计量经济学第五章分解

合集下载

计量经济学金玉国第五章

计量经济学金玉国第五章

yi 0 1x1i 2 x2i k xki ui
i=1,2,…, n
要求满足古典假设4:随机项u与解释变量x之间不相关,即:
Cov(xi, ui)=0
i=1,2, …, n
只要解释变量x1, x2,…, xk是确定性变量,则上述假设自动满
足。
2021年1月16日
山东财经大学统计学院 计量经济教研室
10
34500.6
20182.1
12998.0
3
10132.8
6542.0
3846.0
11
47110.9
27216.2
19260.6
4
11784.0
7451.2
4322.0
12
58510.5
33635.0
23877.0
5
14704.0
9360.1
5495.0
13
68330.4
40003.9
26867.2
第13页
三、随机解释变量模型的经济计量方法
模型中出现随机解释变量且与随机误差项相关时,OLS估计 量是有偏的。
如果随机解释变量与随机误差项异期相关,则可以通过增大 样本容量的办法来得到一致的估计量;
但如果是同期相关,即使增大样本容量也无济于事。这时, 最常用的估计方法是工具变量法(Instrument variables)。
xi*ui ] (xi* )2
我们分下列四种情况进行讨论
1. x 是非随机变量,x与u自然不相关
E
xi*ui ( xi* )2
xi* ( xi*
)2
E(ui
)
0
E(ˆ1) 1
最小二乘估计量是无偏的。
2021年1月16日

潘省初计量经济学——第五章

潘省初计量经济学——第五章

潘省初计量经济学——第五章引言计量经济学是经济学的一个重要分支,它应用数学和统计学的方法来分析经济现象。

潘省初是中国计量经济学的奠基人之一,他对计量经济学的研究做出了重大贡献。

本文将介绍潘省初计量经济学的第五章内容。

第五章:线性回归模型5.1 线性回归模型的基本概念线性回归模型是计量经济学中最常用的模型之一,其基本形式为:$$y_i = \\beta_0 + \\beta_1 x_{1i} + \\beta_2x_{2i} + \\ldots + \\beta_k x_{ki} + u_i$$其中,y i表示因变量,$x_{1i}, x_{2i}, \\ldots,x_{ki}$表示自变量,$\\beta_0, \\beta_1, \\beta_2, \\ldots, \\beta_k$表示回归系数,u i表示误差项。

5.2 最小二乘法估计最小二乘法是估计线性回归模型参数的一种常用方法。

它的基本原理是通过最小化观测值与模型预测值之间的差异来选择最优的回归系数。

5.3 假设检验在线性回归模型中,我们通常需要对回归系数进行假设检验。

常见的假设检验有:回归系数是否显著不为零、回归模型是否拟合良好等。

5.4 多重共线性多重共线性是指自变量之间存在高度相关性的情况,它会导致系数估计的不准确性。

在线性回归模型中探讨多重共线性的方法包括方差膨胀因子和条件数等。

5.5 异方差性异方差性是指误差项的方差不是常数的情况。

当未解决异方差性问题时,最小二乘法估计的结果会失效。

常见的处理异方差性的方法有加权最小二乘法和异方差稳健标准误等。

5.6 自相关性自相关性是指误差项之间存在相关性的情况。

在面对自相关性时,最小二乘法估计的结果会失效并产生无效的统计推断。

解决自相关性的方法包括残差自相关图和建模等。

结论第五章主要介绍了潘省初计量经济学中的线性回归模型。

通过最小二乘法估计,我们可以得到回归系数的估计值,并对其进行假设检验。

计量经济学第五章

计量经济学第五章

∴ β 2的显著水平为α的置信区间为
ˆ ˆ ˆ ˆ [ β 2 − t α se( β 2 ),β 2 + t α se( β 2 )]
2 2
同理,β1的显著水平为α的置信区间为
ˆ ˆ ˆ ˆ [ β1 − t α se( β1 ),β1 + t α se( β1 )]
2 2
9
置信区间的宽度与估计量的标准差成 正比,因此,估计量的标准差常被喻 为估计量的精度(precision)
4
置信区间的图形表示
ˆ ˆ Pr( β 2 -δ ≤ β 2 ≤ β 2 + δ ) = 1 - α
置信区间
β2
样本估计值
ˆ β 2 -δ
ˆ β2
真实值存在、未知
置信下限
ˆ β2 + δ
置信上限
区间估计的理解: (1)随机区间包含 β 2 的概率为 1 − α (2)置信区间是一个随机的区间,它随样本的不 同而改变 5 (3)它的概率描述是在平均意义上而言的
步骤 2:给定显著性水平 α 和自由度 n − 2, 查表得到临界值 t α
0.3落在区间外, 所以拒绝H0假设
0.4268
0.5914
17
2、单侧检验 、
有些时候我们可能对要检验的结果具有某些先 验的信息, 例如, 知道 β > 0.3而不会β < 0.3。在 这种情况下,应该做单侧检验: H1 : β > 0.3 H0 : β ≤ 0.3
显著性检验法
显著性检验时利用样本结果,来证实一个零假设 的真伪的一种检验程序。 显著性检验的基本思想:在虚拟假设下,根据 基本思想: 基本思想 样本构造检验统计量(作为估计量)的抽样分布 (置信区间),以此决定是否接受零假设。

计量经济学第五章

计量经济学第五章
• 首先估计出一般方程 • View/Coefficient Tests/Redundant
Variables-Likelihood Ratio • 出现对话框时,写入删除变量名--OK • 对比删除前后的AIC与SC信息值,信息
值小的结论是应采纳的。
9
用Eviews的误设定检验3
• 第一,估计出简单(单纯)方程 • 第二,在命令窗口上写入genr v_hat=resid 或者 Procs/Generate Series中 v_hat=resid 发现 v_hat • 第三,估计出新的回归方程
无约束模型(U)
有约束模型(K) (general to simple)
计算统计量F
F=(RSSK-RSSu)/J RSSu/(n-k-1)
~F(J, n-k)
J 为表示约束条件数, K 为表示自变量数 或者 应估计的参数数, n 为表示样本数(obs)
4
2. LM检验(Lagrange Multiplier
多重共线性多出现在横截面资料上。
16
三、异方差性的检验及对策
Var(ℇi)≠Var(ℇj) (i≠j)时, ℇi中存在异方差性(Herteroskedasticity)。 即随机项中包含着对因变量的影响因素。 异方差性多发生在横截面资料上。
17
异方差性的检验
1.图示检验法 如模型为Yi=0+1X1i+2X2i+…+ℇi 时,
7
用Eviews的误设定检验1
• 首先估计出简单(单纯)方程 • View/Coefficient Tests/Omitted
Variables-Likelihood Ratio • 出现对话框时,写入新变量名 OK • 检验结果出现在上端,如果P值很小时, 拒

庞浩 计量经济学5第五章 异方差性

庞浩 计量经济学5第五章  异方差性

同方差
递增型异方差
递减型异方差
复杂型异方差
18
2.借助X-e2散点图进行判断 观察散点的纵坐标是否随解释变量Xi的变化而 变化。
~2 e2e i ei e2 ~2
X 同方差 递增异方差
X
e2
~2 e i
~2 e 2 e i
X 递减异方差 复杂型异方差
X
19
二、戈德菲尔德—夸特 (Goldfeld-Quanadt)检验
3
说明1
矩阵表示: Y X u 随机扰动项向量 其方差—协 u1 u 方差矩阵不 2 u 再是: un n1 而是:
2 2 Var Cov ( ui ) 2 nn
ei X i v i
ei
1 vi Xi
ei X i v i 1 ei vi Xi
③利用上述回归的R2、t统计量、F统计量等判断,R2 好、t统计量和F统计量显著,即可判定存在异方差。 28
说明: 1.也可以用 e i 与可能产生异方差的多个解释变 量进行回归模拟; 2.戈里瑟检验的优点在于不仅检验了异方差是否 存在,同时也给出了异方差存在时的具体表现 形式,为克服异方差提供了方便。 3.试验模型选得不好,也可能导致检验不出是否 存在异方差性。
12 2 2 Var Cov ( ui ) 2 n nn
4
说明2
随机扰动项 ui具有异方差性,可理解释为被解释变量 的条件分散程度随解释变量的变化而变化,如下图所 示:var( ui ) i2 2 f ( X i)(i 1,2,, n)
10
第二节 异方差性的后果

计量经济学课件:第五章-异方差性汇总

计量经济学课件:第五章-异方差性汇总

第五章异方差性本章教学要求:根据类型,异方差性是违背古典假定情况下线性回归模型建立的另一问题。

通过本章的学习应达到,掌握异方差的基本概念包括经济学解释,异方差的出现对模型的不良影响,诊断异方差的方法和修正异方差的方法。

经过学习能够处理模型中出现的异方差问题。

第一节异方差性的概念一、例子例1,研究我国制造业利润函数,选取销售收入作为解释变量,数据为1998年的食品年制造业、饮料制造业等28个截面数据(即n=28)。

数据如下表,其中y表示制造业利润函数,x表示销售收入(单位为亿元)。

Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较小,有的点分散幅度较大。

因此,这种分散幅度的大小不一致,可以认为是由于销售收入的影响,使得制造业利润偏离均值的程度发生了变化,而这种偏离均值的程度大小不同是一种什么现象?如何定义?如果非线性,则属于哪类非线性,从图形所反映的特征看并不明显。

下面给出制造业利润对销售收入的回归估计。

模型的书写格式为2ˆ12.03350.1044(0.6165)(12.3666)0.8547,..84191.34,152.9322213.4639,146.4905Y YX R S E FY s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在一种系统性的表现。

例2,改革开放以来,各地区的医疗机构都有了较快发展,不仅政府建立了一批医疗机构,还建立了不少民营医疗机构。

各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,而医疗服务需求与人口数量有关。

为了给制定医疗机构的规划提供依据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。

根据四川省2000年21个地市州医疗机构数与人口数资料对模型估计的结果如下:i iX Y 3735.50548.563ˆ+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表示卫生医疗机构数(个),X 表示人口数量(万人)。

最新计量经济学课件-第五章教学讲义PPT

最新计量经济学课件-第五章教学讲义PPT
模型中的解释变量仅包含X的当期值与被解释 变量Y的一个或多个滞后值
Y t a b 0 X t b 1 Y t 1 b 2 Y t 2 b q Y t q U t
• 3、分布滞后模型的OLS估计 (1)估计中存在的问题: 无限分布滞后:样本有限,无法估计; 有限分布滞后: 没有先验准则确定滞后长度; 滞后期过长导致丧失过多自由度; 容易出现多重共线;
Y b 0 b 1 X b 2 P a 1 D 1 a 2 D 2 a 3 D 3 a 4 D 4 U
存在什么问题?
• 解释变量观测值矩阵为:
1
X1
1
X2
P1
1 0 0 0
P2
0
1
0
0
1
X3
1
X4
P3
0 0 1 0
P4
0 0 0 1
1
X0
1
X n2
Pn 2
• (2)一般处理
各种方法的基本思想大致相同:都是通过对各滞后变 量加权,组成新变量从而有目的地减少滞后变量的数 目,以缓解多重共线性,保证自由度。
经验权数法
根据实际问题的特点、实际经验给各滞后变量指定权 数,滞后变量按权数线性组合,构成新的变量。权数
据的类型有:
• 递减型: 权数是递减的,X的近期值对Y的影响较远期 值大。 如消费函数中,收入的近期值对消费的影响作 用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8 则新的线性组合变量为:
W 1 t1 2X t1 4X t 11 6X t 28 1X t 3
• 矩型: 即认为权数是相等的,X的逐期滞后值对值Y 的影响相同。 如滞后期为3,指定相等权数为1/4,则新的线 性组合变量为:

《计量经济学》第五章最新完整知识

《计量经济学》第五章最新完整知识

《计量经济学》第五章最新完整知识第五章多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。

需要我们建立多元线性回归模型。

一、多元线性模型及其假定多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。

最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。

假定2. ,0][][][][21=?=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。

(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵这意味着X 列满秩,X 的各列是线性无关的。

在需要作假设检验和统计推断时,我们总是假定:假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量β,它要求β的估计β?满足下面的条件 22min ?)?(ββββX y X y S -=-? (2)其中()()∑∑==-'-=-?-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章练习题参考解答5.1 设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。

试回答以下问题: (1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。

5.2 根据本章第四节的对数变换,我们知道对变量取对数通常能降低异方差性,但须对这种模型的随机误差项的性质给予足够的关注。

例如,设模型为u X Y 21ββ=,对该模型中的变量取对数后得如下形式u X Y ln ln ln ln 21++=ββ(1)如果u ln 要有零期望值,u 的分布应该是什么? (2)如果1)(=u E ,会不会0)(ln =u E ?为什么? (3)如果)(ln u E 不为零,怎样才能使它等于零?5.3 由表中给出消费Y 与收入X 的数据,试根据所给数据资料完成以下问题: (1)估计回归模型u X Y ++=21ββ中的未知参数1β和2β,并写出样本回归模型的书写格式;(2)试用Goldfeld-Quandt 法和White 法检验模型的异方差性; (3)选用合适的方法修正异方差。

Y X Y X Y X 55 80 152 220 95 140 65 100 144 210 108 145 70 85 175 245 113 150 80 110 180 260 110 160 79 120 135 190 125 165 84115140205115180981301782651301859514019127013519090125137230120200759018925014020574105558014021011016070851522201131507590140225125165651001372301081457410514524011518080110175245140225841151892501202007912018026014524090125178265130185981301912705.4由表中给出1985年我国北方几个省市农业总产值,农用化肥量、农用水利、农业劳动力、每日生产性固定生产原值以及农机动力数据,要求:(1)试建立我国北方地区农业产出线性模型;(2)选用适当的方法检验模型中是否存在异方差;(3)如果存在异方差,采用适当的方法加以修正。

地区农业总产值农业劳动力灌溉面积化肥用量户均固定农机动力(亿元)(万人)(万公顷)(万吨)资产(元)(万马力)北京19.6490.133.847.5394.3435.3天津14.495.234.95 3.9567.5450.7河北149.91639 .0357.2692.4706.892712.6山西55.07562.6107.931.4856.371118.5内蒙古60.85462.996.4915.41282.81641.7辽宁87.48588.972.461.6844.741129.6吉林73.81399.769.6336.92576.81647.6黑龙江104.51425.367.9525.81237.161305.8山东276.552365.6456.55152.35812.023127.9河南200.022557.5318.99127.9754.782134.5陕西68.18884.2117.936.1607.41764新疆49.12256.1260.4615.11143.67523.35.5表中的数据是美国1988研究与开发(R&D)支出费用(Y)与不同部门产品销售量(X)。

试根据资料建立一个回归模型,运用Glejser方法和White方法检验异方差,由此决定异方差的表现形式并选用适当方法加以修正。

单位:百万美元工业群体销售量X R&D费用Y利润Z1.容器与包装6375.362.5185.12.非银行业金融11626.492.91569.53.服务行业14655.1178.3276.84.金属与采矿21869.2258.42828.15.住房与建筑26408.3494.7225.96.一般制造业32405.610833751.97.休闲娱乐35107.71620.62884.18.纸张与林木产品40295.4421.74645.79.食品70761.6509.25036.410.卫生保健80552.86620.113869.911.宇航952943918.64487.812.消费者用品101314.31595.310278.913.电器与电子产品116141.36107.58787.314.化工产品122315.74454.116438.815.五金141649.93163.99761.416.办公设备与电算机175025.813210.719774.517.燃料230614.51703.822626.618.汽车2935439528.218415.45.6 由表中给出的收入和住房支出样本数据,建立住房支出模型。

住房支出收入1.8 52 52 52 52.1 53 103.2 103.5 103.5 103.6 104.2 154.2 154.5 154.8 155 154.8 205 20 5.7 206 20 6.220假设模型为i i i u X Y ++=21ββ,其中Y 为住房支出,X 为收入。

试求解下列问题: (1)用OLS 求参数的估计值、标准差、拟合优度(2)用Goldfeld-Quandt 方法检验异方差(假设分组时不去掉任何样本值)(3)如果模型存在异方差,假设异方差的形式是222i i X σσ=,试用加权最小二乘法重新估计1β和2β的估计值、标准差、拟合优度。

5.7 表中给出1969年20个国家的股票价格(Y )和消费者价格年百分率变化(X )的一个横截面数据。

国家 股票价格变化率%Y消费者价格变化率%X1.澳大利亚 5 4.32.奥地利 11.1 4.63.比利时 3.2 2.44.加拿大 7.9 2.45.智利 25.5 26.4 6.丹麦 3.8 4.27.芬兰 11.1 5.58.法国9.9 4.7 9.德国 13.3 2.2 10.印度 1.5 4 11.爱尔兰 6.4 4 12.以色列 8.9 8.4 13.意大利 8.1 3.3 14.日本 13.5 4.7 15.墨西哥 4.7 5.2 16.荷兰 7.5 3.6 17.新西兰 4.7 3.6 18.瑞典 8 4 19.英国 7.5 3.9 20.美国92.1试根据资料完成以下问题:(1)将Y 对X 回归并分析回归中的残差;(2)因智利的数据出现了异常,去掉智利数据后,重新作回归并再次分析回归中的残差; (3)如果根据第1条的结果你将得到有异方差性的结论,而根据第2条的结论你又得到相反的结论,对此你能得出什么样的结论?5.8 表中给出的是1998年我国重要制造业销售收入与销售利润的数据资料 行业名称 销售收入 销售利润 行业名称 销售收入 销售利润 食品加工业 187.25 3180.44 医药制造业 238.71 1264.10 食品制造业 111.42 1119.88 化学纤维制造 81.57 779.46 饮料制造业 205.42 1489.89 橡胶制品业 77.84 692.08 烟草加工业 183.87 1328.59 塑料制品业 144.34 1345.00 纺织业 316.79 3862.90 非金属矿制品 339.26 2866.14 服装制造业 157.70 1779.10 黑色金属冶炼 367.47 3868.28 皮革羽绒制品 81.73 1081.77 有色金属冶炼 144.29 1535.16 木材加工业 35.67 443.74 金属制品业 201.42 1948.12 家具制造业 31.06 226.78 普通机械制造 354.69 2351.68 造纸及纸制品 134.40 1124.94 专用设备制造 238.16 1714.73 印刷业 90.12 499.83 交通运输设备 511.94 4011.53 文教体育用品 54.40 504.44 电子机械制造 409.83 3286.15 石油加工业 194.45 2363.80 电子通讯设备 508.15 4499.19 化学原料制品502.614195.22仪器仪表设备72.46663.68试完成以下问题:(1)求销售利润岁销售收入的样本回归函数,并对模型进行经济意义检验和统计检验; (2)分别用图形法、Glejser 方法、White 方法检验模型是否存在异方差; (3)如果模型存在异方差,选用适当的方法对异方差性进行修正。

5.9 下表所给资料为1978年至2000年四川省农村人均纯收入t X 和人均生活费支出t Y 的数据。

四川省农村人均纯收入和人均生活费支出 单位:元/人时间农村人均纯收入X农村人均生活费支出Y时间农村人均纯收入X农村人均生活费支出Y1978 127.1 120.3 1990 557.76 509.16 1979155.9142.11991590.21552.391980 187.9 159.5 1992 634.31 569.461981 220.98 184.0 1993 698.27 647.431982 255.96 208.23 1994 946.33 904.281983 258.39 231.12 1995 1158.29 1092.911984 286.76 251.83 1996 1459.09 1358.031985 315.07 276.25 1997 1680.69 1440.481986 337.94 310.92 1998 1789.17 1440.771987 369.46 348.32 1999 1843.47 1426.061988 448.85 426.47 2000 1903.60 1485.341989 494.07 473.59数据来源:《四川统计年鉴》2001年。

(1)求农村人均生活费支出对人均纯收入的样本回归函数,并对模型进行经济意义检验和统计检验;(2)选用适当的方法检验模型中是否存在异方差;(3)如果模型存在异方差,选用适当的方法对异方差性进行修正。

5.10 在题5.9中用的是时间序列数据,而且没有剔除物价上涨因素。

试分析如果剔除物价上涨因素,即用实际可支配收入和实际消费支出,异方差的问题是否会有所改善?由于缺乏四川省从1978年起的农村居民消费价格定基指数的数据,以1978年—2000年全国商品零售价格定基指数(以1978年为100)代替,数据如下表所示:年份商品零售价格指数年份商品零售消费价格指数年份商品零售消费价格指数1978 100 1986 135.8 1994 310.2 1979 102 1987 145.7 1995 356.1 1980 108.1 1988 172.7 1996 377.8 1981 110.7 1989 203.4 1997 380.8 1982 112.8 1990 207.7 1998 370.9 1983 114.5 1991 213.7 1999 359.8 1984 117.7 1992 225.2 2000 354.4 1985 128.1 1993 254.9数据来源:《中国统计年鉴2001》练习题参考解答练习题5.1 参考解答(1)因为22()i i f X X =,所以取221i iW X =,用i W 乘给定模型两端,得312322221i i i i i i iY X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即 22221()()i i i iu Var Var u X X σ== (2)根据加权最小二乘法及第四章里(4.5)和(4.6)式,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223ˆii i i i i i i i i i i ii ii i iW y x W x W y x W x x W xW xW x xβ-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii i i i i i i i i i i ii ii i iW y x W x W y x W x x WxWxWx xβ-=-∑∑∑∑∑∑∑其中22232***23222,,i ii ii iiiiW X W XW Y X X Y WWW===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y =-=-=-练习题5.3参考解答(1)该模型样本回归估计式的书写形式为2ˆ9.34750.6371(2.5691)(32.0088)0.9464,..9.0323,1023.56i iY X R s e F =+===(2)首先,用Goldfeld-Quandt 法进行检验。

相关文档
最新文档