边三角形,∴∠DAC =60°,AC =AD ,∴∠DAB =∠DAC +∠BAC =90°,∴AD ⊥AB ,又∵EF ⊥AB ,∴EF ∥AD ,由(1)得:△AEF ≌△BAC ,∴EF =AC ,∴EF =AD ,∴四边形ADFE 是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、等边三角形的性质、平行线的判定等知识;熟练掌握平行四边形的判定,证明Rt △AEF ≌Rt △BAC 是解题的关键.【例题5】如图,在▱ABCD 中,要在对角线BD 上找两点E 、F ,使A 、E 、C 、F 四点构成平行四边形,现有①,②,③,④四种方案,①只需要满足BE =DF ;②只需要满足AE ⊥BD ,CF ⊥BD ;③只需要满足AE ,CF 分别平分∠BAD ,∠BCD ,④只需要满足AE =CF .则对四种方案判断正确的是( )A .①②③B .①③④C .①②④D .②③④【分析】只要证明△ABE ≌△CDF ,即可解决问题.【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠BAD =∠BCD ,∴∠ABE =∠CDF ,①在△ABE 和△CDF 中,AB =CD ∠ABE =∠CDF BE =DF,。

平行四边形经典证明题例题讲解

平行四边形经典证明题例题讲解

经纬教育 平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠. 又BE DF ∥,BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴ 又∵∴∴∥即得是平行四边形∴ ∴四边形的周长解法二:连接∵∴又∵ ∴≌∴ ∴四边形的周长解法三:连接∵∴又∵ ∴∴∥即是平行四边形∴ ∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC AB CD ∥DCA BAC ∠=∠B DAC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DCABE FADCBAD CBAD CB解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定【答案】证明:(1)DF BE Q ∥,DFE BEF ∴∠=∠.180AFD DFE∠+∠=Q °,180CEB BEF ∠+∠=°,AFD CEB∴∠=∠.又AF CE DF BE ==Q ,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由; (3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥Q2390∴∠+∠=°Q 四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=° 12∠=∠90DAM ABE DA AB ∠=∠==Q °,DAM ABE ∴△≌△ DM AE ∴= AE EP =Q DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△ 14DM AE ∴=∠=∠, 1590∠+∠=Q ° 4590∴∠+∠=° AE DM ∴⊥ AE EP ⊥Q DM EP ∴⊥ABDEFCA DCBEBCEDA F PF∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. (在四边形 ABCD 中,∠ D=60°,∠ B 比∠ A 大 20°,∠ C 是∠ A 的 2 倍,求∠ A,∠ B,∠ C 的大小.
4 . ( 如 图 , E,F 是 四 边 形 ABCD 的 对 角 线 AC 上 两 点 , A F C, E D F, B∥E .D 求证:(1) △ AFD ≌△CEB .
又 BE ∥ DF , BEC DFA ,
△ BEC ≌△ DFA , CE AF
B
C
解法一 : ∵ AB ∥ CD ∴ B C 180 又∵ B D ∴ C D 180 ∴ AD ∥ BC 即得 ABCD 是平行四边形 ∴ AB CD 3,BC AD 6 ∴四边形 ABCD 的周长 2 6 2 3 18
m

2
AO CO
1

时,得
2 ,∴ ED 2m 4 ,
BD ED
m 2 ED
∵点 E 在第四象限,∴ E2 (m,4 2m) .
学习必备
欢迎下载 (3)假设抛物线上存在一点 F ,使得四边形 ABEF 为平行四边形,则 EF AB 1 ,点 F 的横坐标为 m 1 ,
当点 E1 的坐标为 m,2 m 时,点 F1的坐标为 m 1,2 m ,
解法二 :
A
D
B
C
2.如图 6,四边形 ABCD 中, AB∥ CD,∠ B= ∠ D, BC 6, AB 3 ,
求四边形 ABCD 的周长.
连接 AC ∵ AB ∥ CD ∴ BAC DCA
又∵ B D,AC CA ∴ △ ABC ≌ △CDA ∴ AB CD 3,BC AD 6 ∴四边形 ABCD 的周长 2 6 2 3 18
D x
E1 (E2)
(x=m)
解得 a 1,b 3, c 2 .
y x2 3x 2 .
(2)当 △EDB ∽△ AOC 时,
AO CO AO CO



ED BD BD ED
∵ AO 1,CO 2,BD m 2 ,
当 AO
CO
1
时,得
2,
ED BDED m 2源自∴ EDm2,
2
∵点 E 在第四象限,∴ E1 m,2
学习必备
欢迎下载
【答案】 20、
经纬教育 平行四边形证明题 经典例题(附带详细答案)
A
D
1.如图, E、F 是平行四边形 ABCD 对角线 AC 上两点, BE ∥ DF ,求证: AF CE .
A
D
E
F
B
C
【答案】 证明:平行四边形 ABCD 中, AD ∥ BC , AD BC , ACB CAD .
(2)四边形 ABCD 是平行四边形.
D
C
E
F
A
B
【关键词】平行四边形的性质 , 判定
【答案】 证明:(1) DF ∥ BE , DFE
BEF .
CEB BEF 180°, AFD CEB . 又
AFD DFE 180°, A F C,E D F ,B
△ AFD ≌△ CEB(SAS) .
学习必备 (2)由( 1)知 △ AFD ≌△CEB , DAC BCA,AD BC , AD ∥ BC . 四边形 ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)
欢迎下载
7.( 2009 年包头)已知二次函数 y ax2 bx c( a 0 )的图象经过点 A(1,0) ,B (2,0) , C (0, 2) ,直线 x m ( m 2 )与 x 轴交于点 D .
( 1)求二次函数的解析式;
(2)在直线 x m ( m 2 )上有一点 E (点 E 在第四象限),使得 E、D、B 为顶点的三 角形与以 A、 O、C 为顶点的三角形相似,求 E 点坐标(用含 m 的代数式表示) ; ( 3)在( 2)成立的条件下,抛物线上是否存在一点 F ,使得四边形 ABEF 为平行四边形? 若存在,请求出 m 的值及四边形 ABEF 的面积;若不存在,请说明理由.
Rt△DAM ≌ Rt△ ABE DM AE, 1 4
1 5 90° 4 5 90°
AE DM AE EP DM EP 四边形 DMEP 为平行四边形
学习必备
A 54
1
M
D FP
BE
C
6.(2009 年广州市)如图 9,在 Δ ABC 中, D、 E、F 分别为边 AB 、 BC 、CA 的中点。 证明:四边形 DECF 是平行四边形。
(3)在图 13-2 的 AB 边上是否存在一点 M ,使得四边形 DMEP 是平行四边形?若存在, 请
给予证明;若不存在,请说明理由.
A
D
F
BE
C
A
D
BE
FP C
【关键词】平行四边形的判定
【答案】解: (1) AE EF 2 3 90°
欢迎下载
四边形 ABCD 为正方形
B C 90° 1 3 90° 12
解法三 :
学习必备
欢迎下载
【关键词】多边形的内角和
【答案】设 A x (度),则 B x 20 , C 2x . 根据四边形内角和定理得, x ( x 20) 2x 60 360 . 解得, x 70 .
∴ A 70 , B 90 , C 140 .
A
D
B
C
连接 BD ∵ AB ∥ CD ∴ ABD CDB 又∵ ABC CDA ∴ CBD ADB ∴ AD ∥ BC 即 ABCD 是平行四边形 ∴ AB CD 3,BC AD 6 ∴四边形 ABCD 的周长 2 6 2 3 18
5.)25.如图 13-1,在边长为 5 的正方形 ABCD 中, 点 E 、 F 分别是 BC 、 DC 边上的点, 且 AE EF , BE 2 . (1)求 EC ∶ CF 的值;
(2)延长 EF 交正方形外角平分线 CP于点 P (如图 13-2),试判断 AE与 EP 的大小关系,
并说明理由;
y
O
x
【关键词】平行四边形的判定 【答案】∵ D.E 、F 分别为 AB.BC.CA的中点, ∴ DF∥ BC, DE∥ AC, ∴四边形 DECF是平行四边形 .
【关键词】二次函数、相似三角形、运动变化、抛物线
解:( 1)根据题意,得
a b c 0, 4a 2b c 0, c 2.
y
AB O
(F2)F 1 C
DAM ABE 90°,DA AB △ DAM ≌△ ABE DM AE AE EP DM PE 四边形 DMEP 是平行四边形. 解法 ② :在 AB 边上存在一点 M ,使四边形 DMEP 是平行四边形
证明:在 AB 边上取一点 M ,使 AM BE ,连接 ME 、 MD 、 DP . AD BA, DAM ABE 90°
相关文档
最新文档