比较两个代数式大小
新教材高中数学第一章预备知识3不等式3-1不等式性质课件北师大版必修第一册

+
>
.
+
1
,x>y,求证:
+
>
1
,x>y,∴
>
>
.
+
>0,∴0<
<
,故
0<+1<+1,即
角度3利用不等式性质求取值范围
【例4】 如果3<a<7,1<b<10,试求a+b,3a-2b, 2 的取值范围.
解因为3<a<7,1<b<10,
所以3+1<a+b<7+10,即4<a+b<17.
以改变符号后移到不等号的另一边,称为移项法则,在解不等式时经常用到.
4.倒数法则:
如果a>b,ab>0,那么
1 1
<
a b
,结论成立的条件是a,b要同号.
过关自诊
1.判断正误.(正确的画√,错误的画×)
(1)在一个不等式的两边同乘一个非零实数,不等式仍然成立.( × )
(2)同向不等式具有可加性和可乘性.( × )
性质4(同向不等
如果a>b,c>d,那么a+c>b+d
式可加性)
如果a>b>0,c>d>0,那么ac>bd;
性质5(不等式的
如果a>b>0,c<d<0,那么ac<bd.
可乘性)
乘方法则:当a>b>0时,an>bn,其中n∈N+,n≥2
如何比较两个代数式的大小

比较代数式的大小问题常以选择题、填空题的形式出现.此类问题的难度一般不大,侧重于考查同学们的观察能力和运算能力.在解题时,需灵活运用简单基本函数的图象、性质来进行分析.本文主要探讨以下两种比较代数式大小的技巧.一、通过放缩进行比较有时两个要比较的代数式之间没有任何关联,此时可以通过放缩代数式,来确定要比较的两个代数式的大小或者范围,进而比较出两个代数式的大小.利用放缩法比较代数式的大小,可以从基本不等式、泰勒公式、柯西不等式、绝对值不等式、曲线的切线、重要不等式等入手,对要比较的代数式进行合理的放缩.例1.(2022年高考全国甲卷文科,第12题)已知9m=10,a=10m-11,b=8m-9,则().A.a>0>bB.a>b>0C.b>a>0D.b>0>a解法1:由9m=10,得m=log910=lg10lg9,则m-lg11=1lg9-lg11=1-lg9lg11lg9lg10>1-æèçöø÷lg9+lg1122lg9lg10>1-æèçöø÷lg10022lg9lg10=0,所以a=10m-11=10m-10lg11>0.则m-log89=lg10lg9-lg9lg8=lg10lg8-(lg9)2lg9lg8<æèçöø÷lg10+lg822-(lg9)2lg9lg8<æèçöø÷lg8122-(lg9)2lg9lg8=0,所以b=8m-9=8m-8log89<0.所以a>0>b,故选A.解法2:由9m=10,得m=log910=lg10lg9>1.由糖水不等式,得lg10lg9>lg10+lg109lg9+lg109=lg1009lg10>lg999lg10=lg11lg10,所以m=log109>lg11,从而可得a=10m-11>10lg11-11=0.同理可得lg9lg8>lg9+lg98lg8+lg98=lg818lg9>lg808lg9=lg10lg9,所以log98>log109=m,则b=8m-9<8log89-9=0,故a>0>b.解法1是利用指数与对数运算性质以及基本不等式进行放缩;解法2是利用“糖水不等式”进行放缩,从而确定了a、b的临界值,比较出三个代数式的大小.例2.(2022年全国新高考1卷,第7题)设a=0.1e0.1,b=19,c=-ln0.9,则().A.a<b<cB.c<b<aC.c<a<bD.a<c<b解法1:由泰勒展开式,得e x=1+x+x22!+x33!+⋯+x nn!+⋯,则ln(1+x)=x-x22+x33-x44+⋯+(-1)n-1x n n+⋯,所以xe x=x+x2+x32!+x43!+⋯+x n+1n!+⋯,-ln(1-x)=x+x22+x33+x44+⋯+x n n+⋯.令x=0.1,得a=0.1+0.12+0.132!+⋯,b=0.1+0.12+0.13+⋯,c=-ln0.9=0.1+0.122+0.133+⋯,故c<a<b.故选C.解法2:由重要不等式e x≥x+1(当x=0时取等号),可知e-110>1-110=910,即e110<109,所以110e110<19,所以a<b.令x=0.1,由e x≥x+1可得e0.1>1.1,所以0.1e0.1>0.11;由ln x≤12æèöøx-1x(x≥1),得ln109<12æèöø109-910=19180=0.105·<0.11,所以c<a.综上可知,c<a<b.根据三个代数式的结构特征很容易联想到泰勒公式,解法1是从泰勒公式入手,通过赋值、放缩,比较出三个代数式的大小.解法2是从重要不等式e x≥x+1入手,对其进行合理的赋值、放缩,从而比较出三个代数式的大小.例3.(2022年全国甲卷理科,第12题)已知a=3132,b=cos14,c=4sin14,则().B.b>a>c解题宝典36解题宝典C.a >b >cD.a >c >b解:由泰勒展开式,得sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,所以当x >0时,cos x >1-x 22,sin x x =1-x 23!+x 45!-⋯>cos x ,令x =14,得cos 14>1-12×42=3132,则4sin 14>cos 14,故c >b >a .解答本题,需联想到泰勒展开式的变形式sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,将两个式子进行放缩,以确定cos x 、sin xx的取值范围.然后将x 用14替换,通过赋值,判断出三个代数式之间的大小关系.二、利用函数的性质进行比较在比较代数式的大小时,我们常需要用到简单基本函数的单调性.一般地,若自变量x 1>x 2,且函数单调递增,则f ()x 1>f ()x 2;若自变量x 1>x 2,且函数单调递减,则f ()x 1<f ()x 2.在解题时,需仔细观察要比较的代数式的结构特征,合理构建函数模型,以便利用函数的单调性进行比较.以例1为例.解:由9m =10,得m =log 910=lg 10lg 9>1.设函数f (x )=x m -(x +1)(x >1),则f ′(x )=mx m -1-1.由{x >1,m >1,得x m -1>x 0=1,所以mx m -1>1,即f ′(x )>0,所以f (x )在(1,+∞)上单调递增,所以f (10)>f (9)>f (8),即10m -11>9m -10>8m -9,故a >0>b .我们仔细观察9m =10、a =10m -11、b =8m -9三式,可发现其结构形如f (x )=x m -(x +1)(x >1),于是构造出函数f (x )=x m -(x +1)(x >1),并对其求导,判断出函数的单调性,即可根据函数的单调性比较出三式的大小.以例2为例解:因为a =0.1e 0.1,b =0.11-0.1,c =-ln(1-0.1),则a b =0.1e 0.10.11-0.1=(1-0.1)e 0.1,设f (x )=(1-x )e x ,x ∈[0,0.1],则f ′(x )=-xe x≤0,所以f (x )在[0,0.1]上单调递减,所以f (0.1)<f (0)=1,即(1-0.1)e 0.1<1,所以a <b .设g (x )=xe x+ln(1-x ),x ∈éëöø0,19,则g ′(x )=(x +1)∙e x (x 2-1)+1x -1.设h (x )=e x (x 2-1)+1,h ′(x )=e x (x 2+2x -1)<0,则函数h (x )在区间éëöø0,19上单调递减,因为h (0)=0,所以h (x )<0,因为x +1>0,x -1<0,所以g ′(x )>0,则函数g (x )在区间éëöø0,19上单调递增.因为g (0)=0,所以g (x )=xe x+ln(1-x )>0,所以xe x>-ln(1-x ).当x =0.1时,0.1e 0.1>-ln 0.9,即a >c .所以c <a <b .本题中的a 、b 、c 三式分别为指数、分式、对数式,很难比较它们的大小,于是将ab、a -c .然后构造出函数f (x )=(1-x )e x 、g (x )=xe x +ln(1-x ),根据导函数与函数单调性之间的关系判断出函数的单调性,进而根据函数的单调性比较出三个代数式的大小.以例3为例解:设f (x )=x -sin x ,x ∈éëöø0,π2,则f ′(x )=1-cos x ≥0,所以f (x )在éëöø0,π2上单调递增,所以f (x )≥f (0)=0,即x ≥sin x .设g (x )=cos x +12x 2-1,x ∈éëöø0,π2,则g ′(x )=-sin x +x ≥0,所以g (x )在éëöø0,π2上单调递增,所以g æèöø14=cos 14+12׿èöø142-1>g (0)=0,即cos 14>3132,即b >a .设h (x )=sin x -x cos x ,0≤x <π2,则h ′(x )=x sin x ≥0,所以h (x )在éëöø0,π2上单调递增,所以h æèöø14>h (0),即sin 14>14cos 14,得c >b .故c >b >a .故选A .要比较的三个代数式分别为分数、正弦函数式、余弦函数式,需先分别将a 与b ,c 与b 作差;再构造函数f (x )=x -sin x 、h (x )=sin x -x cos x ;然后讨论其单调性,根据其单调性判断代数式之间的大小关系.可见,比较代数式的大小,可以从不等式的结构特征、函数的性质入手,灵活运用不等式的性质进行放缩,还可以构造合适的函数,利用函数的单调性进行比较.但需注意,在解题时,还需灵活运用各种运算技巧、性质,以及数形结合思想来辅助解题.(作者单位:甘肃省天水市第三中学)37。
【新教材】新人教A版必修一 不等关系与不等式的性质 教案

不等关系与不等式的性质1.了解不等式的概念,理解不等式的性质.2.会比较两个代数式的大小.3.会利用不等式的性质解决有关问题.知识梳理1.不等式的定义用不等号“〉、≥、〈、≤、≠”将两个数学表达式连接起来,所得的式子叫不等式.2.两个实数的大小比较(1)作差法.设a,b∈R,则a-b>0⇔a〉b;a-b〈0⇔a<b;a-b=0⇔a=b。
(2)作商法.设a>0,b〉0,则错误!>1⇔a>b;错误!=1⇔a=b;错误!<1⇔a<b。
3.不等式的基本性质①对称性:a>b⇔b〈a;②传递性:a>b,b>c⇔a〉c;③可加性:a〉b⇔a+c>b+c;④不等式加法:a>b,c〉d⇔a+c〉b+d;⑤可乘性:a>b,c〉0⇒ac>bc;a〉b,c〈0⇒ac<bc;⑥不等式乘法:a〉b〉0,c>d>0ac>bd;⑦不等式乘方:a>b>0⇒a n〉b n(n∈N,n≥1);⑧不等式开方:a〉b〉0⇒错误!>错误!(n∈N,n〉1).1.倒数性质(1)a〉b,ab〉0错误!〈错误!;(2)a<0〈b错误!<错误!。
2.分数性质若a>b>0,m〉0,则(1)真分数性质:错误!<错误!;错误!>错误!(b-m〉0);(2)假分数性质:a b>错误!;错误!〈错误!(b -m >0).热身练习1.某地规定本地最低生活保障金不低于300元,若最低保障金用W 表示,则上述关系可以表示为(B )A .W >300B .W ≥300C .W 〈300D .W ≤3002.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是(A)A .f (x )>g (x )B .f (x )=g (x )C .f (x )〈g (x )D .随x 的值的变化而变化因为f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1〉0,所以f (x )>g (x ).3.“a +c 〉b +d "是“a >b 且c 〉d ”的(A)A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件 a >b 且c >d ⇒a +c 〉b +d .当取a =1,b =2,c =5,d =3时,满足a +c >b +d ,但不能推出a >b 且c 〉d ,故选A 。
作差比较在高考中应用

⑵
f
'
1 当a 0时, a a
(, a)
x
( x)
a
0
极大值
( a,
1 1 ) a a
(
1 , ) a
f (x )
+ ↗
↘
0
极小值
+ ↗
y 1 y ; 极大值 极小值-a 2 1 f ( x )在( , a )与( ,)上增加 a 1 在( a, )上减少。 a
链接高考:
在高考中不会单一的考察两个不等式的大 小比较,而是和下列知识点综合考察。 Ⅰ:解含参数的一元二次不等式或分式不等 式时,其对应方程的两个根大小比较。 Ⅱ:求导数的极值时,导数为零时方程根的 大小比较。 Ⅲ:求闭区间上最值时,最后比较端点处的 函数值与导数为零点的函数值的大小。
类型1:解含参数不等式时根的大小比较 1 例3:解不等式: a)(x ) (a 0) (x 0 a 1 分析:(x a)(x ) 0的两根为 a 1 x1 a; x2 - a 1 比较a与 - 的大小;做差比较 a
2
2 : 当a 1时, 3)(a 5) a 6a 11; (a
2
3 : 当a 1时, 3)(a 5) a 6a 11; (a
2
归纳总结:
两个代数式大小比较有两种情况: ⑴两代数式的差与零的大小关系唯一时 (如例1)此时两代数式的大小关系唯一。 ⑵两代数式的差与零的大小关系不唯一时 (如例2)此时要分类讨论,一般情况下, 分类讨论的标准是, Ⅰ:令差大于零 Ⅱ:令差等于零 Ⅲ:令差小于零。
作业
1已知函数:f ( x) ( x k )e (Ⅰ)求的单调区间; (Ⅱ)求在区间[0,1]上的最小值.
人教版七年级上册数学分层单元测第二章 整式的加减--提升卷(解析版)

2020-2021学年七年级数学上册《单元测试定心卷》(人教版)第二章 整式的加减(能力提升)一、选择题1. 下列叙述中,正确的是( )A. 单项式212xy π的系数是12,次数是4 B. 202a π、、、都是单项式C. 多项式32321a b a +-的常数项是1D. 2m n+是单项式【答案】B 【解析】【分析】根据单项式的次数、系数的定义和多项式的次数、系数的定义解答.【详解】A 、错误,单项式212xy π的系数是12π,次数是3;B 、正确,符合单项式的定义;C 、错误,多项式32321a b a +-的常数项是-1;D 、错误,2m n+是一次二项式. 故选:B .【点睛】此题主要考查了多项式与单项式,正确把握相关定义是解题关键. 2. 点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A. 2x -+B. 2x --C. 2x +D. -2【答案】A 【解析】【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.3. 单项式21412n a b --与83m ab 是同类项,则57(1)(1)+-n m =( )A.14B. 14-C. 4D. -4【答案】B 【解析】【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项,∴21184n m -=⎧⎨=⎩,解得:121m n ⎧=⎪⎨⎪=⎩, 则()()5711n m +-=14-, 故答案选:B .【点睛】本题考查的知识点是同类项,解题的关键是熟练地掌握同类项. 4. 下列去括号正确的是( )A. 112222x y x y ⎛⎫ =⎭-⎪⎝--- B. ()12122x y x y ++=+- C. ()16433232x y x y --+=-++ D. ()22x y z x y z +-+=-+【答案】D 【解析】【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误;B. ()12122x y x y ++=++,错误;C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.5. 若多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项,则m 等于( ) A. 2 B. ﹣2C. 4D. ﹣4【答案】D 【解析】【分析】直接利用整式的加减运算法则得出8+2m =0,进而得出答案.【详解】解:∵多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项, ∴2x 3﹣8x 2+x ﹣1﹣(3x 3+2mx 2﹣5x +3)=﹣x 3﹣(8+2m )x 2+6x ﹣4, ∴8+2m =0,解得:m =﹣4,故D 正确. 故选:D .【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.6. 已知a+4b =﹣15,那么代数式9(a+2b )﹣2(2a ﹣b )的值是( )A. ﹣15B. ﹣1C. 15D. 1【答案】B 【解析】【分析】先化简所求代数式,再将已知等式作为一个整体代入求解即可. 【详解】9(2)2(2)a b a b +--91842a b a b =+-+ 520a b =+5(4)a b =+将145a b +=-代入得:原式15(4)5()15a b =+=⨯-=-故选:B .【点睛】本题考查了代数式的化简求值,掌握代数式的化简方法是解题关键. 7. 若2M 3x 5x 2=-+,2 N 3x 5x 1=-- 则M 和N 的大小关系为 ( ) A. M<N B. M=N C. M> N D. 无法确定【答案】C 【解析】【分析】要比较两个代数式的大小,可以求出它们的差来作比较.若差小于0,则被减数小于减数; 若差大于0,则被减数大于减数;若差等于0,则被减数等于减数.【详解】解:∵2M 3x 5x 2=-+,2 N 3x 5x 1=--,∴()()2222M N 3x 5x 23x 5x 13x 5x 23x 5x 13-=-+---=-+-++=>0,∴M N > 故选C .【点睛】本题考查代数式如何比较大小的问题,熟练掌握代数式比较大小的方法,如作差法、作商法等等是解题关键.8. 实数a 在数轴上的位置如图所示,则|a-4|+|a-11|化简后为( )A. 7B. -7C. 2a -15D. 无法确定【答案】A 【解析】【详解】解:由图可知:5,a ,10,,a -4,0,a -11,0,,|a -4|+|a -11|=a -4+11-a =7,故选A,点睛:考查绝对值的化简问题;判断出绝对值里面的式子的符号是解决本题的关键;用到的知识点为:正数的绝对值是它本身;负数的绝对值是它的相反数. 9. 如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A. 2a﹣3bB. 4a﹣8bC. 2a﹣4bD. 4a﹣10b【答案】B【解析】【分析】剪下的两个小矩形的长为a−b,宽为1(a−3b),所以这两个小矩形拼成2的新矩形的长为(a−b),宽为(a−3b),然后计算这个新矩形的周长.【详解】解:根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键用a和b表示出剪下的两个小矩形的长与宽.10. 用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A. 3nB. 6nC. 3n+6D. 3n+3【答案】D【解析】【详解】观察可知:①中有棋子6个,6=3×1+3,②中有棋子9个,9=3×2+3,③中有棋子12个,12=3×3+3, …所以第n 个图形用的棋子个数为:3n +3, 故答案为:3n +3,【点睛】主要考查了规律性问题,通过题中的图形找出规律是解决本题的关键.二、填空题11. 若关于x 、y 的多项式25x 2y ﹣7mxy+34y 3+6xy 化简后不含二次项,则m=______. 【答案】67【解析】【分析】根据合并同类项法则进行合并后得25 x 2y+34 y 3+(6-7m)xy ,再由不含二次项即可求出m 的值 【详解】25x 2y ﹣7mxy+34y 3+6xy=25x 2y+34y 3+(6-7m)xy , ∵不含二次项, ∴6-7m=0, ∴m=67【点睛】此题主要考查整式的加减,解题的关键是熟知不含某项可得其系数为0.12. 已知多项式21231363m x y xy x +-+--是五次四项式,单项式250.4n m x y -的次数与这个多项式的次数相同,则m =__________,n =__________. 【答案】 ①. 2 ②. 1 【解析】【详解】解:,多项式21231363m x y xy x +-+--的次数是5,单项式250.4n m x y -的次数与这个多项式的次数相同, ,2+m +1=5,2n +5﹣m =5, ,m =2, ,n =1. 故答案为2,1.13. 当x=1时,多项式3ax bx 1++的值为5,则当x=-1时,多项式311ax bx 122++的值为________. 【答案】-1 【解析】【分析】将x=1代入多项式中得出a+b 的值,再将x=-1及a+b 分别代入所求多项式中计算即可解答.【详解】解:由x=1时,代数式3ax bx 1++的值为5得:a+b+1=5 整理得:a+b=4.将311ax bx 122++变形为31ax bx 12++()将x=-1代入31(ax bx)12++得:1(a b)12-++将a+b=4代入上式,得14112-⨯+=-故代数式311ax bx 122++的值为-1,故答案为:﹣1.【点睛】本题考查了代数式的求值,利用整体代入的思想方法是解答本题的关键.14. 已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B - 的值不变,则12()(2)33a A b B ---的值是_______.【答案】-2 【解析】【分析】先根据代数式2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数,x y ,代数式 2A B - 的值不变 ∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=-故答案为:-2【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.15. 如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.【答案】990 【解析】【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0, (a+b )2的第三项的系数为:1, (a+b )3的第三项的系数为:3=1+2, (a+b )4的第三项的系数为:6=1+2+3, …∴发现(1+x )3的第三项系数为:3=1+2; (1+x )4的第三项系数为6=1+2+3; (1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.三、解答题16. 先化简下列各式,再求值。
《二元一次方程组解法》(二)--加减法 配套知识讲解 人教七年级下

二元一次方程组解法(提高)知识讲解【学习目标】1. 掌握加减消元法解二元一次方程组的方法;2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;3.会对一些特殊的方程组进行特殊的求解.【要点梳理】要点一、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.要点诠释:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.要点二、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.【典型例题】类型一、加减法解二元一次方程组1.(2020春•澧县期末)用加减消元法解方程组34659 23x y x y++==【思路点拨】先将原方程写成方程组的形式后,再求解. 【答案与解析】解:此式可化为:349(1) 2659(2) 3x yx y+⎧=⎪⎪⎨+⎪=⎪⎩由(1):3x+4y=18 (1) 由(2):6x+5y=27 (2) (1)×2:6x+8y=36 (3) (3)-(2):3y=9y=3代入(1):3x+12=183x=6x=2∴23 xy=⎧⎨=⎩【总结升华】先将每个式子化至最简,即形如ax+by=c的形式再消元. 举一反三:【变式】方程组201020092008200820072006x y x y -=⎧⎨-=⎩的解为:.【答案】12x y =-⎧⎨=-⎩2.已知关于x 、y 的方程组ax by cex dy f+=⎧⎨+=⎩的解为31x y =⎧⎨=⎩,求关于x 、y 的方程组()()()()a x y b x y ce x y d x y f-++=⎧⎨-++=⎩的解. 【思路点拨】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把x -y ,x+y 看作一个整体,则两个方程同解. 【答案与解析】解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(x -y )与(x+y )分别看成一个整体当作未知数,可得3,1.x y x y -=⎧⎨+=⎩ 解得:2,1.x y =⎧⎨=-⎩【总结升华】本例采用了类比的方法,若把其中的x+y 和x -y 分别看作整体,则第二个方程组与第一个方程组相同,即x+y =1,x -y =3. 举一反三:【变式】三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是:. 【答案】 解:由方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,得1112223434a b c a b c +=⎧⎨+=⎩,上式可写成111222352105352105a b c a b c ⨯+⨯=⎧⎨⨯+⨯=⎩,与111222325325a x b y c a x b y c +=⎧⎨+=⎩比较,可得:510x y =⎧⎨=⎩.类型二、用适当方法解二元一次方程组3.解方程组36101610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩【思路点拨】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单. 【答案与解析】解:设,610x y x ym n +-==,则原方程组可化为31m n m n +=⎧⎨-=-⎩①②解得12m n =⎧⎨=⎩即16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩ ,所以620x y x y +=⎧⎨-=⎩解得137x y =⎧⎨=-⎩所以原方程组的解为137x y =⎧⎨=-⎩.【总结升华】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法. 举一反三:【变式】【答案】解:去分母,整理化简得,9112061925x y x y +=⎧⎨+=⎩①②,②×3-①×2得,3535y =,即1y =, 将1y =代入①得,99x =,即1x =, 所以原方程组的解为11x y =⎧⎨=⎩. 4.试求方程组27526x y x y ⎧-=--⎪⎨-=-⎪⎩的解.【答案与解析】解:27526x y x y ⎧-=--⎪⎨-=-⎪⎩①②①-②,整理得513y y -=-③ ∵50y -≥,∴13-y ≥0,即y ≤13,当513y ≤≤时,③可化为513y y -=-,解得9y =; 当5y ≤时,③可化为513y y -=-,无解. 将9y =代入②,得23x -=,解得15x =-或.综上可得,原方程组的解为:19x y =-⎧⎨=⎩或59x y =⎧⎨=⎩.【总结升华】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解. 举一反三:【变式】(2020春•杭锦后旗校级期末)若二元一次方程组和y=kx+9有相同解,求(k+1)2的值. 【答案】 解:方程组,①×3+②得:11x=22, 解得:x=2,将x=2代入①得:6﹣y=7, 解得:y=﹣1, ∴方程组的解为,将代入y=kx+9得:k=﹣5,则当k=﹣5时,(k+1)2=16. 第二课时 【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.(2020春•天津期末)判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a>b>0,则<..【答案与解析】解:(1)若由b﹣3a<0,移项即可得到b<3a,故正确;(2)如果﹣5x>20,两边同除以﹣5不等号方向改变,故错误;(3)若a>b,当c=0时则 ac2>bc2错误,故错误;(4)由ac2>bc2得c2>0,故正确;(5)若a>b,根据c2+1,则 a(c2+1)>b(c2+1)正确.(6)若a>b>0,如a=2,b=1,则<正确.故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
不等式的基本性质

不等式的基本性质编稿:周尚达审稿:张扬责编:辛文升目标认知学习目标:理解并掌握不等式的性质,理解不等关系、感受在显示时节和日常生活中存在着大量的不等关系、了解不等式(组)的实际背景.能用不等式的基本性质比较代数式的大小。
重点:不等式的性质及运用,用不等式的基本性质比较代数式的大小。
难点:不等式性质的应用。
学习策略:①不等式的基本性质是进行不等式的变换,证明不等式和解不等式的依据,应正确理解和运用不等式的性质,注重性质的推导过程,弄清每条性质的条件与结论,注意条件与结论之间的关系。
②要比较两个式子的大小,通常只需将他们作差即可。
如果差的符号不确定,就需要对其差进行讨论。
③要证的不等式或者需要比较大小的式子含“幂”或“指数”,常采用作商比较法。
知识要点梳理知识点一:不等式的概念用不等号()表示不等关系的式子叫不等式.知识点二:不等式的性质1、不等式的基本性质:①对称性:②传递性:③可加性:()④可乘性:如果,则2、不等式的运算性质:①可加法则:②可乘法则:③可乘方性:④可开方性:知识点三:比较大小的方法1、作差法:任意两个式子、,可以作差后比较差与0的大小关系,从而得到与的大小关系,这种比较大小的方法称为作差比较法。
作差比较法的理论依据:①;②;③。
2、作商法:任意两个式子,如果、,可以作商后比较商与1的关系,从而得到与的大小关系。
作商差比较法的理论依据:若、,则有①;②;③.注意:作商比较法一般适合含“幂”、“指数”的式子比较大小。
3、中间量法:若且,则(实质是不等式的传递性).一般选择0或1为中间量.4、利用函数的单调性比较大小若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小.规律方法指导1、作差比较法的主要步骤:①作差;②变形(分解因式,配方等);③判断差的符号;如果差的符号不确定,就需要对其差进行讨论。
④下结论。
注意:这里“判断差的符号”是目的,“变形”是关键过程。
2、作商比较法的主要步骤:①判断要比较两式的符号都为正;②作商;③变形;④判断商与1的大小关系;如果商与1的大小关系不确定,就需要对其商进行讨论。
人教版中职数学基础模块上册--第二章不等式教案

2.1.1 实数的大小【教学目标】1.理解并掌握实数大小的基本性质,初步学习用作差比较法来比较两个实数或代数式的大小.2.从学生身边的事例出发,体会由实际问题上升为数学概念和数学知识的过程.3.培养学生勤于分析、善于思考的优秀品质.善于将复杂问题简单化也是我们着意培养的一种优秀的思维品质.【教学重点】理解实数的大小的基本性质,初步学习作差比较的思想.【教学难点】用作差比较法比较两个代数式的大小.【教学方法】这节课主要采用讲练结合法.通过联系公路上的限速标志,引入不等式的问题,并且从关注数字的大小入手,引导学生学习用作差比较法来比较两个实数、代数式的大小.通过穿插有针对性的练习,引导学生边学边练,及时巩固,逐步掌握作差比较法.【教学过程】教学环节教学内容师生互动设计意图导入右面是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得超过40 km/h.若用v(km/h)表示汽车的速度,那么v 与40之间的数量关系用怎样的式子表示?右面是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得低于50 km/h.若用v(km /h)表示汽车的速度,那么v 与50之间的数量关系用怎样的式子表示?学生根据生活经验回答情境问题.答:v≤40.答:v≥50.从学生身边的生活经验出发进行新知的学习,有助于调动学生学习积极性.研究实数与数轴上的点的对应关系.观察:点P 从左向右移动,对应实数大小的变化.师:实数与数轴上的点的关系是怎样的?x0 1 2 3-1-2-3-4ABP-5新课呈现结论:数轴上的任意两点中,右边的点对应的实数比左边的点对应的实数大.a>b ⇔a-b>0a=b ⇔a-b=0a<b ⇔a-b<0含有不等号(<,>,≤,≥,≠)的式子,叫做不等式.练习1在数学表达式:①-5<1;②2 x+4>0;③x2+1;④x=6;⑤y≠4;⑥a-2≥a中,不等式的个数是( ).(A) 2 (B) 3 (C) 4 (D) 5练习2把下列语句用不等式表示:(1) y 是负数;(2) x2是非负数;(3)设 a 为三角形的一条边长,a 是正数;(4) b为非正数.例1比较下列各组中两个实数的大小:(1) -3和-4;(2)67和56;(3) -711和-1017;(4) 12.3和1213.解(1)因为(-3)-(-4)=-3+4=1>0,所以-3>-4;点A对应的实数与点B对应的实数各是多少?哪个大?生:实数与数轴上的点是一一对应的.点A表示实数3,点B表示实数-2,点A在点B右边,3>-2.当点P在不同的位置,学生分别比较点P对应的实数与点A,点B对应实数的大小.个别学生口答,其他学生评价,遇到问题,小组讨论解决.教师引导,学生口答.共同完成(1)和(2).通过动画演示提高学生学习的兴趣,活跃学生的思维.在复习初中知识的基础上加以提升.因为例题1较为简单,讲解两个,剩余两个让学生练习,使学生在参与中(2)因为67-56=3642-3542=142>0,所以67>56.例2对任意实数x,比较(x+1)(x+2)与(x-3)(x+6)的大小.解因为(x+1)(x+2)-(x-3)(x+6)=(x2+3x+2)-(x2+3x-18)=20>0.所以(x+1)(x+2)>(x-3)(x+6).练习3(1)比较(a+3)(a-5)与(a+2)(a-4)的大小;(2)比较(x+5)(x+7)与(x+6)2 的大小.例3比较(x2+1)2 与x4+x2+1 的大小.解因为(x2+1)2-(x4+x2+1)=(x4+2x2+1)-x4-x2-1=x2≥0,所以(x2+1)2≥x4+x2+1,当且仅当x=0时,等式成立.练习4(1)比较2 x2+3 x+4 和x2+3 x+3 的大小;(2)比较(x+1)2 和2 x+1的大小.学生完成(3)(4).学生仿照例题进行练习,教师巡视指导.学生复习(a+b)2的展开式.学生仿照例题进行练习,教师巡视指导.学习使用作差比较的方法.但仅限于使用,不必强调要求学生掌握这个方法.初步学习用作差比较法判断两个代数式的大小.小结作差法的步骤:作差→变形→定号(与0比较大小) →结论.作业必做题:教材P 33,练习A 组第3 题;选做题:教材P 34,练习B 组第2 (2)(5)(6)题.2.1.2不等式的性质【教学目标】1.掌握不等式的三条基本性质以及推论,能够运用不等式的基本性质将不等式变形解决简单的问题.2. 掌握应用作差比较法比较实数的大小.3.通过教学,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质.【教学重点】不等式的三条基本性质及其应用.【教学难点】不等式基本性质3的探索与运用.【教学方法】这节课主要采用讲练结合法与分组探究教学法.通过引导学生回顾玩跷跷板的经验,师生共同探究天平两侧物体的质量的大小,引导学生理性地认识不等式的三条基本性质,并运用作差比较法来证明之.通过题组训练,使学生逐步掌握不等式的基本性质,为后面运用不等式的基本性质解不等式打下理论基础.【教学过程】教学环节教学内容师生互动设计意图导入【课件展示情境1】创设天平情境问题:观察课件,说出物体a和c哪个质量更大一些?由此判断:如果a>b,b>c,那么a和c的大小关系如何?从学生身边的生活经验出发进行新知的学习,有助于调动学生学习的积极性.新课性质1(传递性)如果a>b,b>c,则a>c.分析要证a>c,只要证a-c>0.学生思考、回答得出性质1.新课证明因为a-c=(a-b)+(b-c),又由a>b,b>c,即a-b>0,b-c>0,所以(a-b)+(b-c)>0.因此a-c>0.即a>c.【课件展示情境2】性质2(加法法则)如果a>b,则a+c>b+c.证明因为(a+c)-(b+c)=a-b,又由a>b,即a-b>0,所以a+c>b+c.思考:如果a>b,那么a-c>b-c.是否正确?不等式的两边都加上(或减去)同一个数,不等号的方向不变.推论1如果a+b>c,则a>c-b.证明因为a+b>c,所以a+b+(-b)>c+(-b),即a>c-b.不等式中任何一项,变号后可以从一边移到另一边.练习1(1)在-6<2 的两边都加上9,得;(2)在4>-3 的两边都减去6,得;(3)如果a<b,那么a-3 b-3;(4)如果x>3,那么x+2 5;(5)如果x+7>9,那么两边都,得x>2.引导学生判断:不等式的两边都加上(或减去)同一个数,不等号的方向是否改变?学生口答,教师点评.学生猜想创设一种情境,给学生提供了想象的空间,为后续学习做好了铺垫.让学生在“做”数学中学数学,真正成为学习的主人.把课堂变为学生再发现、再创造的乐园.对不等式的性质及时练习,进行巩固.把猜想作新课小组合作探究:学生4人一组,把不等式5>2的两边同时乘以任意一个不为0的数,观察不等号的方向是否变化.多试几次,你发现什么规律了吗?性质3(乘法法则)如果a>b,c>0,那么a c>b c;如果a>b,c<0,那么a c<b c.证明因为 a c-b c=(a-b)c,又由a>b,即a-b>0,所以当c>0时,(a-b)c>0,即 a c>b c;所以当c<0时,(a-b)c<0,即 a c<b c.如果不等式两边都乘同一个正数,则不等号的方向不变,如果都乘同一个负数,则不等号的方向改变.思考:如果a>b,那么-a-b.练习2(1)在-3<-2的两边都乘以2,得;(2)在1>-2的两边都乘以-3,得;(3)如果a>b,那么-3 a-3 b;(4)如果a<0,那么3 a 5 a;(5)如果3 x>-9,那么x-3;(6)如果-3 x>9,那么x-3.练习3 判断下列不等式是否成立,并说明理由.(1)若a<b,则a c<b c.( )(2)若a c>b c,则a>b.( )(3)若a>b,则a c2>b c2.( )(4)若a c2>b c2,则a>b.( )(5)若a>b,则a(c2+1)>b(c2+1) .( )结果后,小组内合作探究、交流,教师巡回指导.学生代表进行口答,其他学生评价.练习2前3个小题由学生思考后口答;后3个小题同桌之间讨论,回答.为教学的出发点,启发学生积极思维,探索规律.性质3学生容易出错,用练习及时巩固,通过相互评价学习效果,及时发现问题、解决知识盲点.小要点:不等式的三条基本性质.回顾、总结方法:作差比较法.注意点:不等式的两边同时乘以同一个负数时,不等号的方向必须改变.结、矫正、提高.帮助学生形成本节课的知识网络.作业必做题:教材P36,练习A组;选做题:教材P37,练习B组.2.2.1区间的概念【教学目标】1. 理解区间的概念,掌握用区间表示不等式解集的方法,并能在数轴上表示出来.2. 通过教学,渗透数形结合的思想和由一般到特殊的辩证唯物主义观点.3. 培养学生合作交流的意识和乐于探究的良好思维品质,让学生从数学学习活动中获得成功的体验,树立自信心.【教学重点】用区间表示数集.【教学难点】对无穷区间的理解.【教学方法】本节课主要采用数形结合法与讲练结合法.通过不等式介绍闭区间的有关概念,并与学生一起在数轴上表示两种不同的区间,学生类比得出其它区间的记法.在此基础上引导学生用区间表示不等式的解集,为学习用区间法求不等式组的解集打下坚实的基础.【教学过程】教学环节教学内容师生互动设计意图导入教师提问:(1) 用不等式表示数轴上的实数范围;(2) 把不等式1≤x≤5在数轴上表示出来.学生思考、回答,并在练习本上作出图象.复习初中所学旧知,有助学生在已有知识的基础上建构新的知识.新课设a,b 是实数,且a<b.满足a≤x≤b 的实数x 的全体,叫做闭区间,记作[a,b],如图.a,b 叫做区间的端点.在数轴上表示一个区间时,若区间包括端点,则端点用实心点表示;若区间不包括端点,则端点用空心点表示.教师讲解闭区间,开区间的概念,记法和图示,学生类比得出半开半闭区间的概念,记法和图示.用表格呈现相应的教师只讲两种区间,给学生提供了类比、想象的空间,为后续学习做好了铺垫.x01-1-2-3-4新课全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”.例1用区间记法表示下列不等式的解集:(1) 9≤x≤10;(2) x≤0.4.解(1) [9,10];(2) (-∞,0.4].练习1用区间记法表示下列不等式的解集,并在数轴上表示这些区间:(1) -2≤x≤3;(2) -3<x≤4;(3) -2≤x<3;(4) -3<x<4;(5) x>3;(6) x≤4.例2用集合的性质描述法表示下列区间:(1) (-4,0);(2) (-8,7].解(1) {x | -4<x<0};(2) {x | -8<x≤7}.练习2用集合的性质描述法表示下列区间,并在数轴上表示这些区间:(1) [-1,2);(2) [3,1].例3在数轴上表示集合{x|x<-2或x≥1}.解如图所示.练习3区间,便于学生对比记忆.教师强调“∞”只是一种符号,不是具体的数,不能进行运算.学生在教师的指导下,得出结论,师生共同总结规律.学生抢答,巩固区间知识.学生代表板演,其它学生练习,相互评价.同桌之间讨论,完学生理解无穷区间有些难度,教师要强调“∞”只是一种符号,并结合数轴多加练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比较两个代数式大小
不等式这一章节有一类题型,告诉两个字母的范围,比较由这些字母组成的代数式的大小关系.简单的代数式的比较,大多数同学都会,可是复杂的代数式怎么比较呢?很多同学不知道怎么下手,复杂的代数式的比较,我们这儿给大家总结了三种方法:作差法,作商法,放缩法.相信学了这几种方法后,同学们遇到这类问题便可以如同瓮中捉鳖了.
基本方法
比较两个不等式的大小我们总结了三种方法.
作差法:如a-b>0,那么a>b;如果a-b<0,那么a<b.这是最基本的方法,其它的一些比较方法均是由此推导出来的.
作商法:如果>1,那么a<b;这种比
放缩法:如果
到:老大比老三大。
体验题1如果
体验思路因
体验过程∵
∴5-a<5-b
简单的代数式可以,我们再看一个复杂一些的。
看看我们的方法行不行?
体验题2
体验题2如1>a>b>0 ,试比较ab,ab2,b2a的大小关系.
体验思路本题很明显,ab>0,ab2>0,ab2>0.因此,我们既可以选择作差法,也可以选择作商法.
体验过程方法一,作差法.
∵ab-ab2=ab(1-b)>0, ∴ ab>a2b
∵ab-a2b=ab(1-a)>0, ∴ ab>a2b
∵ab2-a2b=ab(b-a)<0, ∴ab2<a2b
∴ab> a2b>ab2
方法二,作商法.
∵1>a>b>0, ∴ab>0,ab 2>0,b 2
a>0. ∵
21ab ab b
=>1, ∴ab>ab 2. ∵21ab a b a =>1, ∴ab>a 2b. ∵22ab b a b a
=<1, ∴ab 2<a 2b. ∴ab> a 2b>ab 2
体验题3
体验题3
如果
体验思路 ∵体验过程 ∵a<b<0, ∵b a 11--
b a b a 题是分数形式的代数式,且上述代数式与0的大小关系已知.另外,易确
b a
,2a b ,2
b a 与1的大小关系,故也可考虑放缩法.
∵1>a>b>0, ∴a b >1, b a <1, ∴a b >b a
; ∴2a b =a b .a>a b .1=a b
>1 (这一步中间过程将a 放缩到1) ∴2b a =b a .b<b a .1=b a
<1. (这一步中间过程将b 放缩到1)
∴
2
b
a
<
b
a
<
a
b
<
2
a
b
方法二:作商法∵
2
2
b
b
a
a a
b
=<1,∴
b
a
<
a
b
∵
2
2
b
a
a
b
=
3
3
b
a
<1, ∴
2
b
a
<
2
a
b
,
∵
2 a b
a b
∵
2 b a b a
∴
2
b
a
<
小结:作差法,.
.
毕竟实践出真知!祝你成功!
实践题
实践题1 如果a+2b>a+b+1,比较a与b的大小关系 .
实践题2 有一个两位数,个位上的数是a,十位上的数是b,如果把这两位数的个位与十位上的数对调,新得到的两位数大于原来的两位数,那么a与b 哪个大?
实践题答案
实践题1
实践详解∵a+2b-(a+b+1)=a-(b+1)>0,所以a>b+1
b+1>b
∴a>b
实践题2
实践详解原来的两位数是10b+a,新的两位数是10a+b, ∵10a+b-(10b+a)=9(b-a)<0,∴b<a。