随机过程的线性变换
通信原理-随机过程课件

遍历性的数学描述
对于一个随机过程,如果存在一个常 数$c$,使得对于任意的时间$t$,有 $E[X(t)]=c$,则称该随机过程具有遍 历性。其中$X(t)$表示在时刻$t$的随 机变量的取值。
标量乘法
标量乘法满足结合律和分 配律,即对于任意标量a 和任意随机过程X,有 a(X+Y)=aX+aY。
线性变换的应用
信号处理
在通信系统中,信号经常 需要进行线性变换以实现 调制、解调、滤波等操作 。
控制系统
在控制系统中,线性变换 被广泛应用于系统的分析 和设计,如传递函数、状 态方程等。
图像处理
在图像处理中,线性变换 被广泛应用于图像的增强 、滤波、变换等操作。
04
CATALOGUE
随机过程的平稳性
平稳性的定义
平稳性定义
一个随机过程如果对于任何正整数n,以及任何非负整数k,其n维联合分布函 数与n+k维联合分布函数相同,则称该随机过程是严平稳的。
数学表达式
若对于任意的正整数n和任意的非负整数k,都有P(X_1, X_2, ..., X_n) = P(X_1+k, X_2+k, ..., X_n+k),则称随机过程{X_t}是严平稳的。
06
CATALOGUE
随机过程的功率谱密度
功率谱密度的定义
功率谱密度
表示随机信号的功率随频率的分布, 是描述随机信号频域特性的重要参数 。
定义方式
功率谱密度函数通常由傅里叶变换来 定义,将随机信号的时域表示转换为 频域表示。
随机过程通过线性系统

随机过程通过线性系统
通信的目的在于传输信号,信号和系统总是联系在一起的。 通信系统中的信号或噪声一般都是随机的,因此在以后的讨论 中我们必然会遇到这样的问题:随机过程通过系统(或网络) 后,输出过程将是什么样的过程?
这里,我们只考虑平稳过程通过线性时不变系统的情况。 随机信号通过线性系统的分析,完全是建立在确知信号通过线 性系统的分析原理的基础之上的。我们知道,线性系统的响应 vo(t)等于输入信号vi(t)与系统的单位冲激响应h(t)的卷积,即
度,然后讨论输出过程的概率分布问题。
1. 输出过程ξo(t)的数学期望
E[ξo(t)]= e[h( ) ξi(t-τ)dτ ]
=
h(
0
)E[1[i
(t
)]d
a
h( )d
0
式中利用了平稳性假设E[ξi(t-τ)]=E[ξi(t)]=a(常数)。 又因为
H(W)=
h(t)e
jwtd
t
0
求得
H(0)= h(t)dt
可见, ξo(t)的自相关函数只依赖时间间隔τ而与时间起点t1 无关。
若线性系统的输入过程是平稳的,那么输出过程也是平 稳的。
3. 输出过程ξo(t)的功率谱密度
对式(2.4 - 7)进行傅里叶变换, 有
p0(w)
R0
(
)e
jw
d
0
[h(a)h(
0
)Ri (
)dad ]e jwrd
噪声平均功率。理想低通的传输特性为
H(ω)=
K0e-jwt 0
w wH
其他
解 由上式得|H(ω)|2=
K02
,|ω|≤ωH。输出功率谱密度为
线性变换的基本概念与定理

R X(t) R
温敏电阻
Y(t)
1、变换的基本概念
分类:确定性变换、随机变换 线性变换、非线性变换
X (t )
线性放大器 线性滤波器
2 T × β ( )
Y (t )
平方律检波 全波线性检波
线性变换
非线性变换
1、变换的基本概念
线性变换:设 Y (t ) = L[ X (t )] , 如果
L[ A1 X 1 (t ) + A2 X 2 (t )] = A1 L[ X 1 (t )] + A2 L[ X 2 (t )]
X (t )
T
Y (t )
1、变换的基本概念
分类: 确定性变换、随机变换
设e1和e2分别为两个随机试验的结果,Y(t)=T[X(t)],如果
x (t , e1 ) = x (t , e2 )
则T称为确定性变换。
y (t , e1 ) = y (t , e2 )
1、变换的基本概念
分类:确定性变换、随机变换
其中 A1 , A2 为随机变量, X1(t) , X2(t) 为随机过 程。则称L为线性变换。 对于线性变换, 若有
Y (t + ε ) = L[ X (t + ε )]
则称线性变换L是线性时不变的。
2、线性变换的基本定理
定理1: 设 Y (t ) = L[ X (t )] 则 E {Y (t )} = L{E[ X (t )]}
定理2:设 Y (t ) = L[ X (t )] 则 RXY (t1 , t 2 ) = Lt 2 [ RX (t1 , t 2 )]
RY (t1 , t 2 ) = Lt1 [ RXY (t1 , t 2 )] = Lt1 ⋅ Lt 2 [ RX (t1 , t 2 )]
随机过程-习题解答电子科技大学陈良均

在独立同分布的随机变量序列中,当样本量趋于无穷时,无论总体分布是什么,样本均 值的分布趋近于正态分布。
05
随机过程的估计与预测
参数估计
矩估计法
利用随机过程的数学期望、方差等矩特征,通过 样本矩来估计参数。
最小二乘估计法
通过最小化误差的平方和来估计参数,常用的有 普通最小二乘法和加权最小二乘法。
泊松过程
总结词
泊松过程是一种随机过程,其中事件 的发生是相互独立的,且具有恒定的 发生率。
详细描述
泊松过程描述了在单位时间内发生事 件的次数,其中事件的发生是相互独 立的,且具有恒定的发生率。这种过 程在物理学、工程学、统计学等领域 有广泛应用。
随机漫步
总结词
随机漫步是一种随机过程,其中每一步 都是随机的,且与前一步无关。
信号的滤波与预测
要点一
信号滤波
利用滤波器对随机信号进行处理,提取出所需频率成分, 抑制噪声和其他干扰。
要点二
信号预测
基于随机过程理论,利用历史数据对未来信号进行预测, 提高信号处理的准确性和可靠性。
信号的检测与估计
信号检测
在存在噪声和干扰的情况下,利用随机过程理论,检测 出有用的信号,提高信号检测的灵敏度和抗干扰能力。
参数估计
通过分析随机信号的统计特性,估计出信号的某些参数 ,如频率、相位等,为进一步处理和应用提供依据。
感谢您的观看
THANKS
06
随机过程在信号处理中的应 用
信号的随机模型化
信号的随机模型化
01
将信号表示为随机过程,以便更好地理解和分析信号的特性。
随机信号的统计特性
02
研究随机信号的均值、方差、相关函数等统计特性,以描述信
线性变换的相关知识点总结

线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。
2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。
根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。
二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。
设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。
线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。
由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。
另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。
线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。
因此,矩阵表示是研究线性变换的重要工具。
三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。
设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。
这里的λ就是T的特征值,v就是T的特征向量。
研究生学位课程教学大纲-随机过程

硕士研究生学位课程教学大纲随机过程(课程名称)Stochastic Process(Course Title)课程编号:IE11001 课程性质:学位课程学分数: 3 课程总学时:48学时开课学院:信息电子学院授课教师:姚青预备知识:高等数学、概率论、线性代数一、课程学习目的及要求:随机过程是现代概率论的一个重要课题,它主要研究和探讨客观世界中随机演变过程的规律性,并应用于控制﹑通信﹑生物﹑物理﹑雷达通讯﹑地质﹑天文气象﹑社会科学等工程科学技术中。
通过本课程的学习,要求学生掌握随机过程的基本概念、随机过程的统计特征描述、随机信号通过系统分析以及电子系统中常见的窄带、正态随机信号通过系统的分析以及电子系统中常见的窄带、正态随机信号、马尔可夫过程、平稳过程、信号检测与估计等的基本理论方法,为学生在信号与信息处理领域打下扎实的理论基础,为学习后续课程以及将来的发展奠定坚实的基础。
二、主要章节与学时安排:第一章随机变量基础(6学时)教学内容与要求:掌握随机变量的基本概念,随机变量的分布函数与概率密度、数字特征、特征函数和统计特性等。
重点:随机变量的统计特性。
1.1 概率论的基本术语1.2 随机变量的定义1.3 随机变量的分布函数与概率密度1.4 多维随机变量及分布1.5 随机变量的数字特征1.6 随机变量的函数1.7 随机变量的特征函数1.8 多维正态随机变量1.9 复随机变量及其统计特性1.10 MATLAB的统计函数第二章随机过程的基本概念(9学时)教学内容与要求:要求理解和掌握随机过程的概念及定义;掌握和应用随机过程的统计描述;理解和掌握平稳随机过程、各态历经过程的概念和统计特性;掌握和应用随机过程的联合分布和互相关函数;掌握和应用随机过程的功率谱密度;理解和掌握脉冲型随机过程的统计特性分析等。
重点:随机过程的概念和统计特性、随机过程功率谱密度等等。
2.1 随机过程的基本概念及定义2.2 随机过程的统计描述2.3 平稳随机过程2.4 随机过程的联合分布和互相关函数2.5 随机过程的功率谱密度2.6 典型的随机过程2.7 基于MATLAB的随机过程分析方法2.8 信号处理实例第三章随机过程的线性变换(9学时)教学内容与要求:掌握和应用线性系统变换的基本概念和基本定理;理解和掌握随机信号的导数与积分;掌握和应用随机过程线性变换的微分方程法、随机过程线性变换的冲激响应法和频谱法;掌握和应用随机信号通过线性的分析方法;理解和掌握白噪声与等效通能带的概念和特性等。
西安电子科技大学讲义 随机过程的变换和滤波

第五章随机过程的变换和滤波概率论的主要应用之一,是从可利用的资源汇总,对随机变量做出估计。
一般将,这种问题的最优解是很难分析的。
然后,若只允许对数据进行线性运算,以及“最优性”是在均方意义下理解的话,那么问题就大大简化,这就是线性均方估计问题。
这个问题最早由维纳考虑并解决,与此同时,柯尔莫哥洛夫也独立的完成了此项工作。
他的解法完全基于正交性原理。
可简单的将此原理推广到随机过程;因而,各种看起来似乎没有关系的估值问题,都可以作为这个原理的明显应用来处理,而不需要用到变分法或任何其它高级的工具,也不需要一次又一次的重复地解同样的问题。
在下面的讨论中,我们将讨论随机信号的最优处理问题。
分别针对时间连续和时间离散的信号,将介绍在最小均方意义下具有最优逼近特性的变换。
随后我们讨论离散变化,最有线性变化和最优线性滤波的关系。
5.1 时间离散Karhunen-Loeve 变换在所有的线性变换中, Karhunen-Loeve 变换(KL变换)是一个在最小均方意义下最佳逼近随机过程的变换。
同时,KL变换是一个具有不相关系数的信号展开。
这种特性在很多数字信号处理方面如编码和模式识别有重要的应用。
这种变换适用于连续时间和离散时间信号处理。
本节将详细讨论离散情况。
不失一般性, 考虑零均值实随机过程12,.n n x x x x R x ⎛⎫ ⎪ ⎪=∈ ⎪ ⎪⎝⎭(5.1) 设 12{,,,}n U u u u =是 n 维实向量空间 n R 的一组正交基, 随机过程 x可被表示为:x U α=(5.2)这里 U 可看成由正交基构成的正交矩阵, 12(,,,)T n a ααα=。
可以看出:.TU x α=(5.3)假定:(),,1,2,,.i j j ij E i j n ααλδ== (5.4) 这里 ,1,2,,j i n λ= 是未知的实数, 且 0.j λ≥ 由(5.3)和 (5.4)可知(),,1,2,,.T T i j j ij E u xx u i j n λδ==(5.5)令:{}Tx x R E xx =(5.6)那么, (5.5)可被写成:,,1,2,,.T i j j ij x x u R u i j n λδ==(5.7)通过观察,我们可发现下列方程的解,1,2,,j u j n =也满足方程(5,7).,1,2,,.j j j xxR u u j n λ==由于 x xR 是一个协方差矩阵,他的特征值问题具有下列特征值: 1. 特征值是实数。
线性变换的定义和性质

汇报人:XX
• 线性变换的基本概念 • 线性变换的基本性质 • 线性变换的矩阵表示 • 线性变换的应用举例 • 线性变换与空间结构的关系
01
线性变换的基本概念
定义与性质
线性变换定义
保持原点不动
保持向量共线性
保持向量比例不变
线性变换是一种特殊的映射, 它保持向量空间中的加法和数 乘运算的封闭性。即对于向量 空间V中的任意两个向量u和v 以及任意标量k,都有 T(u+v)=T(u)+T(v)和 T(kv)=kT(v)。
矩阵性质
线性变换的矩阵表示具有一些特殊的性质。例如,两个线性变换的复合对应于它们矩阵的乘积;线性变换的可逆 性对应于矩阵的可逆性;线性变换的特征值和特征向量对应于矩阵的特征值和特征向量等。
02
线性变换的基本性质
线性变换的保线性组合性
线性组合保持性
对于任意标量$a$和$b$,以及向量 $mathbf{u}$和$mathbf{v}$,线性 变换$T$满足$T(amathbf{u} + bmathbf{v}) = aT(mathbf{u}) + bT(mathbf{v})$。
通过引入复数和极坐标等 概念,可以将某些函数图 像进行旋转。
微分方程中的线性变换
变量代换
通过适当的变量代换,可以将某些非线性微分方 程转化为线性微分方程,从而简化求解过程。
拉普拉斯变换
将时间域内的微分方程通过拉普拉斯变换转换到 频域内,从而方便求解和分析。
傅里叶变换
将时间域内的函数通过傅里叶变换转换到频域内 ,可以分析函数的频率特性和进行滤波等操作。
数乘保持性
对于任意标量$k$和向量$mathbf{v}$,线性变换$T$满足$T(kmathbf{v}) = kT(mathbf{v})$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∞
s = σ + jω
Y (s ) = H (s )X (s )
Y (s) bm s m + bm−1s m−1 + "+ b1s + b0 H (s) = = X (s) an s n + an−1s n−1 + "+ a1s + a0
lim h (t ) = 0
t→ ∞
(2.1-10) (2.1-11)
将式(2.1-8)中的积分上,下限扩大至 无穷大有:
y(t ) = ∫ x(τ )h(t − τ )dτ
∞ −∞
或记作 (2.1-14) y (t ) = h(t ) ⊗ x(t ) 对于时不变线性系统,还可采用频域分析法。 即拉普拉斯(Laplace)变换。
(2.1-3) (2.1-4) (2.1-5)
比例性:
L [ax (t )] = aL [x 1 (t )]
若对任意时刻 t 0 ,都有:
y (t + t 0 ) = L[x (t + t 0 )]
则称此系统为时不变线性系统。
随机信号分析课件
取计时起点 t 0 = 0 ,如果 t < 0 时系统的 输入信号 x (t ) = 0 ,有输出信号 y (t ) = 0 ,则 这种系统称为因果系统。意即仅当激励加入之 后,才会有响应输出,激励是产生响应的原因, 响应是激励产生的结果,这种特性称为因果性。 可以物理实现的系统都是因果系统,所以因果 系统又称物理可实现系统。反之,非因果系统 不具有因果性,又称物理不可实现系统。
y (t ) = L[x (t )]
(2.1-1) (2.1-2)
若对任意常数 a1 , a 2 有:
y(t) = L[a1x1(t) +a2x2(t)] = a1L[x1(t)] +a2L[x2(t)]
则称为线性变换,它具有下述两个基本特性:
随机信号分析课件
叠加性:
L[x1 (t ) + x2 (t )] = L[x1 (t )] + L[x2 (t )]
(2.1-6)
式中,如果所有系数均为常数,则为时不变系 统,如果为时间函数,则为时变系统。
随机信号分析课件
设线性系统的输入确知信号为 x(t ) ,系统对 单位冲激 δ (t ) 的响应为 h(t ) ,响应输出为 y(t ) 。 对于因果系统,任意时刻 t1的响应输出 y (t1 ) 为时刻 t1 前各个窄脉冲的响应输出之和,即:
随机信号分析课件
线性系统的分析方法 线性系统的响应特性可用下列阶线性微分方 程表示:
d n y (t ) d n −1 y (t ) dy(t ) an + an −1 + " + a1 + a0 y (t ) dtn dtn −1 dt
d m x(t ) d m−1 x(t ) dx(t ) = bm + bm−1 + " + b1 + b0 x(t ) dtm dtm−1 dt
y (t1 ) = lim
或:
Δτ → 0
t =− a
∑ x (τ )h (t − τ )Δτ
x (τ )h (t − τ )d τ
t1
(2.1-7)
(2.1-8) 若线性系统为物理可实现的稳定系统
−a
y (t 1 ) =
∫
t1
∫ h(t ) dt < ∞
+∞ −∞
(2.1-9)
随机信号分析课件
从而有:
随机信号分析课件
X (ω ) 为输入信号的频谱,而 X (ω)H(ω)为输出信 式中: 号 y (t ) 的频谱 。
随机信号分析课件
2.1.2随机过程线性变换的研究课题
随机过程线性变换主要是下述两类问题: (1)已知输入过程 X (t ) 的矩函数(或功率谱密 度),求解输出过程Y (t ) 的矩函数(或功率谱 密度)。 (2)已知输入过程 X (t )的概率分布,求解输出过 程 Y (t ) 的概率分布。
随机信号分析课件
由拉普拉斯变换 微分特性有: (an s n + an−1s n−1 + " + a1s + a0 )Y (s ) 式中 上式可以写成:
−∞
= (bm s m + bm−1 s m−1 + " + b1 s + b0 )X (s )
Y (s) = ∫ y(t )e−st dt
∞ −∞
随机信号分析课件
(2.2-2) ) 都有二阶矩,若有: , 2 , " (2)设随机变量 X 和 Xn(n=1
n →∞
lim X n = X
P
(2.2-4) 设随机变量 X 依均方收敛于随机变量 X ,或称变量 是序列 {Xn} 依均方收敛意义下的极限:
n→ ∞
lim E X n − X
{
2
}= 0
第二章 随机过程的线性变换
随机信号分析课件
2.1线性变换与线性系统概述
2.1.1线性系统的基本概念
系统的分类及其特性 无线电系统通常分成线性系统和非线性系 统两大类。具有叠加性和比例性的系统称为线 性系统。反之,称为非线性系统。
随机信号分析课件
利用线性算子符号表示,则一般的线性变换 可用下式表示:
(2.1-16) (2.1-17)
H(s) 称为线性系统的传递函数
随机信号分析课件
传递函数 H (s) 是冲激响应 h(t ) 的拉普拉斯变换 即: 将
s = jω
H (s ) = ∫ h(t )e − st dt
∞ −∞
(2.1-18)
代入(2.1-18) 有:
H (ω ) = ∫ h(t )e − jωt dt
∞
(2.1-19) −∞ H (ω ) 称为线性系统的传输函数或频率响应特性。 H (ω ) = H (ω ) e jϕ (ω ) 可以写成 (2.1-20) 模值 H (ω ) 称为幅频特性,相角 ϕ (ω ) 称为相频特性。 利用傅立叶变换求解输出信号有: (2.1-24)
1 ∞ y(t ) = ∫ X (ω)H(ω)e jωt dω 2π −∞
随机信号分析课件
2.2随机过程的微分和积分过程
2.2.1随机过程的极限
随机变量序列的极限 (1)随机变量序列的极限{Xn},n =1, 2, " ,对任意小的 正整数 ε 恒有, limP{ X n − X > ε } = 0 (2.2-1) n→∞ 则称随机变量序列 {Xn} 依概率收敛于随机变量 X 或称变量 X 是序列 {Xn} 依概率意义下的极限: