计算机进制之间的转换
计算机基础进制转换

计算机基础进制转换计算机基础之进制转换一、引言计算机基础是每个计算机科学学生必修的一门课程,其中进制转换是其中的重要内容之一。
进制转换是指将一个数字从一种进制表示转换为另一种进制表示的过程。
本文将介绍常见的进制转换方法及其应用。
二、十进制与二进制的转换1. 十进制转二进制十进制是我们常用的一种进制,而二进制是计算机中最基本的进制。
将十进制数转换为二进制数的方法是通过不断除以2来进行的。
具体步骤如下:(1)将十进制数除以2,得到商和余数;(2)将得到的余数从下往上按顺序排列,得到的就是转换后的二进制数。
2. 二进制转十进制将二进制数转换为十进制数的方法是通过按权展开法进行的。
具体步骤如下:(1)将二进制数从右往左按位数编号,最右边为第0位;(2)将每一位的数乘以权重2的n次方,n为该位的编号;(3)将各位乘积相加,得到的和就是转换后的十进制数。
三、十进制与八进制的转换1. 十进制转八进制将十进制数转换为八进制数的方法是通过不断除以8来进行的。
具体步骤如下:(1)将十进制数除以8,得到商和余数;(2)将得到的余数从下往上按顺序排列,得到的就是转换后的八进制数。
2. 八进制转十进制将八进制数转换为十进制数的方法是通过按权展开法进行的。
具体步骤如下:(1)将八进制数从右往左按位数编号,最右边为第0位;(2)将每一位的数乘以权重8的n次方,n为该位的编号;(3)将各位乘积相加,得到的和就是转换后的十进制数。
四、十进制与十六进制的转换1. 十进制转十六进制将十进制数转换为十六进制数的方法是通过不断除以16来进行的。
具体步骤如下:(1)将十进制数除以16,得到商和余数;(2)将得到的余数从下往上按顺序排列,得到的就是转换后的十六进制数。
其中,余数大于9时,可以用A、B、C、D、E、F来表示。
2. 十六进制转十进制将十六进制数转换为十进制数的方法是通过按权展开法进行的。
具体步骤如下:(1)将十六进制数从右往左按位数编号,最右边为第0位;(2)将每一位的数乘以权重16的n次方,n为该位的编号;(3)将各位乘积相加,得到的和就是转换后的十进制数。
计算机进制之间相互转换

计算机进制之间相互转换计算机进制之间的相互转换⼀、进位计数制所谓进位计数制是指按照进位的⽅法进⾏计数的数制,简称进位制。
在计算机中主要采⽤的数制是⼆进制,同时在计算机中还存在⼋进制、⼗进制、⼗六进制的数据表⽰法。
下⾯先来介绍⼀下进制中的基本概念:1、基数数制是以表⽰数值所⽤符号的个数来命名的,表明计数制允许选⽤的基本数码的个数称为基数,⽤R表⽰。
例如:⼆进制数,每个数位上允许选⽤0和1,它的基数R=2;⼗六进制数,每个数位上允许选⽤1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。
2、权在进位计数制中,⼀个数码处在数的不同位置时,它所代表的数值是不同的。
每⼀个数位赋予的数值称为位权,简称权。
权的⼤⼩是以基数R为底,数位的序号i为指数的整数次幂,⽤i表⽰数位的序号,⽤Ri表⽰数位的权。
例如,543.21各数位的权分别为102、101、100、10-1和10-2。
3、进位计数制的按权展开式在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,⽤Ki表⽰第i位的系数,则该位的数值为KiRi。
任意进位制的数都可以写成按权展开的多项式和的形式。
⼆、计算机中的常⽤的⼏种进制。
在计算机中常⽤的⼏种进制是:⼆进制、⼋进制、⼗进制和⼗六进制。
⼆进制数的区分符⽤字母B表⽰,⼋进制数的区分符⽤字母O表⽰,⼗进制数的区分符⽤字母D表⽰或不⽤区分符,⼗六进制数的区分符⽤字母H表⽰。
1、⼆进制(Binary System)⼆进制数中,是按“逢⼆进⼀”的原则进⾏计数的。
其使⽤的数码为0,1,⼆进制数的基为“2”,权是以2为底的幂。
2、⼋进制(Octave System)⼋进制数中,是按“逢⼋进⼀”的原则进⾏计数的。
其使⽤的数码为0,1,2,3,4,5,6,7,⼋进制数的基为“8”,权是以8为底的幂。
3、⼗进制(Decimal System)⼗进制数中,是按“逢⼗进⼀”的原则进⾏计数的。
其使⽤的数码为1,2,3,4,5,6,7,8,9,0,⼗进制数的基为“10”,权是以10为底的幂。
不同进制数据的相互转换原理

不同进制数据的相互转换原理
在计算机科学中,不同进制数据的相互转换原理是基于数制的概念。
数制是表示数字的方式,它由一个基和一组数字符号组成。
最常见的数制是十进制,它使用的基数是10,所以可以
使用0到9这10个数字符号来表示任意数字。
不同进制之间的转换原理如下:
1. 十进制转其他进制:
- 将十进制数除以目标进制的基,取余数作为该位的数字符号,直到商为零为止。
- 将得到的余数按照从最后一位到第一位的顺序排列,就是
转换后的结果。
2. 其他进制转十进制:
- 将给定进制的每一位的数字符号与对应的进制基的幂相乘,再相加,即可得到对应的十进制数。
3. 其他进制之间的转换:
- 先将给定进制的数转换为十进制数,然后再将十进制数转
换为目标进制的数。
在进行进制转换时,需要注意一些特殊情况,例如:
- 对于八进制和十六进制,可以使用二进制与十进制之间的转
换作为中间步骤,因为八进制和十六进制都是二进制的简化表示方式。
- 当转换为二进制时,可以将十进制数的每一位转换为四位的
二进制数,其中前导零可以省略。
总之,不同进制数据的相互转换原理是将给定进制的数转换为十进制数再转换为目标进制的数,或者直接通过除以基数和取余数来进行转换。
各个进制数的转换方式

各个进制数的转换方式在计算机科学中,我们经常需要处理不同进制数的转换。
以下是各种进制数之间的转换方式:1.二进制(Binary)转十进制(Decimal):这种转换是通过不断乘以2的幂,然后求和来实现的。
例如,二进制数1101(在8位系统中为1101 0000)可以这样转换:1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 = 13所以,二进制数1101等于十进制数13。
2.十进制转二进制:这种转换是通过不断除以2,然后记录余数来实现的。
例如,十进制数13可以这样转换:13 / 2 = 6 余 16 / 2 = 3 余 03 / 2 = 1 余 12 / 2 = 1 余 01 /2 = 0 余 1然后,从下往上读取这些余数,得到二进制数1101。
3.二进制转十六进制(Hexadecimal):这种转换和二进制转十进制类似,只不过在每一步中,我们乘以的是16的幂,而不是2的幂。
例如,二进制数1101(在8位系统中为1101 0000)可以这样转换:(1 * 8) + (0 * 4) + (0 * 2) + (0 * 1) = 8所以,二进制数1101等于十六进制数8。
4.十六进制转二进制:这种转换是通过不断除以16,然后记录余数来实现的。
例如,十六进制数8可以这样转换:8 / 16 = 0 余 8所以,十六进制数8等于二进制数1000。
5.十进制转十六进制:这种转换是通过不断除以16,然后记录余数来实现的。
例如,十进制数13可以这样转换:13 / 16 = 0 余 7 (即十六进制的7)所以,十进制数13等于十六进制数7。
6.十六进制转十进制:这种转换是通过不断乘以16的幂,然后求和来实现的。
例如,十六进制数7可以这样转换:7 * 16^0 = 7 (即十进制的7)所以,十六进制数7等于十进制数7。
以上就是各种进制数之间的转换方式。
在实际使用中,我们常常会遇到不同进制数的转换问题,特别是在计算机科学和电子工程领域中。
计算机进制之间的转换,十进制转二进制换算

计算机进制之间的转换,⼗进制转⼆进制换算1. ⾸先我们要明⽩为什么会有不同进制,进制的作⽤是什么?进制的作⽤就是⽤来计数,不同进制可以视为不同的对象使⽤的计数⽅式不同,⽐如⼈从⼩学习的是⼗进制,使⽤的⾃然也就是⼗进制来计算,计算机使⽤⼆进制来计算⼆进制主要是⽤0,1来标识,⼋进制主要是0-7来标识,⼗进制主要0-9来标识,16进制,⽤过0-9+A-F来标识,字母不区分⼤⼩写2. 不同进制之间的计算⼝诀1、⼗六进制→⼆进制:“1位变4位”2、⼋进制→⼆进制:“1位变3位”3、⼆进制→⼗六进制:左边数四位为⼀组,不⾜⼀组前⾯⽤0补齐4、⼆进制→⼋进制:左边数三位为⼀组,不⾜⼀组前⾯⽤0补齐5、⼗进制→⼋进制:这个数除以⼋取余。
从下往上数。
6、⼗进制→⼆进制:这个数除以⼆取余,从下往上数。
7、⼗进制→⼗六进制:这个数除以⼗六取余,从下往上数3. 实际举例,⼗进制10转化各进制如何转化⼀个数除以另⼀个数,要是⽐另⼀个数⼩的话,商为0,余数就是它⾃⼰1.⼗进制转⼆进制--->⼗进制→⼆进制:这个数除以⼆取余,从下往上数。
10/2 5余数05/2 2余数12/2 1余数01/2 0余数12.⼆进制转⼗进制,还是⽤上⾯的例⼦来举例,⼆进制1010,按权展开求和,⼆进制的权为2,⼋进制的权为8⽐如从左数的第⼀位1,在它前⾯还有3位,那么它的次数就是为312的三次⽅+所以1010转化未⼗进制实际上就是:12的三次⽅ = 802的⼆次⽅ = 012的⼀次⽅ = 20*2的零次⽅ = 0最终结果就是104. ⼆进制转8进制,⼆进制→⼋进制:左边数三位为⼀组,不⾜⼀组前⾯⽤0补齐,1010第⼀位是010,2 个位第⼆位是001,1 ⼗位所以应该是8进制的125. ⼆进制转16进制,左边数四位为⼀组,不⾜⼀组前⾯⽤0补齐第⼀位:1010,0000 -->00001 -->10010 -->20011 -->30100 -->40101 -->5.....1111 -->F5. 16进制转⼆进制6. 8进制转16进制7. 8进制转10进制8. 8进制转⼆进制9. 16进制转8进制10. 16进制转10进制。
计算机进制之间的转换

计算机进制之间的转换进制是计算机中用于表示数值的一组符号系统,包括二进制、八进制、十进制和十六进制等。
在计算机科学中,进制转换是一种常见且重要的操作。
本文将详细介绍计算机进制之间的转换方法。
1. 二进制 (Binary) 转换为十进制 (Decimal):方法1:将二进制数从右往左按位展开,每一位的值与2的幂相乘,然后将得到的结果相加。
例如,二进制数1101转换为十进制,计算过程如下:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=13方法2:使用公式法。
将二进制数从高位到低位按权展开,并将每一位的值乘以相应权重,然后将结果相加。
例如,二进制数1101转换为十进制,计算过程如下:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=132. 十进制 (Decimal) 转换为二进制 (Binary):方法1:使用除二取余法。
将十进制数从右往左不断除以2,直到商为0。
最后,将得到的余数按照从下往上的顺序排列,即为二进制数。
例如,十进制数13转换为二进制,计算过程如下:13÷2=商6、余16÷2=商3、余03÷2=商1、余11÷2=商0、余1将得到的余数按从下往上的顺序排列,即为二进制数1101方法2:使用公式法。
将十进制数转换为相应的二进制幂的和。
例如,十进制数13转换为二进制,计算过程如下:13=(2^3)+(2^2)+(2^0)=11013. 十进制 (Decimal) 转换为八进制 (Octal):方法1:使用除八取余法。
将十进制数从右往左不断除以8,直到商为0。
最后,将得到的余数按从下往上的顺序排列,即为八进制数。
例如,十进制数86转换为八进制,计算过程如下:86÷8=商10、余610÷8=商1、余21÷8=商0、余1将得到的余数按从下往上的顺序排列,即为八进制数126方法2:使用公式法。
将十进制数转换为相应的八进制幂的和。
各种进制之间的转换方法

各种进制之间的转换方法在计算机科学和数学领域,经常会涉及到不同进制之间的转换,包括二进制、八进制、十进制和十六进制。
本文将介绍各种进制之间的转换方法,帮助读者更好地理解和掌握这一知识点。
首先,我们来了解一下各种进制的基本概念。
十进制是我们平常使用的进制,使用0-9这10个数字表示数值。
二进制是计算机中常用的进制,只使用0和1两个数字表示数值。
八进制和十六进制则是在二进制的基础上进行进一步的组合,分别使用0-7和0-9以及A-F这些数字表示数值。
接下来,我们将介绍各种进制之间的转换方法。
1. 二进制与八进制之间的转换。
二进制与八进制之间的转换相对简单,因为八进制是二进制的每3位数字表示一位八进制数。
因此,我们只需要将二进制数从右向左每3位一组进行分组,然后将每组转换成对应的八进制数即可。
2. 二进制与十进制之间的转换。
二进制与十进制之间的转换可以通过加权法来实现。
即将二进制数从右向左每一位乘以2的相应次方,然后将结果相加即可得到对应的十进制数。
反之,将十进制数不断除以2,直到商为0,然后将余数倒序排列即可得到对应的二进制数。
3. 二进制与十六进制之间的转换。
二进制与十六进制之间的转换可以先将二进制数每4位一组进行分组,然后将每组转换成对应的十六进制数即可。
反之,将十六进制数转换成对应的二进制数时,只需要将每一位转换成4位二进制数即可。
4. 八进制与十进制之间的转换。
八进制与十进制之间的转换可以通过加权法来实现,与二进制与十进制之间的转换类似。
即将八进制数从右向左每一位乘以8的相应次方,然后将结果相加即可得到对应的十进制数。
反之,将十进制数不断除以8,直到商为0,然后将余数倒序排列即可得到对应的八进制数。
5. 八进制与十六进制之间的转换。
八进制与十六进制之间的转换可以先将八进制数转换成对应的二进制数,然后再将二进制数转换成对应的十六进制数即可。
6. 十进制与十六进制之间的转换。
十进制与十六进制之间的转换可以通过除以16取余数的方法来实现。
计算机各进制换算

计算机各进制换算⼀:⼗进制数转换成⼆进制数。
随便拿出⼀个⼗进制数“39”,(假如你今天买书⽤了39元)先来把这个39转换成2进制数。
商余数步数39/2= 19 1第⼀步19/2= 9 1 (这⾥的19是第⼀步运算结果的商)第⼆步9/2= 4 1 (这⾥的9是第⼆步运算结果的商)第三步4/2= 2 0 (这⾥的4是第三步运算结果的商)第四步2/2= 1 0 (这⾥的2是第四步运算结果的商)第五步1/2= 0 1 (这⾥的1是第五步运算结果的商)第六步那么⼗进制数39转换成2进制数就是100111. 既39(10)=100111(2)解析⼀:1. 当要求把⼀个10进制数转换成2进制数的时候,就⽤那个数⼀直除以2得到商和余数。
2. ⽤上⼀步运算结果的商在来除以2,再来得到商和余数。
3. 就这样,⼀直⽤上⼀步的商来除以2,得到商和余数!那么什么时候停⽌呢?4. 请看上述运算图,第六步的运算过程是⽤1除以2.得到的商是0,余数是1. 那么请你记住,记好了啊共2点。
A: 当运算到商为“0”的时候,就不⽤运算了。
B:1/2的商为“0”余数为“1”。
这个你要死记住,答案并不是0.5!答案就是商为“0”余数为“1”。
你不⽤去思考为什么,记好了就⾏了!5. 在上述图中你会清晰的看到每⼀步运算结果的余数,你倒着把它们写下来就是“100111”了。
那么这个就是结果了。
6. 在上述图中符号“/”代表“除以”。
⼆:⼗进制数转换成⼋进制数。
随便拿出⼀个⼗进制数“358”,(假如你今天买彩票中了358元)。
358是我们现实⽣活中所⽤10进制表达出来的⼀个数值,转换成⼋进制数⼗多少?商余数步数358/8= 44 6第⼀步44/8= 5 4 (这⾥的44是第⼀步运算结果的商)第⼆步5/8= 0 5 (这⾥的5是第⼆步运算结果的商)第三步那么⼗进制数358转换成8进制数就是546。
既358(10)=546(8)解析⼆: 1.没什么好说的啦,10进制数转换成2进制数和10进制数转换成8进制数的唯⼀不⼀样的地⽅就是除数变了,除数由“2” 变成了“8”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机中常用的数制
一、几种常用的进位计数制
1.十进制 (10个基本数码:0、1、2、3、4、5、6、7、8、9)
2.二进制(2个基本数码:0、1)
3.八进制(8个基本数码:0、1、2、3、4、5、6、7)
4.十六进制(16个基本数码:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F)二、计算机常用的各种进制数的特点
三、不同进位计数制间数据的转化
1.二进制数转换成十进制数
方法:采用每位二进制数乘以相应位的基数幂再相加。
注意:整数部分权由0,1,2依次展开,小数部分权由-1,-2依次展开。
遇0时可以省略,因为0乘以任何数都为0。
例题:把二进制111010和101.101转换成十进制数。
(111010)2=1ⅹ25+1ⅹ24+1ⅹ23+1ⅹ21=(58)10
(101.101)2=1ⅹ22+1ⅹ20+1ⅹ2-1+1ⅹ2-3=(5.625)10
2.十进制数转换成二进制数
方法:整数部分“除2取余法”,小数部分“乘2取整法”
注意:整数部分在取余数时,从后向前取,小数部分从前向后取。
例题:把十进制205.8125转换成二进制数。
整数部分205转换过程如下:小数部分0.8125转换过程如下:
(205.8125)10=(11001101.1101)2
3.十进制数转换成八进制数
方法:整数部分“除8取余法”,小数部分“乘8取整法”
注意:整数部分在取余数时,从后向前取,小数部分从前向后取。
例题:把十进制1645.6875转换成八进制数。
(1645.6875)10=(3155.54)8
4.十进制数转换成十六进制数
方法:整数部分“除16取余法”,小数部分“乘16取整法”
注意:整数部分在取余数时,从后向前取,小数部分从前向后取。
例题:把十进制205.21875转换成十六进制数。
(205.21875)10=(CD.38)16
5.十六进制数和八进制数转换成二进制数
方法:十六进制和八进制到二进制分别为24和23,因此,把十六进制和八进制数的每一个数码转成3位和4位的二进制即可.
注意:整数前的高位O和小数后的低位O可以去掉。
例题:把八进制和十六进制数转换成二进制数。
6.二进制数转换成八进制和十六进制数
方法:二进制转八进制的方法:以小数点为中心,整数部分自右向左分组,小数部分自左向右分组,每三位一组,不够的补O(即只有整数的高位和小数的低位才能补O)。
然后,将各组的三位二进制的数按22、21、20权展开相加得到一位八制数值,把各组得到的数值组合起来就得到了一个八进制的数。
二进制转换成十六进制的方法类似,不同的是分组时每四位一组。
例题:把二进制数101001000011.100100转换成八进制和十六进制。
A.将区位码转换成国际码的方法:
①分别将区号、位号转换成十六进进数。
②分别将区号、位号各+20H(区位码+2020H=国标码)
例如:将区位码3222转换成国标码
首先将区号32转换成十六进制的数(除16取余法)20
再将位号22转换成十六进制的数(除16取余法)16
最后将区号和位号分别+20H 即:4036H
B.将机内码转换成国际码的方法:
机内码是汉字交换码(国标码)两个最高位分别加1,即汉字交换码(国标码)的两个字节分别加80H得到对应的机内码(国标码+8080H=机内码)
例如:将国标码5E38H转换成机内码
5E38H+8080H=DEB8
即:5+8=13(D) E+0=E 3+8=11(B) 8+0=8
计算机练习题:
1、下列各进制的整数中,值最大的一个是()
A:十六进制数178 B:十进制数210
C:八进制数502 D:二进制数11111110
2、在标准ASCII码表中,已知字母A的ASCII码是01000001,则英
文字母E的ASCII码是()
A:01000011 B:01000100 C:01000101 D:01000010。