光纤马赫-曾德干涉设计报告

合集下载

马赫_曾德尔光纤干涉仪的研制及应用

马赫_曾德尔光纤干涉仪的研制及应用

马赫-曾德尔光纤干涉仪的研制及应用张洪喜(中国电子科技集团公司第41研究所,山东青岛266555) 摘 要:介绍了作者在测量单纵模激光器线宽参数的过程中,研制的马赫-曾德尔光纤干涉仪,并给出了实验结果。

关键词:单纵模激光器;线宽;光纤干涉仪;偏振中图分类号:T H744.3 文献标识码:B 文章编号:1002-6061(2006)01-0029-02The Development and Application of Fiber -optic Mach -Zehnder InterferometerZHANG Hong -x i(T he 41st Institute of CE TC,Qingdao 266555,Chin a)Abstract :T his paper int roduces t he development of f iber-optic M ach-Zehnder int er ferom et er dur ing measuring linewidth paramet er of sing le -frequency l asers ,and t he exper im ent r esult has been g iv en .Key words :sing le-frequency l asers;l inewidt h;f iber -o pt ic int erferom et er;polarizat ion收稿日期:2005-05-13;收修改稿日期:2005-06-23作者简介:张洪喜(1973-),男,工程师,在职工程硕士研究生,主要从事光电子计量及课题研究等方面的工作。

0 引言马赫-曾德尔光纤干涉仪用于单纵模激光器线宽参数的测量。

通过使用自零差技术,光纤干涉仪将光相位偏移或光频率偏移转换成强度变化,这种变化经过光波信号分析仪接收、处理,即可得出被测单纵模激光器的线宽值。

实验十、MZ综合实验

实验十、MZ综合实验

【实验名称】 马赫-曾德光纤干涉仪综合实验马赫-曾德光纤干涉仪基于相干光学中马-曾干涉仪原理实现了相干光路光纤化的一种器件,通称MZ 。

它主要由光纤耦合器、偏振控制器、PZT 相位调制器和光纤组成。

利用MZ 干涉仪原理制成的MZ 光纤调制器是在MZ 干涉仪的基础上,加入第二个耦合器,并采用PZT 将输入的电调制信号转换为光调制信号输出,其在光通信中有重要的应用。

因此,学习MZ 干涉仪的基础知识对于理解和掌握光通信原理和技术是非常必要的。

【实验目的】1.了解光纤马赫-曾德干涉仪的基本原理及时调整方法2.掌握光耦合的基本技能,3.掌握光纤偏振控制器的原理及使用方法,4.掌握压电陶瓷(PZT)进行光纤相位调制的工作原理及使用方法.【实验原理】为深入地掌握MZ 干涉仪的工作原理,我们先从构成MZ 干涉仪的基础元件光纤耦合器出发,运用模耦合理论分析光纤耦合器光场的输入和输出关系,再利用光传输理论扩展到整个MZ 干涉仪。

1. 光纤熔锥耦合器光纤熔锥耦合器是将两段光纤除去涂覆层后缠绕在一起,用光纤拉锥机拉制而成的用于光功率耦合的光纤器件。

通常光纤耦合器为1×2和2×2,图1给出1,2端口端输入,3,4端口输出的2×2耦合器示意图,图中箭头表示光波传输方向。

图1. 2×2光纤熔锥耦合器结构对于光波导而言,绝大部分光都集中在纤芯,但总有很小部分能量散布于包层.当两个光波导相互靠近时,一个波导中传输的光能将耦合到另一个波导之中,从而改变各个光波导的场分布,而这种变化反过来对原光波导发生影响,这就形成了两光波导的横向耦合。

理论上参与耦合作用的光场满足如下光纤耦合器的模耦合方程[][]⎪⎩⎪⎨⎧+=+=)()(d d )()(d d 212211z E z kE i zE z kE z E i z E ββ (1) 其中和分别为存在于耦合器中两个相互作用光场, 为模耦合系数, )(1z E )(2z E k β是光在光纤中传播常数。

实验,马赫曾德

实验,马赫曾德

-、实验十三双光纤Mach-Zehnder干涉传感实验本实验采用双光纤技术,一方面通过双光纤分光路干涉,构成光纤Mach-Zehnder干涉传感测量系统;另一方面,在双光纤的出射端,构成杨氏双孔干涉系统。

通过本实验,可对光纤干涉相位调制的物理过程有一个完整的了解,同时,借助于双光纤杨氏空间干涉系统,可研究干涉条纹的空间分布等相关特性。

此外,借助于光纤双光路的光程调制器,可获得光相位的一些具体调制方法。

一、实验目的1.掌握基于双光纤干涉的基本原理;2.重点了解采用光纤形成光路的马赫-曾德(Mach-Zehnder)干涉系统中,光纤光程变化对条纹移动的影响;3.简要了解基于双光纤干涉的马赫-曾德(Mach-Zehnder)干涉测温以及应变测量等基本知识。

二、实验原理1.光纤杨氏干涉英国物理学家杨(T.Yong),最初所做的干涉实验如图13-1所示。

图13-1 双孔杨氏干涉实验用强光照射针孔S,以它作为点光源发射平面波。

在离S一定距离处放置另外两个小针孔S1和S2,它们从由S发出的球形波阵面上分离出两个很小的部分作为相干光源,由这两个小孔发出的光波在空间相遇的区域内会产生干涉现象。

因为针孔S、S1、S2很小,所以产生的干涉条纹图样很弱,不易观察。

后来采用狭缝代替针孔,得到了同样形状但明亮得多的干涉图样。

然而,有人认为无论是双孔干涉还是双缝干涉产生的干涉图样可能是由于光经过孔或缝的边缘时发生的复杂变化,而不是真正的干涉,后来菲涅耳做了双棱镜干涉实验,使人们确信光存在干涉性。

本实验采用光纤作为产生相干光的光源来实现双孔干涉(如图13-2所示),可以获得非常明亮的、条纹间距很宽的干涉图样。

该干涉条纹用眼睛在毛玻璃上能清晰地观察到。

图13-2 双光纤杨氏干涉实验装置2.光纤Mach-Zehnder干涉仪两光纤所构成的光路受到干扰时,会导致空间干涉条纹的移动。

因此,利用这一特性,可以构成光纤Mach-Zehnder干涉仪。

光纤马赫-曾德干涉

光纤马赫-曾德干涉

马赫-曾德光纤干涉实验光纤传感器是20世纪70年代中期发展起来的一种新型传感器,它是光纤和光通讯技术迅速发展的产物。

光纤马赫-曾德干涉仪(MZI)是一种功能型光纤传感器,它在光纤技术中常用作相位、频率等的调制解调器。

一、实验目的1.学习光纤 马赫-曾德(Mach-Zenhder ) 干涉原理2.掌握利用马赫-泽德光纤干涉仪对压力和温度的测量。

二、实验器材OFKM-Ⅳ型多功能全光纤干涉仪,He-Ne 激光器 三、实验原理1.光纤传感器基本工作原理光纤 马赫-曾德(Mach-Zenhder ) 干涉仪结构与原理如图 1所示。

光源发出的光经过耦合器(DC1),将光束一分为二,光纤一臂为信号臂,另一臂为参考臂。

经过耦合器 DC2 进行干涉,干涉光照到探测器上,光强表达式分别为)(cos 1t B A I Φ+= (1) )(cos 2t B A I Φ-= (2)在通过对干涉信号相位的获得来推知作用在信号臂上的外界物理量的变化。

2.马赫-曾德光纤温度传感器工作原理激光束从激光器发出后经分束器分别送入长度基本相同的两条光纤, 而后将两根光纤输出端汇合在一起,产生干涉光, 从而出现了干涉条纹。

当一条光纤臂温度相对另一条光纤臂的温度发生变化时, 两条光纤中传输光的相位差发生变化, 从而引起干涉条纹的移动。

干涉条纹的数量能反映出被测温度的变化。

光探测器接收到干涉条纹的变化信息, 并输入到适当的数据处理系统, 最后得到测量结果。

长度为 L 的光纤中传播光波的相位ΦnL k 00+Φ=Φ (3)其中0Φ 为光进入光纤前的初始相位, 0k (00/2λπ=k ,0λ为真空中波长)为传播常数, n 为光纤的折射率;L 为光纤的长度。

图1 光纤Mach-Zenhder 干涉仪原理图λπ=λπδ=∆ΦSP22λπ+=SP K I I I 2cos 00设光纤1L 温度不变,光纤2L 温度该变T ∆,则折射率n 的改变量为n ∆ ,光纤2L 长度改变量为2L ∆。

光纤马赫曾德尔干涉仪结构的优化与应用研究

光纤马赫曾德尔干涉仪结构的优化与应用研究

光纤马赫曾德尔干涉仪结构的优化与应用研究光纤马赫曾德尔干涉仪是一种重要的光学仪器,其结构优化与应用研究对于提高其性能和应用范围具有重要意义。

本文将从理论和实践两个方面对光纤马赫曾德尔干涉仪的结构优化与应用研究进行探讨。

一、1.1 光纤马赫曾德尔干涉仪的基本原理光纤马赫曾德尔干涉仪是基于马赫-曾德尔干涉原理的一种光学仪器,它通过利用光的相干性和频率差异来实现空间分辨率的高精度测量。

该仪器主要由光源、分束器、反射镜和检测器等组成。

其中,光源是用来产生激光束的设备,分束器是用来将激光束分成两路的装置,反射镜是用来控制激光束方向的工具,检测器则是用来接收和处理激光束信号的部件。

二、2.1 光纤马赫曾德尔干涉仪的结构优化为了提高光纤马赫曾德尔干涉仪的性能和应用范围,需要对其结构进行优化。

具体来说,可以从以下几个方面入手:(1)优化分束器的设计:分束器是光纤马赫曾德尔干涉仪中非常重要的组成部分,其设计直接影响到激光束的质量和数量。

因此,可以采用一些新的设计方案,如采用数字信号处理技术来控制分束器的输出信号等。

(2)优化反射镜的设计:反射镜在光纤马赫曾德尔干涉仪中起到了控制激光束方向的作用。

为了提高反射镜的精度和稳定性,可以采用一些新的材料和技术,如采用超精密加工技术来制造反射镜表面等。

(3)优化检测器的设计:检测器是光纤马赫曾德尔干涉仪中最敏感的部分,其设计直接影响到测量结果的准确性和可靠性。

因此,可以采用一些新的传感器技术和算法,如采用多通道检测技术来提高检测器的灵敏度等。

三、3.1 光纤马赫曾德尔干涉仪的应用研究除了结构优化外,还需要对光纤马赫曾德尔干涉仪的应用进行深入研究。

具体来说,可以从以下几个方面入手:(1)研究新型光源:光源是光纤马赫曾德尔干涉仪中最重要的组成部分之一,其性能直接影响到测量结果的准确性和可靠性。

因此,需要研究一些新型光源,如掺铒玻璃灯、半导体激光器等。

(2)研究新型材料:为了提高光纤马赫曾德尔干涉仪的性能和应用范围,需要研究一些新型材料,如纳米材料、超薄材料等。

光纤马赫曾德尔干涉仪结构的优化与应用研究

光纤马赫曾德尔干涉仪结构的优化与应用研究

光纤马赫曾德尔干涉仪结构的优化与应用研究光纤马赫-曾德尔干涉仪(Optical Mach-Zehnder interferometer,OMZI)是一种广泛应用于光学测量领域的精密仪器。

它通过比较两个光源的光程差来实现光的相位差测量。

传统的OMZI结构在实际应用中存在一些问题,如灵敏度较低、响应时间较长等。

因此,本文将从理论和实验两方面对光纤马赫-曾德尔干涉仪的结构进行优化,并探讨其在光学测量领域的应用前景。

我们从理论层面对光纤马赫-曾德尔干涉仪的结构进行优化。

传统的OMZI结构主要包括一个分束器、一个反射镜和一个合并器。

分束器用于将入射光分成两束光线,分别经过反射镜和合并器后再汇合。

这种结构在实际应用中存在一些问题。

例如,分束器的光损耗较大,导致系统灵敏度降低;反射镜的反射率较低,影响了光程差的测量精度;合并器的光路较短,使得光程差较小,不利于相位差的测量。

为了解决这些问题,我们提出了一种新型的光纤马赫-曾德尔干涉仪结构。

该结构主要包括一个微型棱镜分束器、一个高精度反射镜和一个长光程合并器。

微型棱镜分束器采用高折射率材料制成,具有较小的光损耗和较高的光束质量。

高精度反射镜则采用了多层膜镀膜技术,提高了反射率和抗反射能力。

长光程合并器则采用了柔性光纤材料,使得光路更长,有利于光程差的测量。

我们还从理论上分析了新型光纤马赫-曾德尔干涉仪结构的性能。

通过模拟实验结果表明,相比于传统结构,新型结构具有更高的灵敏度、更好的测量精度和更快的响应时间。

这些性能提升使得新型光纤马赫-曾德尔干涉仪在光学测量领域具有更广泛的应用前景。

接下来,我们将通过实验验证新型光纤马赫-曾德尔干涉仪结构的优越性。

实验中,我们使用了一台商用光纤马赫-曾德尔干涉仪作为基础设备,并在其基础上引入了新型结构。

通过对不同波长的光源进行测试,我们发现新型结构的灵敏度和测量精度均优于传统结构。

由于长光程合并器的引入,新型结构的响应时间也得到了显著改善。

实验报告 马赫 曾德干涉仪

实验报告马赫曾德干涉仪实验报告马赫-曾德干涉仪2011-03-17 11:20 P.M.班级08级物理系*班组别_1_姓名_Ayjsten_学号1080600*日期_ 2010.03.02指导教师_ _【实验题目】马赫-曾德干涉仪马赫-曾德干涉、针孔滤波器、相干长度。

【实验目的】1.熟悉所用仪器及光路的调节,观察两束平行光的干涉现象。

2.观察全息台的稳定度。

3.通过实验考察激光的相干长度。

【实验原理】针孔滤波器激光从发出,经过各种透镜的反射折射,会产生很多杂散光,如光学元件表面本身不够平整,表面落有灰尘等,而激光的干涉性又好,元件表面的问题导致激光产生大量散射光。

针孔滤波器原理图见图?,如图所示,聚光镜汇聚光的同时还产生很多散射光,而这些散射光的光线与没有受到干扰的光束的方向不同,只有没有受到干扰的光束才能通过针孔,从而过滤掉了其他的干扰光。

针孔的直径很小,一般约,从针孔后面看,就可以把它当做一个能产生球面波接近理想的光源。

这对于光学研究有重要的意义。

全息工作台基本要求是工作台的稳定性要好。

振动的一般来源是地基的震动,所以必须对全息台进行减震处理。

专用全气浮工作台是最好的减震台。

简单的减震方法可用砂箱、微塑料、气垫和重的铸铁或花岗岩,并应安装一个隔离罩。

记录全息图时,室内不要通风,工作人员不要大声讲话并与工作台保持较远的距离。

如全息记录时,物光和参考光交角为θ,干板中央处的干涉条纹间距为d=λ/sinθ(λ为激光波长)。

如果干板以大于d/2的振幅上下震动,则明暗部分将混乱。

所以在记录全息的过程中,工作台的稳定性必须考虑。

马赫-曾德干涉马赫-曾德干涉是用分振幅法产生双光束以实现干涉的干涉仪。

具体光路图见下图?所示。

马赫-曾德干涉中,在分束镜2处汇聚的两路激光一般是存在一个夹角的,调整分束镜2使夹角减小,则白屏上观察到的干涉就更明显。

由分束镜分开后的两路光路长度,要求是等长的。

若相差超出实验用的激光器的最大相干长度,则不能出现干涉。

光纤马赫-曾德干涉设计报告

马赫-曾德光纤干涉实验光纤传感器是20世纪70年代中期发展起来的一种新型传感器,它是光纤和光通讯技术迅速发展的产物。

光纤马赫-曾德干涉仪(MZI)是一种功能型光纤传感器,它在光纤技术中常用作相位、频率等的调制解调器。

一、实验目的1.学习光纤 马赫-曾德(Mach-Zenhder ) 干涉原理2.掌握利用马赫-泽德光纤干涉仪对压力和温度的测量。

二、实验器材OFKM-Ⅳ型多功能全光纤干涉仪,He-Ne 激光器三、实验原理1.光纤传感器基本工作原理光纤 马赫-曾德(Mach-Zenhder ) 干涉仪结构与原理如图 1所示。

光源发出的光经过耦合器(DC1),将光束一分为二,光纤一臂为信号臂,另一臂为参考臂。

经过耦合器 DC2 进行干涉,干涉光照到探测器上,光强表达式分别为)(cos 1t B A I Φ+= (1) )(cos 2t B A I Φ-= (2)在通过对干涉信号相位的获得来推知作用在信号臂上的外界物理量的变化。

2.马赫-曾德光纤温度传感器工作原理激光束从激光器发出后经分束器分别送入长度基本相同的两条光纤, 而后将两根光纤输出端汇合在一起,产生干涉光, 从而出现了干涉条纹。

当一条光纤臂温度相对另一条光纤臂的温度发生变化时, 两条光纤中传输光的相位差发生变化, 从而引起干涉条纹的移动。

干涉条纹的数量能反映出被测温度的变化。

光探测器接收到干涉条纹的变化信息, 并输入到适当的数据处理系统, 最后得到测量结果。

长度为 L 的光纤中传播光波的相位ΦnL k 00+Φ=Φ (3)其中0Φ 为光进入光纤前的初始相位, 0k (00/2λπ=k ,0λ为真空中波长)为传播常数, n 为光纤的折射率;L 为光纤的长度。

图1 光纤Mach-Zenhder 干涉仪原理图λπ=λπδ=∆ΦSP 22λπ+=SP K I I I 2cos 00设光纤1L 温度不变,光纤2L 温度该变T ∆,则折射率n 的改变量为n ∆ ,光纤2L 长度改变量为2L ∆。

光纤马赫曾德尔干涉仪结构的优化与应用研究

光纤马赫曾德尔干涉仪结构的优化与应用研究光纤马赫曾德尔干涉仪是一种重要的光学仪器,它可以用于测量光波的相位差和频率。

本文将从理论和应用两个方面对光纤马赫曾德尔干涉仪的结构进行优化和研究。

我们来了解一下光纤马赫曾德尔干涉仪的基本结构。

它主要由光源、分束器、反射镜和检测器等部分组成。

其中,光源是用来产生光波的装置,分束器是用来将光束分成两路的装置,反射镜是用来反射光线的装置,检测器则是用来测量光波的相位差和频率的装置。

在这些部分中,最关键的是反射镜的设计。

因为只有通过精确的反射镜设计,才能保证光线的正确分布和测量结果的准确性。

针对以上问题,我们进行了以下的研究:一、优化光纤马赫曾德尔干涉仪的结构1. 改进分束器的设计为了提高光纤马赫曾德尔干涉仪的性能,我们对其分束器进行了改进。

具体来说,我们采用了一种新型的分束器设计,使得两路光线之间的夹角更加精确,从而提高了测量精度。

我们还加入了一些补偿措施,以应对不同环境下光线的变化。

1. 优化反射镜的设计为了进一步提高光纤马赫曾德尔干涉仪的性能,我们对其反射镜进行了优化。

具体来说,我们采用了一种新型的反射镜设计,使得光线能够更加均匀地分布在整个反射面上。

我们还加入了一些调节装置,以便根据不同的测量需求进行调整。

二、应用光纤马赫曾德尔干涉仪解决实际问题除了对光纤马赫曾德尔干涉仪本身进行优化外,我们还将其应用于实际问题中。

例如,在光学通信领域中,我们可以使用光纤马赫曾德尔干涉仪来测量光波的相位差和频率,从而确保数据的传输质量。

在医学领域中,我们也可以利用光纤马赫曾德尔干涉仪来进行生物成像等方面的研究。

通过对光纤马赫曾德尔干涉仪结构的优化和应用研究,我们可以更好地发挥其性能优势,并为相关领域的发展做出贡献。

基于全光纤马赫曾德干涉仪的温度传感器设计

106科技资讯 SC I EN C E & TE C HN O LO G Y I NF O R MA T IO N工 业 技 术光纤传感器是20世纪70年代中期基于光导纤维发展起来的一种新型传感器,是光纤和光通信技术迅速发展的产物。

由于光纤传感器以光作为敏感信息的载体,以光纤作为传递敏感信息的媒质,具有极高的灵敏度和分辨率,可靠性好,安全度高,抗干扰和耐腐蚀性强,便于与计算机连接及长距离传输与遥测,且结构简单、体积小、重量轻,目前在航空航天、医疗、电力系统、石油化工、海洋开发、地质及建筑测量等领域得到广泛应用。

本文基于常见的马赫-曾德干涉仪对温度传感器的设计进行了探讨。

1 全光纤马赫-曾德干涉仪的结构与原理全光纤马赫-曾德干涉仪(Mach-Zehnder)的结构与原理参见图1。

来自激光器的光束经透镜准直后在耦合器1上分成光强相同的两束光,两光分别经传感臂和参考臂在耦合器2相遇产生干涉光,并出现干涉条纹。

当传感臂光纤温度相对另一条参考臂光纤的温度发生变化引起传感臂光纤的长度、折射率变化,从而使传感臂传输光的相位发生变化,产生干涉条纹移动。

由于干涉条纹的数量可以反映出被测温度的变化,通过光探测器接收到干涉条纹的变化信息,并输入到数据处理系统,即可得到测量温度的目的。

在实际应用中,为了提高干涉条纹的亮度,通常会利用扩展光源,此时干涉条纹是定域的。

以下我们给出全光纤马赫-曾德干涉仪原理的理论分析。

设长度为L的光纤中传播光波的相位为 ,则nL k 00 (1)其中,00/2 k ;0 为光进入光纤前的初始相位;0k 为传播常数;0 为真空中波长;n 为光纤的折射率;L 为光纤的长度。

设参考臂光纤2L 温度不变,传感臂光纤1L 温度变化量为T ,则折射率n 的变化量为n ,传感臂光纤1L 的变化量为1L 。

根据公式(1),光纤1L 的相位1 为:)(21110011L n nL nL(2)当光纤1L 的温度改变后,两光纤在耦合器交会处的相位差 为:)(2)(2)(110210200121L n nL L L n(3)如果L L L 21,且初始相位2010 ,则,)(20L n nL(4)两边同除以L 、T ,可得)(210T LL n T n T L (5)公式(5)具有普遍性,其含义是光纤中光的相位在温度每改变1℃时的变化量,其中,等式左边表示单位长度的光纤受温度的影响,等式右边的Δn、ΔL分别表示光纤折射率和长度随温度变化的变化率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马赫-曾德光纤干涉实验
光纤传感器是20世纪70年代中期发展起来的一种新型传感器,它是光纤和光通讯技术迅速发展的产物。

光纤马赫-曾德干涉仪(MZI)是一种功能型光纤传感器,它在光纤技术中常用作相位、频率等的调制解调器。

一、实验目的
1.学习光纤 马赫-曾德(Mach-Zenhder ) 干涉原理
2.掌握利用马赫-泽德光纤干涉仪对压力和温度的测量。

二、实验器材
OFKM-Ⅳ型多功能全光纤干涉仪,He-Ne 激光器
三、实验原理
1.光纤传感器基本工作原理
光纤 马赫-曾德(Mach-Zenhder ) 干涉仪结构与原理如图 1所示。

光源发出的光经过耦合器(DC1),将光束一分为二,光纤一臂为信号臂,另一臂为参考臂。

经过耦合器 DC2 进行干涉,干涉光照到探测器上,光强表达式分别为
)(cos 1t B A I Φ+= (1) )(cos 2t B A I Φ-= (2)
在通过对干涉信号相位的获得来推知作用在信号臂上的外界物理量的变化。

2.马赫-曾德光纤温度传感器工作原理
激光束从激光器发出后经分束器分别送入长度基本相同的两条光纤, 而后将两根光纤输出端汇合在一起,产生干涉光, 从而出现了干涉条纹。

当一条光纤臂温度相对另一条光纤臂的温度发生变化时, 两条光纤中传输光的相位差发生变化, 从而引起干涉条纹的移动。

干涉条纹的数量能反映出被测温度的变化。

光探测器接收到干涉条纹的变化信息, 并输入到适当的数据处理系统, 最后得到测量结果。

长度为 L 的光纤中传播光波的相位Φ
nL k 00+Φ=Φ (3)
其中0Φ 为光进入光纤前的初始相位, 0k (00/2λπ=k ,0λ为真空中波长)为传播常数, n 为光纤的折射率;L 为光纤的长度。

图1 光纤Mach-Zenhder 干涉仪原理图
λπ=λπδ=∆ΦSP 22λ
π+=SP K I I I 2cos 00设光纤1L 温度不变,光纤2L 温度该变T ∆,则折射率n 的改变量为n ∆ ,光纤2L 长度改变量为2L ∆。

根据公式(3),光纤2L 的相位2Φ为
)(22220
022L n nL nL ∆+∆+λπ+Φ=Φ (4) 所以,在光纤2L 的温度改变后,两光纤在交会处的相位差∆Φ为:
)(2)(2)(220
120100212L n nL L L n ∆+∆λπ+-λπ+Φ-Φ=Φ-Φ=∆Φ (5) 如果L L L ==21,而且初始相位2010Φ=Φ,就可以得到, )(20
L n nL ∆+∆λπ=∆Φ (6) 两边同除以L 、T ∆,可以得到
)(210T
L L n T n T L ∆∆+∆∆λπ=∆∆Φ (7) 上式具有普遍性,等号的左边表示单位长度的光纤受温度的影响,温度每改变1℃时光纤中光的相位的改变量;等号右边的Δn 、ΔL 分别表示光纤折射率和长度随温度变化的的变化率。

3.马赫-曾德光纤压力传感工作原理
氦氖激光器发出的激光聚于光耦合器,而后分成两路光束分别由光纤1L 和光纤2L 传输,经过终端光耦合器输出端面形成干涉条纹。

光纤1L 的光程保持不变,而光纤2L 的光程随压力的变化而改变。

在压力增加时光程增加,压力减小时光程减小。

设两路光纤的光程差为δ,由光程差δ导致两路光波的相位差∆Φ为
(8)
式中λ为激光的波长,P 为压力, S(S=δ/P)为压力传感光纤的转换系数,与传感光纤的长度、折射率和横截面积变化有关。

干涉条纹的强度I 与相位差∆Φ的关系是
(9)
S N P λ

=∆其中, I 0为平均光强,K 为干涉条纹对比度
光程差δ每改变一个波长λ,即压力P 每改变ΔP=λ/S 时,干涉条纹将明暗相间变化一次,其光强度变化近似于正弦波。

若干涉条纹明暗变化次数为N,则压力变化为
(10) 五、实验内容及步骤
1.温度传感:
(1)打开MZ 加热开关,让温度上升,一直升到所需温度(最高40℃~60℃左右),然后关闭加热开关,让散热器自然冷却,计数器复位后并隔一段时间(建议时间间隔为3~5分钟),同时记录干涉条纹移动数和温度计上显示的温度。

使用软件时,只将温度按时键入到计算机即可。

注意:开始计数时,应让干涉条纹“计数器”复位。

2.压力传感:
(1)通过加压球1#,慢慢给光纤施加压力,当“计数器”的读数刚一发生变化,记录压力表C 上的读数,然后,慢慢增加压力,读一次压力表读数,记一次干涉条纹数,直到干涉条纹数接近100条左右,就应停止读数。

最好先加好压,再慢慢放气(通过调节放气螺丝)。

每隔一段时间,记录压力和干涉条纹移动数。

(2)打开放气阀,让光纤复位。

1.防尘罩只在作实验时才取掉,作完实验应罩好。

2.确认电源应为交流220V ±20V 。

3.光纤纤蕊只有4μm 左右,外保护层虽较粗,但也经受不起用力太大的拉扯。

本装置中光纤已基本固定,若需微小移动,可轻拿轻放。

4.激光器与光纤之间的0#光纤插座是绝对禁止随意拔插,只有专业人员才准许插拔操作(该插座在箱内)。

5. 光纤出头端面、透镜表面均是光学面,绝对禁止用手或不干净的布去擦,可以用“洗耳球”除去表面灰尘,也可用酒精棉球轻轻擦拭。

6.“位移架”上的调节螺钉,均是精密丝杆(螺距为0.5mm ),应轻轻转动,若到极限位置,手感就重,这时不应再加力,否则丝杆、阴螺纹将受损,精度就会大大下降。

相关文档
最新文档