4.3.1 对数的概念

合集下载

4.3.1对数的概念课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册+

4.3.1对数的概念课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册+
(1) log 64
2
x= - ;
3
(3) lg 100 = x;
解:
(2) log x 8 = 6;
(4) - ln e2 = x.
精讲点拨
例3 在对数式y=log(x-2)(4-x)中,实数x的取
值范围是________.
4-x>0,

解析: 由题意可知x-2>0, 解得 2<x<4 且 x≠3.

x-2≠1,
答案 (2,3)∪(3,4)
知识建构
(1)对数的由来
(2)对数的定义
(3)常用对数与自然对数
(5)指对数互换
巩固训练
1.判断
(1)根据对数的定义,因为(-2)4=16,所以log(-2)16=4.(
提示 因为对数的底数a应满足a>0且a≠1,所以错误.
(2)对数式log32与log23的意义一样.(
×
×)
)
提示 log32表示以3为底2的对数,log23表示以2为底3的对数,所以错误.
(3)对数的运算实质是求幂指数.( √ )
巩固训练
2.把下列指数式化为对数式,对数式化为指数式
巩固训练
2
3.若logx8=3,则x=________.
4.若log3(log2x)=0,则x=
2
.
巩固训练
5.求下列各式的值
对数的有关性质是解
2.对数的有关性质
题的重要依据!!
没有对数
(1)零和负数__________;
0
(2)1的对数为___,即log
a1=0(a>0且a≠1);
1
(3)底数的对数为___,即log
aa=1(a>0且a≠1).

人教A版必修第一册4.3.1对数的概念课件

人教A版必修第一册4.3.1对数的概念课件
是真的吗
嘿,挖到几枚恐龙蛋,送
到权威机构做了碳14同位素鉴定,
结果是白垩纪的恐龙蛋化石,现
在坐等博物馆人员上门收购!
碳14同位素法检测原理
生物死亡后,它机体内原有的碳14含
量每经过大约6000年会衰减为本来的
一半,这个时间称为“半衰期”.
研究人员常常根据机体内碳14的含量
来推断生物体的年代,其中半衰次数

=
(<<)
y
=
(>)
a∈{a| >0,且a≠1}
x∈R
N∈+
O
x
四、典例精析
例1 将下列指数式化为对数式,对数式化为指数式.
(1)log 5 125 = 3;(2)log 2
1
16
= −4;
(3)10−2 = 0.01;(4)e0 = 1(其中e=2.71828…).
log = 1.
五、随堂练习
1.对数式与指数式的互化:
(1)2
−1
=
1
;
2
(2)ln1 = 0.
1
2
解:(1)log 2 =-1;(2) 0 =1.
2.求值:(1)log 3 9;
(2)log 9 3.
解:(1)设x=log 3 9,则3 = 9 = 32 ,所以x=2,即log 3 9=2;
1
2
与碳14的含量P之间的关系为: = ( ) .
但是,当生物组织内的碳14含量不足千分之一(这里我们按
来计算)时,放射性探测器就测不到碳14了.
1
1024
试回答以下几个问题:
(1)经过1次半衰期,碳14的含量会变为本来的多少?3次呢?
1
1 3 1

新教材人教A版数学必修第一册4.3.1 对数的概念课件

新教材人教A版数学必修第一册4.3.1 对数的概念课件

对数与指数的关系 指数式与对数式的互化(其中 a>0,且 a≠1):
(1)开方运算和对数运算都是乘方运算的逆运算; (2)弄清对数式与指数式的互化是掌握对数运算的关键.
1.式子 logmN 中,底数 m 的范围是什么? 提示:m>0 且 m≠1.
2.对数式 logaN 是不是 loga 与 N 的乘积? 提示:不是,logaN 是一个整体,是求幂指数的一种运算,其运算结果是 一个实数.
第四

指数函数与对数函数
4.3 对数
新课程标准解读
核心素养
1.理解对数的概念和运算性质,能进行简单的对数运算 数学抽象、数学运算
2.知道用换底公式能将一般对数转化成自然对数或常用对 数,并能进行简单的化简计算
数学运算
4.3.1 对数的概念
某种细胞分裂时,由 1 个分裂成 2 个,2 个分裂成 4 个,……
所以lg(lg 10)=lg 1=0,故A正确;
对于B,因为ln e=1,lg 1=0,所以lg(ln e)=lg 1=0,故B正确;
对于C,因为10=lg x,所以x=1010,故C错误;
对于D,因为log25x=12,所以2512=x,所以x=5,故D错误.故选A、B. 答案:AB
4.已知logx16=2,则x等于
[问题] 依次类推,1 个这样的细胞分裂 x 次得到的细胞个数 N 是多少? 分裂多少次得到的细胞个数为 8 和 256?如果已知细胞分裂后的个数 N,如何 求分裂次数?
知识点一 对数的概念
1.定义 一般地,如果 ax=N(a>0,且 a≠1),那么数 x 叫做__以__a__为__底__N__的__对__数__, 记作__x_=__lo_g_a_N____,其中 a 叫做_对__数__的__底__数___,N 叫做__真__数__. 2.常用对数与自然对数

4.3.1对数的概念

4.3.1对数的概念

4.3.1 对数的概念【引入】1.庄子曰:一尺之棰,日取其半,万世不竭.(1)取5次,还有多长?(2)取多少次,还有0.125尺?2.细胞分裂问题,经过几次分裂后细胞的个数为4 096个?2x=4 096.【新课】一、对数的概念一般地,如果a (a>0且a≠1)的b次幂等于N,即a b=N,那么幂指数b叫做以a为底N的对数.“以a为底N的对数b”记作b=log a N (a>0且a≠1),其中a叫做对数的底数,N叫做真数.注意:(1) 底数的限制:a>0且a≠1;(2)对数的书写格式;(3)对数的真数大于零.二、对数式与指数式的关系由对数的定义可知,a b=N与b=log a N两个等式所表示的是a,b,N三个量之间的同一关系的两种不同表示形式.例如:32=9⇔2=log39.对数式与指数式的互化:a b=N ⇔b=log a N练习1(1) 将下列指数式写成对数式:22=4;62=36;7.60=1;34=81.(2) 将下列对数式写成指数式:log39=2;log416=2;log5125=3;log749=2.练习2 将下列指数式写成对数式 ( 其中 a >0且 a ≠1):21=2; a 1=a ;60=1; a 0=1.三、对数的性质(1) log a a =1,即底数的对数等于1;(2) log a 1=0,即1的对数等于零;(3) 0和负数没有对数.例1 求log 22,log 21,log 216,log 212. 解 (1) 因为 21=2,所以 log 22=1;(2) 因为 20=1,所以 log 21=0;(3) 因为 24=16,所以 log 216=4;(4) 因为 2-1=12,所以 log 212=-1. 四、常用对数以10为底的对数叫做常用对数.为了简便,log 10N 简记作 lg N . 例2 求lg 10,lg 100,lg 0.01.解 (1) 因为 101=10,所以 lg10=1;(2) 因为 102=100,所以 lg100=2;(3) 因为 10-2=0.01,所以lg0.01=-2.例 3 利用计算器求对数(精确到0.000 1).lg2 001; lg0.618;lg0.004; lg396.5.练习3 求下列各式的值(1) lg1+lg10+lg100;(2) lg0.1+lg0.01+lg0.001.【小结】一、对数二、指数式与对数式的关系式a b =N b =log a N三、常用对数以10为底的对数叫做常用对数,简记作 lg N .。

4.3.1 对数的概念

4.3.1  对数的概念

4.3.1 对数的概念(一)教材梳理填空 (1)对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.(2)对数的基本性质①当a >0,且a ≠1时,a x =N ⇔x =log a N . ②负数和0没有对数.③特殊值:1的对数是0,即log a 1=0(a >0,且a ≠1);底数的对数是1,即log a a =1(a >0,且a ≠1).(3)常用对数与自然对数名称 定义记法 常用对数 以10为底的对数叫做常用对数lg_N 自然对数 以无理数e =2.718 28…为底的对数称为自然对数ln_N(二)基本知能小试 1.判断正误(1)因为(-2)2=4,所以2=log (-2)4.( ) (2)log a N 是log a 与N 的乘积( )(3)使对数log 2(-2a +1)有意义的a 的取值范围是⎝⎛⎭⎫-∞,12.( ) 2.若a 2=M (a >0且a ≠1),则有( ) A .log 2M =a B .log a M =2 C .log a 2=MD .log 2a =M3.log 21+log 22=( ) A .3 B .2 C .1D .0 4.已知log 32x -15=0,则x =________.题型一指数式与对数式的互化[学透用活](1)对数的概念的实质是指数式化为对数式,关键是弄清指数式各部分的“去向”:(2)定义中规定a>0,且a≠1.理由:①当a<0且N为某些数值时,x不存在,如式子(-2)x=3没有实数解,所以log(-2)3不存在,因此,规定a不能小于0.由指数函数的定义也可知a不能小于0.②当a=0,且N≠0时,log a N不存在;当a=0,且N=0时,x可取无数个值,因此规定a≠0.③当a=1,且N不为1时,x不存在;而a=1且N=1时,x可以为任何实数,因此规定a≠1.[典例1]将下列对数形式化成指数形式或将指数形式转化为对数形式:(1)33=27;(2)log128=-3;(3)⎝⎛⎭⎫14-2=16;(4)lg 1 000=3.[对点练清]1.3b=5化为对数式是()A.log b3=5B.log35=b C.log5b=3 D.log53=b 2.下列指数式与对数式互化不正确的一组是() A.100=1与lg 1=0B.27-13=13与log2713=-13C.log39=2与912=3D.log55=1与51=5题型二对数的计算[学透用活][典例2]求下列各式的值.(1)log1381;(2)lg 0.000 1;(3)log(5-2)(5+2).求对数式log a N的值的步骤[对点练清]1.求下列对数的值:(1)log 28;(2)log 919;(3)ln e ;(4)lg 1.2.求下列各式中x 的值:(1)⎝⎛⎭⎫13x =5;(2)log 64x =-23;(3)log x 8=6;(4)lg 100=x .题型三 对数的性质及对数恒等式[学透用活][典例3] 求下列各式中x 的值: (1)log 2(log 5x )=0; (2)log 3(lg x )=1; (3)log 3(log 4(log 5x ))=0.[对点练清]1.[变条件]本例(3)中若将“log 3(log 4(log 5x ))=0”改为“log 3(log 4(log 5x ))=1”,又如何求解x 呢?2.[变设问]在本例(3)条件下,计算625log x 3的值.3.[变条件]本例(3)中若将“log 3(log 4(log 5x ))=0”改为“3log 3(log 4(log 5x ))=1”,又如何求解x 呢?[课堂一刻钟巩固训练]一、基础经典题1.已知log x 16=2,则x 等于( ) A .4B .±4C .256D .22.2-3=18化为对数式为( )A .log 182=-3B .log 18(-3)=2C .log 218=-3D .log 2(-3)=183.求值:lg 1 000=________;lg 0.001=________. 4.已知log 2x =3,则x -12=________.二、创新应用题5.先将下列式子改写成指数式,再求各式中x 的值.[课下双层级演练过关] A 级——学考水平达标练1.若a >0,且a ≠1,c >0,则将a b =c 化为对数式为( ) A .log a b =c B .log a c =b C .log b c =aD .log c a =b2.若对数log (2a -1)(6-2a )有意义,则实数a 的取值范围为( ) A .(-∞,3) B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,1∪(1,+∞)D.⎝⎛⎭⎫12,1∪(1,3)3.若log x 7y =z ,则x ,y ,z 之间满足( ) A .y 7=x z B .y =x 7z C .y =7x zD .y =z 7x4.对于a >0,且a ≠1,下列说法中,正确的是( ) ①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2. A .①③ B .②④ C .②D .①②③④5.(2018·河北辛集中学高一期中)若x log 23=1,则3x +9x 的值为( ) A .6 B .3 C .52D .126.若a =log 43,则2a +2-a =________. 7.若a =lg 2,b =lg 3,则1002b a 的值为________.8.给出下列各式:①lg(lg 10)=0;②lg(ln e)=0;③若10=lg x ,则x =10;④由log 25x =12,得x =±5. 其中,正确的是________(把正确的序号都填上). 9.将下列指数式化为对数式,对数式化为指数式. (1)53=125; (2)4-2=116; (3)log 3127=-3. 10.若log 12x =m ,log 14y =m +2,求x 2y的值.B 级——高考水平高分练1.已知log 7[log 3(log 2x )]=0,那么x -12等于( ) A.13 B.36 C.24D.332.已知函数f (x )=⎩⎪⎨⎪⎧-log 2(x +1),x ≥0,2x -1,x <0,则f (f (3))=________.3.已知log 2(log 3(log 4x ))=0,且log 4(log 2y )=1.求x ·y 34的值.4.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl)来描述声音的大小:把一很小的声压P 0=2×10-5 帕作为参考声压,把所要测量的声压P 与参考声压P 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区.(1)根据上述材料,列出分贝y 与声压P 的函数关系式;(2)某地声压P =0.002帕,试问该地为以上所说的什么区,声音环境是否优良?。

4.3.1对数的概念课件(人教版)

4.3.1对数的概念课件(人教版)

(2)由
26 1 , 可得
64
log2 64 6;
(3)由
(1)m 5.73, 3
可得 log1 5.73 m;
3
(4)由
log1 16
4,
可得 (1)4 2
16;
2
(6)由ln10=2.303,可得e2.303=10.
学习目标
新课讲授
课堂总结
总结归纳
指数式与对数式互化的方法 1.将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数 不变,写出对数式; 2.将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变, 写出指数式.
学习目标
新课讲授
课堂总结
例1 将下列指数情势化为对数情势,对数情势化为指数情势:
(1)54 625;
(2)26
1 64
;
(3)(13)m 5.73;
(4)log1 16 4; (5)lg 0.01 2; (6)ln10 2.303;
2
解:(1) 由54=625,可得log5625=4; (5)由lg0.01=-2,可得10-2=0.01;
另外,在科技、经济、社会中经常使用以无理数e=2.71828…为底数的对数, 以e为底的对数叫做自然对数,也有它特殊的符号,即
loge N ln N
学习目标
新课讲授
课堂总结
知识点2:对数与指数的关系
指数和对数之间有什么关系?
对数由指数变换而来
指数 幂
对数 真数
ax=N
logaN=x
底数 故a>0,且a≠1,ax=N⇔x=logaN.
学习目标
新课讲授
课堂总结
根据今天所学,回答下列问题: 1.对数怎么表示? 2.对数和指数之间有着怎样的关系,如何相互转换?

4.3.1对数的概念课件高一上学期数学人教A版


D.3
10
.
(3)2 2 3 +2log31-3log77+3ln 1=
解析 原式=3+2×0-3×1+3×0=0.
0
.
重难探究·能力素养速提升
探究点一
对数式与指数式的互化
【例1】 将下列指数式化为对数式,对数式化为指数式:
2
(1)10 =100;(2)ln a=b;(3)7
1
=343;(4)log6 =-2.
人教A版 数学必修第一册
课程标准
1.理解对数的概念,掌握对数的基本性质.
2.掌握指数式与对数式的互化,能够应用对数的定义和性质解方程.
3.理解常用对数和自然对数的定义形式以及在科学实践中的应用.
基础落实·必备知识一遍过
知识点1 对数的概念
1.对数的定义:一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,
4
(1)2 =16;(2)3
1
1 b
a
= ;(3)5 =20;(4)
=0.45.
27
2
-3
解 (1)log216=4.
1
(2)log327 =-3.
(3)log520=a.
(4)log 1 0.45=b.
2
知识点2 对数的基本性质
1.对数与指数间的关系
(1)当a>0,a≠1时,ax=N⇔x=logaN.
25
x=-1;(5)logx64=2;(6)2lo g 2 3 =x.
解 由对数的定义,得
(1)x=34=81;
(2)5
1
= =5-2,所以
25
x
x=-2;
(3)x=log35;

4.3.1对数的概念课件-2024-2025学年高一上学期数学湘教版(2019)必修第一册


E N G L I S H
T I T L E
【问题】为什么规定 > 且 ≠ ?
【1】如果 < 0 ,则会出现N为某些数值时, 不存在的情况,比如,假设
(−4) 2 存在,设 (−4) 2 = ,则 (−4) = 2,无解.
【2】如果 = 0,且 ≠ 0 ,则 不存在;若 = 0,且 = 0 , 0 0有无
Y O U R
E N G L I S H
T I T L E
引例:庄子有云,一尺之棰,日取其半,
万世不竭.意思是说:一尺长的棍子,第
一天取其一半,第二天取剩余的一半….
【问题1】:取四次还有多长?怎样计算?
1
1 4
1

= ( ) ∈ , = ( ) =
= 0.0625
2
2
16
【问题2】:取多少次还有0.03125尺?你能列
F R E S H
E D U C A T I O N
对 数 的 概 念
I don’t know if we each have a destiny, or if we’re all just floating around
accidental—like on a breeze.
0 1 |对数的由

出关系式吗?
1
由问题1,0.0625 ÷ 2 = 0.03125 = ( )4 ×
1
2
数学史点击图片转链接
1
2
2
= ( )5 ,这里 = 5,所以取5次还有0.03125
【问题3】:取多少次还有0.0000009536尺?
你能列出关系式吗?
0 1 |概念引入
Y O U R

高中数学人教A版必修第一册4.3.1对数的概念课件


(1)
log64
x
2 3
(3) lg100 x
(2) logx 8 6 (4) ln e2 x
解:(1)x
64
2 3
1
2
64 3
1
2
43 3
1 16
1
1
(2)x6 8, x 86 22 2
(3)10x 100, x 2
(4) ln e2 x ln e2 x e2 ex 2 x x 2
(1)54 625
(4) log1 16 4
2
(2)26 1 64
(5) lg 0.01 2
(3) 1 m 5.73 3
(6) ln10 2.303
其实指数式与对数式,虽然从情势上看, 两者不同,但本质上是一致的。 这个一致就是底数、指数(对数)、幂(真数) 三者之间的关系。
典例解析
例2.求下列各式中x的值:
3.求下列各式中x的值:
(1) log1 x 3
3
(2) logx 49 4
(3) lg 0.00001 x
(4) ln e x
知识拓展
对数恒等式: aloga N N (a 0,且a 1, N 0)
令 loga N x
ax N

aloga N N
请同学们记在课本里
巩固练习 金版P86-88 P88 A级 练习5
课堂练习 P123练习
1.把下列指数式写成对数式,对数式写成指数式:
(1)23 8 (4) log3 9 2
(2)e 3 m (5) lg n 2.3
(3)27
1 3
1
3
(6)
log3
1 81
4
2.求下列各式的值:

4.3.1 对数的概念 (教学课件)-高中数学人教A版(2019)必修第一册

log₁1 有无数个值,不能确定 . 为了避免 logaN 不存在或者不唯—确定的
情况,规定(a>0 且a≠1)
根据对数的定义,可以得到对数与指数间的关系(互化): 若a>0 且a≠1, 则a⁸=N⇔loga N=x

指数 以a为底N 的对数

幂 真数

X
al
log N =

底数


1.指数式与对数式的转化
练习1求下列各式的值:
(1)3¹+log₃2;
练习2 求下列各式中的x 的值:
(1)1g(In x)=0;
0.
(2)1g(Inx)=1;
(3)log₇[log₃(log₂x)]=
课本126页 习题4.3 第 1 题
求下列各式中x的值
(1)31o⁸₃(Inx)=2
(2)In(log₂x)=0
(3)log₁(lg x)=1 1)=2 2
(2)loga1=0(a>0 且a≠1). <=a⁰=1.
(3)logaa=1(a>0 且a≠1). <=a¹=a.
例2求下列对数的值
(1)log₂2 = (2)log₂1=
(3)log₂16=
概念生成
3.对数的重要结论
(1)负数和零没有对数.
ax=N,N>0.
当真数N≤0 时,没有对数.
(2)loga1=0(a>0 且a≠1). <=a⁰=1.
x=3—2
x=6÷3
士 √9
a=N→x=logaN
是一种运算
概念生成
1.对数的概念
注意:①底 数 :a>0 且a≠1
②对数的书写格式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档