函数对称性的三类题型

合集下载

函数的对称问题讲解

函数的对称问题讲解

函数的对称问题讲解一、函数对称性的定义函数的对称性是指函数图像关于某条直线或某个点对称的性质。

函数的对称性可以通过函数自身的性质进行描述和刻画,例如函数在某点的导数可以描述函数图像在该点的切线斜率。

函数的对称性分为轴对称和中心对称两种,轴对称是指函数图像关于某条直线对称,中心对称是指函数图像关于某点对称。

二、函数图像的对称轴和对称中心1.对称轴:如果函数图像关于直线x=a对称,那么对于任意x,都有f(a+x)=f(a-x),即函数在x=a处取得极值。

2.对称中心:如果函数图像关于点(a,b)对称,那么对于任意x,都有f(a+x)+f(a-x)=2b,即函数在x=a处的值等于b。

三、奇函数和偶函数的对称性1.奇函数:如果对于任意x,都有f(-x)=-f(x),则函数f(x)是奇函数。

奇函数的图像关于原点对称。

2.偶函数:如果对于任意x,都有f(-x)=f(x),则函数f(x)是偶函数。

偶函数的图像关于y轴对称。

四、对称性与周期性的关系函数的对称性和周期性之间有一定的联系。

例如,如果函数f(x)是周期为T的周期函数,并且图像关于直线x=a对称,那么对于任意x,都有f(a+x)=f(a-x),即函数在x=a处取得极值。

因此,函数的对称性和周期性是相互联系的。

五、对称性与函数最值的关系函数的对称性和最值之间也有一定的关系。

例如,如果函数f(x)在区间[a,b]上单调递增或递减,并且图像关于直线x=(a+b)/2对称,那么f(x)在(a,b)上的最小值或最大值一定出现在对称轴上。

因此,函数的对称性和最值之间也是相互联系的。

六、对称性在解题中的应用函数的对称性在解题中有着广泛的应用。

例如,在求解函数的极值、最值等问题时,可以利用函数的对称性简化问题;在判断函数的单调性时,可以利用函数的对称性寻找关键点;在解决与周期性相关的问题时,可以利用函数的对称性寻找周期的规律等等。

因此,掌握函数的对称性对于解决数学问题具有重要的意义。

函数的对称性真题答案解析

函数的对称性真题答案解析

函数的对称性真题答案解析在高中数学的学习中,函数的对称性是一个重要的概念。

了解和掌握函数的对称性对于解题和理解函数性质都有很大的帮助。

下面,我们将通过对几道函数对称性的真题进行解析,来深入了解函数对称性的应用和解题技巧。

1. 已知函数f(x)在R上满足f(1-x) = f(x) + 1,求f(0)的值。

首先,我们来分析题目中给出的函数对称性条件,即f(1-x) = f(x) + 1。

这个条件意味着函数关于直线x=1/2对称。

我们可以利用这个对称性进行解题。

假设f(x)的图像在平面直角坐标系上对称于直线x=1/2,那么对于任意x,x和1-x关于直线x=1/2的距离是相等的。

也就是说,对于任意实数x,有|x-1/2|=|1-x-1/2|。

当x=0时,左边的绝对值式子等于1/2,右边的绝对值式子也等于1/2。

所以,f(0)的值与f(1/2)的值是相等的。

进一步推导,我们可以得到f(0) = f(1/2) + 1。

再来看题目中给出的等式f(1-x) = f(x) + 1。

将x替换为1/2,得到f(1/2) = f(1/2) + 1。

这个等式显然是不成立的。

所以,我们可以得出结论,函数f(x)在R上不存在。

通过这道题目的解析,我们可以看到函数的对称性在解题中的应用。

通过观察题目中给出的条件,我们可以得到函数图像的对称轴,进而得到所求的函数值。

这种方法可以解决关于函数对称性的问题,尤其是对称于直线x=a的情况。

2. 已知函数f(x)在[-1,1]上是奇函数,且满足f(x) = f(3x),求f(0)的值。

对于这道题目,我们需要利用函数的对称性以及函数在给定区间上等式的性质来进行解答。

首先,我们来分析题目中给出的条件。

题目中指出函数f(x)在[-1,1]上是奇函数,说明函数关于原点(0,0)对称。

另外,已知f(x) = f(3x),表明函数满足f(x) = f(3x)的等式关系。

结合这两个条件,我们可以得到f(x)在[-1,1]上的对称轴是直线x=0,同时函数满足f(x) = f(3x)的等式关系。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数对称性是数学中的一个重要概念,它描述了函数图像在某些操作下的不变性。

函数对称性有多种形式,包括对称轴对称、点对称和周期性等。

这些对称性不仅仅是数学上的概念,它们在自然界和现实生活中也有广泛的应用。

在这篇文章中,我们将对函数对称性进行详细的总结和讨论。

首先,我们来谈谈对称轴对称性。

对称轴对称是指函数图像以某一直线为轴对称,即对于函数图像上的任意一点P,它关于对称轴上的另一点P'是关于对称轴对称的。

对称轴对称性在直角坐标系中通常体现为对称轴为y轴的情况,此时函数图像关于y轴对称。

也有一些例外,比如平方函数y = x^2关于x轴对称,开方函数y = √x关于y轴对称。

对称轴对称性常见于各种二次函数、三次函数等。

其次,点对称性是另一种常见的函数对称性。

点对称是指函数图像关于某个点对称,即对于函数图像上的任意一点P,它关于对称中心O的另一点P'是关于对称中心对称的。

对于点对称性来说,对称中心可以是任意点,不一定是坐标轴上的点。

点对称性常见于正弦函数、余弦函数等周期函数中。

接下来,我们来看一下周期性对称性。

周期性是指函数具有固定的周期,即对于函数中的任意一点P,在以周期为基准的一段距离内,P点和P'点的函数值相同。

周期函数是常见的具有周期性对称性的函数。

例如正弦函数y = sin(x)、余弦函数y = cos(x)、正切函数y = tan(x)等都具有周期性对称性。

除了以上三种常见的函数对称性,还有一些特殊的对称性值得关注。

例如,奇函数和偶函数是两种特殊的对称性形态。

奇函数是指满足f(-x) = -f(x)的函数,即函数图像关于坐标原点对称。

常见的奇函数有正弦函数和奇次多项式。

偶函数是指满足f(-x) = f(x)的函数,即函数图像关于y轴对称。

常见的偶函数有余弦函数和偶次多项式。

奇函数和偶函数的对称性在函数的定义和求解中有很多实际应用。

最后,函数对称性在数学中起着重要的作用。

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x −=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x −=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x −=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。

例如:()f x 关于1x =轴对称()()2f x f x ⇒=−,或得到()()31f x f x −=−+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=−+,进而可得到:()f x 关于x a =轴对称。

① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=−+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=−+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=−+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。

3、中心对称的等价描述:(1)()()f a x f a x −=−+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x −=−+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x −=−+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。

函数的对称性

函数的对称性

函数的对称性Tomorrow Will Be Better, February 3, 2021函数的对称性一、有关对称性的常用结论1、轴对称1)(x f -=)(x f ⇔函数)(x f y =图象关于y 轴对称;2 函数)(x f y =图象关于a x =对称⇔)()(x a f x a f -=+⇔()(2)f x f a x =- ⇔()(2)f x f a x -=+;3若函数)(x f y =定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的图象关于直线2b a x +=对称; 2、中心对称1)(x f -=-)(x f ⇔函数)(x f y =图象关于原点对称;.2函数)(x f y =图象关于(,0)a 对称⇔)()(x a f x a f --=+⇔()(2)f x f a x =--⇔)2()(x a f x f +=-;3函数)(x f y =图象关于),(b a 成中心对称⇔b x a f x a f 2)()(=++-⇔b x f x a f 2)()2(=+-4若函数)(x f y = 定义域为R ,且满足条件c x b f x a f =-++)()(c b a ,,为常数,则函数)(x f y =的图象关于点)2,2(c b a + 对称; 二、练习题一选择题1. 已知定义域为R 的函数)(x f 在),(∞+8上为减函数,且函数)8(+=x f y 为偶函数,则 A .)7()6(f f > B.)9()6(f f > C.)9()7(f f > D.)10()7(f f >2.设函数)(x f y =定义在实数集R 上,则函数)1(-=x f y 与)1(x f y -=的图象关于 对称;A.直线0=yB.直线0=xC.直线1=yD.直线1=x3.中山市09年高三统考偶函数()()f x x R ∈满足:(4)(1)0f f -==,且在区间[0,3]与),3[+∞上分别递减和递增,则不等式()0xf x <的解集为A .),4()4,(+∞--∞ ;B .)4,1()1,4( --C .)0,1()4,(---∞ ;D .)4,1()0,1()4,( ---∞4. 若函数c bx x x f ++=2)(对一切实数都有)2()2(x f x f -=+,则A. )4()1()2(f f f <<B. )4()2()1(f f f <<C. )1()4()2(f f f <<D. )1()2()4(f f f <<5.函数)(x f y =在)20(,上是增函数,函数)2(+=x f y 是偶函数,则下列结论中正确的是 A. )27()25()1(f f f << B. )25()1()27(f f f << C. )1()25()27(f f f << D. )1()27()25(f f f << 6.设函数3)()(a x x f +=对任意实数x 都有)2()2(x f x f --=+,则=-+)3()3(f fA.-124B. 124C. -567.函数)(x f 的定义域为R ,且满足)()-12(x f x f =,方程0)(=x f 有n 个实数根,这n 个实数根的和为1992,那么n 为A. 996B. 498C. 332D. 1168.设)(x f y =是定义在实数集R 上的函数,且满足)()-(x f x f =与)()-4(x f x f =,若当]2,0[∈x 时,1)(2+-=x x f ,则当]4,6[--∈x 时,=)(x fA.12+-xB.1)2(2+--xC. 1)4(2++-xD. 1)2(2++-x9.2009全国卷函数)(x f 的定义域为R ,若)1(+x f 与)1-(x f 都是奇函数,则A .)(x f 是偶函数B .)(x f 是奇函数C .)2()(+=x f x fD .)3(+x f 是奇函数10.2009·四川高考已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则))25((f f 的值是 A .0 C .111.设)(x f 是定义在实数集R 上的函数,且满足)10()-10(x f x f +=与)20()-20(x f x f +-=,则)(x f 是A. 偶函数,又是周期函数,B. 偶函数,但不是周期函数C. 奇函数,又是周期函数,D. 奇函数,但不是周期函数 二填空题12. 函数)1(+=x f y 为偶函数,则函数)(x f 的图像的对称轴方程为13. 函数)2(-=x f y 为奇函数,则函数)(x f y =的图像的对称中心为 14.09年深圳九校联考已知)(x f 是定义域为R 的奇函数,若当(0,)∈+∞x 时,()lg =f x x ,则满足()0>f x 的x 的取值范围是 .15. 已知函数)(x f y =是R 上的偶函数,对于R x ∈都有)3()()6(f x f x f +=+成立,且2)4(-=-f ,当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .则给出下列命题: ①2)2008(-=f ;②函数)(x f y =图像的一条对称轴为6-=x ;③函数)(x f y =在]6,9[--上为减函数;④方程0)(=x f 在]9,9[-上有4个根. 其中所有正确命题的序号为____ ____.三解答题16. 设1)(2+=x x f ,求)1(+x f 关于直线2=x 对称的曲线方程;17.已知函数)1(+x f 的图象,通过怎样的变换可以得到函数)2(+-x f 的图象;18.已知实系数多项式函数)(x f 满足)3()1(x f x f +=-, 并且方程0)(=x f 有四个根,求这四个根之和;19.设1)(2+=x x f , 若)(x g 的图象与)2(+=x f y 的图象关于点)1,1(对称,求)(x g .参考答案一选择题1~4、DDDA 5~8、BACC9、解: (1)f x +与(1)f x -都是奇函数,(1)(1),(1)(1)f x f x f x f x ∴-+=-+--=--,∴函数()f x 关于点(1,0),及点(1,0)-对称,函数()f x 是周期2[1(1)]4T =--=的周期函数. )3()41()1()1()41()3(+--=+---=---=-=+-=+∴x f x f x f x f x f x f ,)3()3(+-=+-∴x f x f ,即(3)f x +是奇函数;故选D10、解:若x ≠0,则有)(1)1(x f x x x f +=+取21-=x , 则有)21()21()21(21211)121()21(f f f f f -=--=---=+-=由此得0)21(=f 于是0)21(5)21(]21211[35)121(35)23(35)23(23231)123()25(==+=+==+=+=f f f f f f f故选A 11、40102044=-=-=b a T=+-=-=--=-+=+-=-∴)4020()20()]30(10[)]30(10[)40()(x f x f x f x f x f x f )()]10(10[)]10(10[)20()20(x f x f x f x f x f -=---=-+-=--=+所以为奇函数;故选C二填空题12、1=x 13、)0,2(- 14、画出草图可知),1()0,1(+∞-∈ x15、①②③④ 在)3()()6(f x f x f +=+中令3-=x 得0)3(=-f , 0)3()3(=-=∴f f 故)()6(x f x f =+,6=∴T ,2)4()4()46334()2008(-=-==+⨯=f f f f 结合函数草图可知①②③④都正确;三解答题16、解:26102+-=x x y17、解:)()1(1x f y x f y =−−−−→−+=个单位右移)(x f y y -=−−−−→−轴对称关于 )2()]2([2+-=--=−−−−→−x f x f y 个单位右移18、解:在)3()1(x f x f +=-中令t x =-1得)4()(t f t f -=)2()2(t f t f -=+∴)(x f y =∴的对称轴为2=x 设方程0)(=x f 的四个根分别为22112,2,2,2x x x x -+-+,则它们的和为8.19、解:158)(2-+-=x x x g。

函数的对称问题重点

函数的对称问题重点

函数的对称问题湖南彭向阳一、函数的自对称问题1.函数y=f(x的图象关于直线x=a对称f(a+x=f(a-x;特别,函数y=f(x的图象关于y轴对称f(x=f(-x.2.函数y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b;特别,函数y=f(x的图象关于原点对称f(-x=-f(x.主要题型:1.求对称轴(中心:除了三角函数y=sinx,y=cosx的对称轴(中心)可以由下列结论直接写出来(对称轴为函数取得最值时的x=,对称中心为函数与x轴的交点外,其它函数的对称轴(中心就必须求解,求解有两种方法,一是利用对称的定义求解;二是利用图象变换求解.例1 确定函数的图象的对称中心.解析1 设函数的图象的对称中心为(h,k),在图象上任意取一点P (x,y),它关于(h,k)的对称点为Q(2h-x,2k-y),Q点也在图象上,即有,由于,两式相加得,化简得(*).由于P点的任意性,即(*)式对任意x都成立,从而必有x的系数和常数项都为0,即h=1,k=1.所以函数的图象的对称中心为(1,1).解析2 设函数,则g(x为奇函数,其对称中心为原点,由于,说明函数f(x的图象是由g(x的图象分别向右、向上平移1个单位得到,而原点向右、向上分别平移1个单位得到点(1,1.所以函数的图象的对称中心为(1,1).例2 曲线f(x=ax3+bx2+cx,当x=1-时,f(x有极小值;当x=1+时,f(x有极大值,且在x=1处切线的斜率为.(1求f(x;(2曲线上是否存在一点P,使得y=f(x的图象关于点P中心对称?若存在,求出点P的坐标,并给出证明;若不存在,请说明理由.解析 (1=3ax2+2bx+c,由题意知1-与1+是=3ax2+2bx+c=0的根,代入解得b=-3a,c=-6a.又f(x 在x=1处切线的斜率为,所以,即3a+2b+c=,解得. 所以f(x .(2假设存在P(x0,y0,使得f(x的图象关于点P中心对称,则f(x0+x+f(x0-x=2y0,即,化简得. 由于是对任意实数x都成立,所以,而P在曲线y=f(x上.所以曲线上存在点P,使得y=f(x的图象关于点P中心对称.2.证明对称性:证明对称性有三种方法,一是利用定义,二是利用图象变换,三是利用前面的结论(函数y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b来解决.例3 求证函数的图象关于点P(1,3)成中心对称.证明1 在函数的图象上任意取一点A(x,y),它关于点P(1,3)的对称点为B(2-x,6-y),因为,所以点B在函数的图象上,故函数的图象关于点P(1,3)对称.证明2 因为.由于是奇函数,所以的图象关于原点对称,将它的图象分别向右平移1个单位,向上平移3个单位,就得到函数的图象,所以的图象关于点P(1,3)对称.所以的图象关于点P(1,3)对称.3.已知函数的对称性求函数的值或参数的值:由函数的对称性求值,关键是将对称问题转化为等式问题,然后对变量进行赋值求解.例4 已知定义在R上的函数f(x的图象关于点对称,且满足则f(1+f(2+f(3+…+f(2005的值为().A.-2 B.-1 C.0 D.1解析由f(x的图象关于点对称,则说明函数是奇函数,也就是有,即,又,所以,即,函数f(x是偶函数.所以,又,即f(x以3为周期,f(2=f(-1=1,f(3=f(0=-2,所以f(1+f(2+f(3+…+f(2005=668(f(1+f(2+f(3)+f(2005=f(2005=f(1=1,选D.例5 已知函数f(x=的图象关于点中心对称,求f(x.解析1 设f(x图象上任意一点A(x,y),它关于点的对称点为B,由于A、B都在f(x上,所以,相加整理得,解得a=1.所以f(x=.解析2 由上面的公式有,代入化简整理得a=1.解析3 由题意知将函数y=f(x的图象向左平移1个单位长度,向下平移个单位长度得y=的图象,它关于原点对称,即是奇函数,=,即y=,它是奇函数必须常数项为0,即a=1.二、函数的互对称问题1. y=f(x与y=g(x的图象关于直线x=a对称f(a+x=g(a-x;2. y=f(x与y=g(x的图象关于直线y=b对称f(x+g(x=2b;3. y=f(x与y=g(x的图象关于点(a,b对称f(a+x+g(a-x=2b.4. y=f(x与y=g(x的图象关于直线y=x对称f(x和g(x互为反函数.记住这些结论不仅仅便于解决选择填空题,也便于解答题中的图象互相对称的函数解析式的求解问题. 主要题型:1.判断两个函数图象的对称关系例6 在同一平面直角坐标系中,函数f(x=2x+1与g(x=21-x的图象关于( .A.直线x=1对称 B.x轴对称C.y轴对称D.直线y=x对称解析作为一个选择题,可以取特殊点验证法,在f(x上取点(1,4,g(x上点(-1,4,而这两个点关于y轴对称,所以选择C.当然也可利用上面的结论解决,因为f(-x=2-x+1=g(x,所以f(x、g(x的图象关于y轴对称,选C.2.证明两个函数图象的对称性:一般利用对称的定义,先证明前一个函数图象上任意一点关于直线(点的对称点在后一个函数的图象上,再证明后一个函数图象上任意一点关于直线(点的对称点也在前一个函数的图象上,这两个步骤不能少. 当然也可利用上面的结论来解决.例7 已知函数f(x=x3-x,将y=f(x的图象沿x轴、y轴正向分别平行移动t、s单位,得到函数y=g(x的图象.求证:f(x和g(x的图象关于点A()对称.解析由已知得g(x=(x-t3-(x-t+s.在y=f(x的图象上任取一点P(x1,y1,设Q(x2,y2是P关于点A的对称点,则有,∴x1=t-x2, y1=s-y2.代入y=f(x,得x2和y2满足方程: s-y2=(t-x23-(t-x2,即 y2=(x2-t3-(x2-t+s,可知点Q(x2,y2在y=g(x的图象上.反过来,同样可以证明,在y=g(x的图象上的点关于点A的对称点也在y=f(x的图象上,因此,f(x和g(x的图象关于点A()对称.3.由两个函数图象的对称性求参数值:首先必须根据对称性由已知函数求出另一函数的解析式,然后再由已知条件确定参数的值.例8 已知f(x是定义在上的偶函数,g(x的图象与f(x的图象关于直线x=1对称,且当时,g(x=2a(x-2-3(x-23,其中为常数,若f(x的最大值为12,求a的值.解析由于g(x的图象与f(x的图象关于直线x=1对称,所以f(1+x=g(1-x,即f(x=g(2-x.当时,,所以f(x=g(2-x= 2a(2-x-2-3(2-x-23=-2ax+3x3,因为f(x是偶函数,所以当时,,f(x=f(-x=2ax-3x3.因为当时,=-2a+9x2≤-2a+9<0,所以f(x在上是减函数,从而f(x 在上是增函数,所以f(x的最大值为f(1=f(-1=2a-3=12,即.。

函数的对称练习题

函数的对称练习题

函数的对称练习题函数的对称性是数学中一个重要的概念,它可以帮助我们简化问题的分析和解决。

在这篇文章中,我们将介绍一些函数的对称练习题,旨在帮助读者更好地理解和应用函数的对称性。

一、关于函数的对称性首先,我们来回顾一下函数的对称性的概念。

在数学中,当函数在某种变换下保持不变时,我们称该函数具有对称性。

常见的函数对称性包括奇函数和偶函数。

1. 奇函数奇函数是指满足f(-x) = -f(x)的函数。

换句话说,当自变量x取相反数时,函数值也取相反数。

在坐标系中,奇函数关于原点对称,即左右对称。

例如,f(x) = x^3是一个奇函数。

2. 偶函数偶函数是指满足f(-x) = f(x)的函数。

换句话说,当自变量x取相反数时,函数值保持不变。

在坐标系中,偶函数关于y轴对称,即左右对称。

例如,f(x) = x^2是一个偶函数。

二、对称练习题有了对函数对称性的了解,我们现在来看一些具体的对称练习题。

1. 给定函数f(x) = sin(x),判断它的对称性。

解析:我们发现当自变量x取相反数时,sin(x)的函数值也取相反数,即f(-x) = -sin(x)。

所以,函数f(x)是一个奇函数。

2. 给定函数f(x) = e^x + e^(-x),判断它的对称性。

解析:我们发现当自变量x取相反数时,e^x + e^(-x)的函数值保持不变,即f(-x) = e^(-x) + e^x。

所以,函数f(x)是一个偶函数。

3. 给定函数f(x) = x^2 + 3x + 2,判断它的对称性。

解析:我们发现当自变量x取相反数时,x^2 + 3x + 2的函数值并不保持不变,即f(-x) = (-x)^2 + 3(-x) + 2 = x^2 - 3x + 2。

所以,函数f(x)既不是奇函数也不是偶函数,它没有对称性。

通过上述的对称练习题,我们可以看出对称性是由函数的定义所决定的,通过对函数的表达式进行变换和计算,我们可以判断一个函数是奇函数、偶函数还是既不是奇函数也不是偶函数。

函数的周期性、对称性(解析版)

函数的周期性、对称性(解析版)

函数的周期性、对称性一、单选题1.(2023·全国·高三专题练习)已知函数f x =x -e 2+ln ex e -x ,若f e 2020 +f 2e2020+⋅⋅⋅+f 2018e 2020 +f 2019e 2020 =20192a +b ,其中b >0,则12a+a b 的最小值为()A.34B.54C.2D.22【答案】A【解析】因为f x =x -e 2+ln exe -x,所以f x +f e -x =x -e 2+ln ex e -x +(e -x )-e2+ln e (e -x )e -(e -x )=lnex e -x +ln e (e -x )x =ln exe -x ⋅e (e -x )x=ln e 2=2,令S =f e 2020 +f 2e 2020 +⋅⋅⋅+f 2018e 2020 +f 2019e2020 则2S =f e 2020 +f 2019e 2020 +f 2e 2020 +f 2018e 2020 +⋅⋅⋅+f 2019e 2020 +f e2020 =2×2019所以S =2019所以20192a +b =2019,所以a +b =2,其中b >0,则a =2-b .当a >0时12|a |+|a |b =12a +2-b b =12a +2b -1=12a +2b ⋅(a +b )2-1=1252+b 2a +2a b-1≥1252+2b 2a ⋅2a b -1=54当且仅当b 2a =2a b, 即 a =23,b =43 时等号成立;当a <0时 12|a |+|a |b =1-2a +-a b =1-2a +b -2b =1-2a +-2b +1=121-2a +-2b ⋅(a +b )+1=12-52+b -2a +-2ab +1≥12-52+2b -2a ⋅-2a b +1=34,当且仅当 b -2a =-2a b, 即 a =-2,b =4 时等号成立;因为34<54,所以12|a |+|a |b 的最小值为34.故选:A .2.(2023春·重庆·高三统考阶段练习)已知函数f (x )=ln x 2+1-x +1,正实数a ,b 满足f (2a )+f (b -4)=2,则4b a +a2ab +b 2的最小值为( )A.1B.2C.4D.658【答案】B【解析】f x +f -x =ln x 2+1-x +1+ln x 2+1+x +1=2,故函数f x 关于0,1 对称,又f x 在R 上严格递增;f (2a )+f (b -4)=2,∴2a +b -4=0即2a +b =4.4b a +a 2ab +b 2=4b a +a b 2a +b =4b a +a4b ≥24b a ⋅a 4b=2.当且仅当a =169,b =49时取得.故选:B .3.(2023·全国·高三专题练习)已知函数f x 的定义域为R ,f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈0,1 时,f x =ax +b .若f 4 =1,则3i =1f i +12=( )A.12B.0C.-12D.-1【答案】C【解析】因为f 2x +2 为偶函数,所以f -2x +2 =f 2x +2 ,用12x +12代替x 得:f -x +1 =f x +3 ,因为f x +1 为奇函数,所以f -x +1 =-f x +1 ,故f x +3 =-f x +1 ①,用x +2代替x 得:f x +5 =-f x +3 ②,由①② 得:f x +5 =f x +1 ,所以函数f x 的周期T =4,所以f 4 =f 0 =1,即b =1,因为f -x +1 =-f x +1 ,令x =0得:f 1 =-f 1 ,故f 1 =0,f 1 =a +b =0,解得:a =-1,所以x ∈0,1 时,f x =-x +1,因为f -x +1 =-f x +1 ,令x =12,得f 12 =-f 32 ,其中f 12 =-12+1=12,所以f 32 =-12,因为f -2x +2 =f 2x +2 ,令x =14得:f -2×14+2 =f 2×14+2 ,即f 32 =f 52 =-12,因为T=4,所以f 72 =f72-4=f-12,因为f-x+1=-f x+1,令x=32得:f-12=-f52 =12,故f 72 =12,3 i=1fi+12=f32 +f52 +f72 =-12-12+12=-12.故选:C4.(2023·四川资阳·统考模拟预测)已知函数f x 的定义域为R,f x-2为偶函数,f x-2+f-x=0,当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4.则13k=1f k=( )A.16B.20C.24D.28【答案】C【解析】因为f x-2是偶函数,所以f-x-2=f(x-2),所以f(x)=f(-x-4),所以函数f(x)关于直线x=-2对称,又因为f x-2+f-x=0,所以-f x-2=f-x,所以f(x)=-f(-x-2),所以f(x)关于点(-1,0)中心对称,由f(x)=f(-x-4)及f(x)=-f(-x-2)得f(-x-4)=-f(-x-2)所以f(-x-4)=-f(-x-2)=f(-x)所以函数f(x)的周期为4,因为当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4,所以4=1a-2+2a-4,解得:a=2或a=-4,因为a>0且a≠1,所以a=2.所以当x∈-2,-1时,f x =12x-2x-4,所以f(-2)=4,f(-1)=0,f(-3)=f(-1)=0,f(0)=-f(-2)=-4,f(1)=f(1-4)=f(-3)=0,f(2)=f(-2)=4,f(3)=f(-1)=0,f(4)=f(0)=-4,所以f(1)+f(2)+f(3)+f(4)=8,所以13k=1f k=f(1)+3×8=24,故选:C.5.(2023·全国·高三专题练习)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =( )A.-21B.-22C.-23D.-24【答案】D【解析】因为y =g (x )的图像关于直线x =2对称,所以g 2-x =g x +2 ,因为g (x )-f (x -4)=7,所以g (x +2)-f (x -2)=7,即g (x +2)=7+f (x -2),因为f (x )+g (2-x )=5,所以f (x )+g (x +2)=5,代入得f (x )+7+f (x -2) =5,即f (x )+f (x -2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D6.(2023·全国·高三专题练习)设函数f x =x 3+ax 2+bx +2a ,b ∈R ,若f 2+x +f 2-x =8,则下列不等式正确的是( )A.f e +f 32>8 B.f e +f 2-3 >8C.f ln7 +f 2+3 >8 D.f ln5 +f 3ln2 <8【答案】C【解析】由题(2+x )3+a (2+x )2+b (2+x )+2+(2-x )3+a (2-x )2+b (2-x )+2=8,化简整理得(6+a )x 2+2(2a +b +3)=0,于是6+a =0,2a +b +3=0⇒a =-6,b =9,所以f (x )=x 3-6x 2+9x +2,进而f (x )=3x 2-12x +9=3(x -1)(x -3),据此,f (x )在(-∞,1),(3,+∞)上单调递增,f (x )在(1,3)上单调递减,因为f (2+x )+f (2-x )=8,即f (x )+f (4-x )=8.对于A ,由f (e )+f (4-e )=8,又1<4-e <32<3,所以f (4-e )>f 32,即f (e )+f 32<8,故A 错误;对于B ,f (2-3)=(2-3)3-6(2-3)2+9(2-3)+2=4,因为1<2<e<3,所以f(2)>f(e),而f(2)=23-6×22+9×2+2=4,所以f(e)+f(2-3)<8,故B错误;对于C,f(2+3)=(2+3)3-6(2+3)2+9(2+3)+2=4,而1<ln7<2,所以f(ln7)>f(2)=4,所以f(ln7)+f(2+3)>8,故C正确;对于D,由f(ln5)+f(4-ln5)=8,因为1<3ln2<4-ln5<3,所以f(3ln2)>f(4-ln5),所以f(ln5)+f(3ln2)>8,故D错误.故选:C.7.(2023·全国·高三专题练习)定义在R上的奇函数f x 满足f2-x=f x ,且在0,1上单调递减,若方程f x =-1在0,1上所有实根之和是( )上有实数根,则方程f x =1在区间-1,11A.30B.14C.12D.6【答案】A【解析】由f2-x=f x 知函数f x 的图象关于直线x=1对称,∵f2-x=f x ,f x 是R上的奇函数,∴f-x=f x+2=-f x ,∴f x+4=f x ,∴f x 的周期为4,考虑f x 的一个周期,例如-1,3,由f x 在0,1上是增函数,上是减函数知f x 在1,2f x 在-1,0上是减函数,f x 在2,3上是增函数,对于奇函数f x 有f0 =0,f2 =f2-2=f0 =0,故当x∈0,1时,f x <f2 =0,时,f x <f0 =0,当x∈1,2当x∈-1,0时,f x >f0 =0,当x∈2,3时,f x >f2 =0,方程f x =-1在0,1上有实数根,则这实数根是唯一的,因为f x 在0,1上是单调函数,则由于f2-x上有唯一实数,=f x ,故方程f x =-1在1,2在-1,0上f x >0,和2,3则方程f x =-1在-1,0上没有实数根,和2,3从而方程f x =-1在一个周期内有且仅有两个实数根,当x∈-1,3,方程f x =-1的两实数根之和为x+2-x=2,当x∈-1,11,方程f x =-1的所有6个实数根之和为x+2-x+4+x+4+2-x+x+8+2-x+8=2+8+2+8+2+8=30.故选:A.8.(2023·全国·高三专题练习)对于三次函数f x =ax3+bx2+cx+d a≠0,给出定义:设f'x 是函数y=f x 的导数,f″x 是f'x 的导数,若方程f″x =0有实数解x0,则称点x0,f x0为函数y =f x 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =13x3-12x2+3x-512,则g12019+g22019+⋯+g20182019=( )A.2016B.2017C.2018D.2019【答案】C【解析】函数g x =13x3-12x2+3x-512,函数的导数g'x =x2-x+3,g'x =2x-1,由g'x0=0得2x0-1=0,解得x0=12,而g12 =1,故函数g x 关于点12,1对称,∴g x +g1-x=2,故设g12019+g22019+...+g20182019=m,则g20182019+g20172019+...+g12019=m,两式相加得2×2018=2m,则m=2018,故选C.9.(2023春·云南曲靖·高三曲靖一中校考阶段练习)定义在R上的函数f x 满足f-x+f x =0 ,f x =f2-x,且当x∈0,1时,f x =x2.则函数y=7f x -x+2的所有零点之和为( ) A.7 B.14 C.21 D.28【答案】B【解析】依题意,f x 是奇函数.又由f x =f2-x知,f x 的图像关于x=1对称.f x+4=f1+x+3=f1-x+3=f-2-x=-f2+x=-f2--x=-f-x=f x ,所以f x 是周期为4的周期函数.f2+x=f1+1+x=f1-1+x=f-x=-f x =-f2-x,所以f x 关于点2,0对称.由于y=7f x -x+2=0⇔f x =x-2 7从而函数y=7f x -x+2的所有零点之和即为函数f x 与g x =x-27的图像的交点的横坐标之和.而函数g x =x-27的图像也关于点2,0对称.画出y=f x ,g x =x-27的图象如图所示.由图可知,共有7个交点,所以函数y=7f x -x+2所有零点和为7×2=14.故选:B10.(2023·全国·高三专题练习)已知定义在R上的可导函数f x 的导函数为f (x),满足f (x)<f(x)且f x+3为偶函数,f(x+1)为奇函数,若f(9)+f(8)=1,则不等式f x <e x的解集为( )A.-3,+∞B.1,+∞C.(0,+∞)D.6,+∞【答案】C【解析】因为f x+3为偶函数,f(x+1)为奇函数,所以f x+3=f-x+3,f(x+1)+f(-x+1)=0.所以f x =f-x+6,f(x)+f(-x+2)=0,所以f(-x+6)+f(-x+2)=0.令t=-x+2,则f(t+4)+f(t)=0.令上式中t取t-4,则f(t)+f(t-4)=0,所以f(t+4)=f(t-4).令t取t+4,则f(t)=f(t+8),所以f(x)=f(x+8).所以f x 为周期为8的周期函数.因为f(x+1)为奇函数,所以f(x+1)+f(-x+1)=0,令x=0,得:f(1)+f(1)=0,所以f(1)=0,所以f(9)+f(8)=1,即为f(1)+f(0)=1,所以f(0)=1.记g x =f xe x,所以gx =f x -f xe x.因为f (x)<f(x),所以g x <0,所以g x =f xe x在R上单调递减.不等式f x <e x可化为f xe x<1,即为g x <g0 .所以x>0.故选:C11.(2023·全国·高三专题练习)设函数f x 的定义域为R,f x+1为奇函数,f x+2为偶函数,当x∈1,2时,f(x)=ax2+b.若f0 +f3 =6,则f 92 =( )A.-94B.-32C.74D.52【答案】D【解析】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92 =f 52+2 =f -52+2 =f -12 f -12 =f -32+1 =-f 32+1 =-f 52-f 52 =-f 12+2 =-f -12+2 =-f 32所以f 92 =-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .二、多选题12.(2023春·云南·高三云南师大附中校考阶段练习)已知定义域为R 的函数f x 在-1,0 上单调递增,f 2+x =f 2-x ,且图象关于3,0 对称,则f x ( )A.周期T =4B.在0,2 单调递减C.满足f 2021 <f 2022 <f 2023D.在0,2023 上可能有1012个零点【答案】ABD【解析】A 选项:由f (2+x )=f (2-x )知f (x )的对称轴为x =2,且f (4+x )=f (-x ),又图象关于3,0 对称,即f (3+x )=-f (3-x ),故f (6+x )=-f (-x ),所以-f (4+x )=f (6+x ),即-f (x )=f (2+x ),所以f (x )=f (x +4),f (x )的周期为4,正确;B 选项:因为f (x )在-1,0 上单调递增,T =4,所以f (x )在3,4 上单调递增,又图象关于3,0 对称,所以f (x )在2,3 上单调递增,因为关于x =2对称,所以f (x )在1,2 上单调递减,f (1)=f (3)=0,故f (x )在0,2 单调递减,B 正确;C 选项:根据周期性,f (2021)=f (1),f (2022)=f (2),f (2023)=f (3),因为f (x )关于x =2对称,所以f (1)=f (3)=0,f (2)<f (1),故f (2022)<f (2021)=f (2023),错误;D 选项:在0,4 上,f (1)=f (3)=0,f (x )有2个零点,所以f (x )在0,2020 上有1010个零点,在2020,2023 上有2个零点,故f (x )在0,2023 上可能有1012个零点,正确,故选:ABD .13.(2023春·广东广州·高三统考阶段练习)已知函数f x 、g x 的定义域均为R ,f x 为偶函数,且f x +g 2-x =1,g x -f x -4 =3,下列说法正确的有( )A.函数g x 的图象关于x =1对称 B.函数f x 的图象关于-1,-1 对称C.函数f x 是以4为周期的周期函数 D.函数g x 是以6为周期的周期函数【答案】BC【解析】对于A 选项,因为f x 为偶函数,所以f -x =f x .由f x +g 2-x =1,可得f -x +g 2+x =1,可得g 2+x =g 2-x ,所以,函数g x 的图象关于直线x =2对称,A 错;对于B 选项,因为g x -f x -4 =3,则g 2-x -f -2-x =3,又因为f x +g 2-x =1,可得f x +f -2-x =-2,所以,函数f x 的图象关于点-1,-1 对称,B 对;对于C 选项,因为函数f x 为偶函数,且f x +f -2-x =-2,则f x +f x +2 =-2,从而f x +2 +f x +4 =-2,则f x +4 =f x ,所以,函数f x 是以4为周期的周期函数,C 对;对于D 选项,因为g x -f x -4 =3,且f x =f x -4 ,∴g x -f x =3,又因为f x +g 2-x =1,所以,g x +g 2-x =4,又因为g 2-x =g 2+x ,则g x +g x +2 =4,所以,g x +2 +g x +4 =4,故g x +4 =g x ,因此,函数g x 是周期为4的周期函数,D 错.故选:BC .14.(2023春·湖南长沙·高三长郡中学校考阶段练习)设定义在R 上的函数f x 与g x 的导函数分别为f x 和g x ,若f x +2 -g 1-x =2,f x =g x +1 ,且g x +1 为奇函数,则下列说法中一定正确的是( )A.g 1 =0 B.函数g x 的图象关于x =2对称C.2021k =1f k g k =0D.2022k =1g k =0【答案】AC【解析】因为g x +1 为奇函数,所以g x +1 =-g -x +1 ,取x =0可得g 1 =0,A 对,因为f x +2 -g 1-x =2,所以f x +2 +g 1-x =0;所以f x +g 3-x =0,又f x =g x +1 ,g x +1 +g 3-x =0,故g 2+x +g 2-x =0,所以函数g x 的图象关于点(2,0)对称,B 错,因为f x =g x +1 ,所以f x -g x +1 =0,所以f x -g x +1 =c ,c 为常数,因为f x +2 -g 1-x =2,所以f x -g 3-x =2,所以g x +1 -g 3-x =2-c ,取x =1可得c =2,所以g x +1 =g 3-x ,又g x +1 =-g -x +1 ,所以g 3-x =-g -x +1 ,所以g x =-g x -2 ,所以g x +4 =-g x +2 =g (x ),故函数g (x )为周期为4的函数,因为g x +2 =-g x ,所以g 3 =-g 1 =0,g 4 =-g 2 ,所以g (1)+g (2)+g (3)+g (4)=0,所以2022k =1g k =g (1)+g (2)+g (3)+g (4) +g (5)+g (6)+g (7)+g (8) +⋅⋅⋅+g (2017)+g (2018)+g (2019)+g (2020) +g (2021)+g (2022),所以2022k =1g k =505×0+ g (2021)+g (2022)=g (1)+g (2)=g (2),由已知无法确定g (2)的值,故2022k =1g k 的值不一定为0,D 错;因为f x +2 -g 1-x =2,所以f x +2 =2-g x +1 ,f x +6 =2-g x +5 ,所以f x +2 =f (x +6),故函数f (x )为周期为4的函数,f (x +4)g (x +4)=f (x )g (x )所以函数f (x )g (x )为周期为4的函数,又f (1)=2-g (0),f (2)=2-g (1)=2,f (3)=2-g (2)=2+g (0),f (4)=2-g (3)=2,所以f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4)=0+2g (2)+2g (4)=0,所以2021k =1f k g k =505f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4) +f (2021)g (2021)2021k =1f kg k =f (1)g (1)=0 ,C 对,故选:AC .15.(2023·全国·高三专题练习)设函数y =f (x )的定义域为R ,且满足f (x )=f (2-x ),f (-x )=-f (x -2),当x ∈(-1,1]时,f (x )=-x 2+1,则下列说法正确的是( )A.f (2022)=1B.当x ∈4,6 时,f (x )的取值范围为-1,0C.y =f (x +3)为奇函数D.方程f (x )=lg (x +1)仅有5个不同实数解【答案】BCD【解析】依题意,当-1<x<0时,0<f x <1,当0≤x≤1时,0≤f x ≤1,函数y=f(x)的定义域为R,有f(x)=f(2-x),又f(-x)=-f(x-2),即f(x)=-f(-x-2),因此有f(2-x)=-f(-x-2),即f(x+4)=-f(x),于是有f(x+8)=-f(x+4)=f(x),从而得函数f(x)的周期T=8,对于A,f2022=-f0 =-1,A不正确;=f252×8+6=f6 =f-2对于B,当4≤x≤5时,0≤x-4≤1,有0≤f(x-4)≤1,则f(x)=-f(x-4)∈[-1,0],当5≤x≤6时,-4≤2-x≤-3,0≤(2-x)+4≤1,有0≤f[(2-x)+4]≤1,f(x)=f(2-x)=-f[(2-x)+4]∈[-1,0],当x∈4,6,B正确;时,f(x)的取值范围为-1,0对于C,f(x+3)=-f[(x+3)+4]=-f(x-1)=-f[2-(x-1)]=-f(-x+3),函数y=f(x+3)为奇函数,C正确;对于D,在同一坐标平面内作出函数y=f(x)、y=lg(x+1)的部分图象,如图:方程f(x)=lg(x+1)的实根,即是函数y=f(x)与y=lg(x+1)的图象交点的横坐标,观察图象知,函数y=f(x)与y=lg(x+1)的图象有5个交点,因此方程f(x)=lg(x+1)仅有5个不同实数解,D正确.故选:BCD16.(2023·全国·高三专题练习)已知定义在R上的单调递增的函数f x 满足:任意x∈R,有f1-x+f1+x=2,f2+x=4,则( )+f2-xA.当x∈Z时,f x =xB.任意x∈R,f-x=-f xC.存在非零实数T,使得任意x∈R,f x+T=f xD.存在非零实数c,使得任意x∈R,f x -cx≤1【答案】ABD【解析】对于A,令x=1-t,则f t +f2-t=2,=2,即f x +f2-x又f2+x=4-2-f x=f x +2;=4-f2-x+f2-x=4,∴f x+2令x=0得:f1 +f1 =2,f2 +f2 =4,∴f1 =1,f2 =2,则由f x+2=f x +2可知:当x∈Z时,f x =x,A正确;对于B ,令x =1+t ,则f -t +f 2+t =2,即f -x +f 2+x =2,∴f -x =2-f 2+x =2-4-f 2-x =f 2-x -2,由A 的推导过程知:f 2-x =2-f x ,∴f -x =2-f x -2=-f x ,B 正确;对于C ,∵f x 为R 上的增函数,∴当T >0时,x +T >x ,则f x +T >f x ;当T <0时,x +T <x ,则f x +T <f x ,∴不存在非零实数T ,使得任意x ∈R ,f x +T =f x ,C 错误;对于D ,当c =1时,f x -cx =f x -x ;由f 1-x +f 1+x =2,f 2+x +f 2-x =4知:f x 关于1,1 ,2,2 成中心对称,则当a ∈Z 时,a ,a 为f x 的对称中心;当x ∈0,1 时,∵f x 为R 上的增函数,f 0 =0,f 1 =1,∴f x ∈0,1 ,∴f x -x ≤1;由图象对称性可知:此时对任意x ∈R ,f x -cx ≤1,D 正确.故选:ABD .17.(2023·全国·高三专题练习)设函数f (x )定义域为R ,f (x -1)为奇函数,f (x +1)为偶函数,当x ∈(-1,1)时,f (x )=-x 2+1,则下列结论正确的是( )A.f 72 =-34B.f (x +7)为奇函数C.f (x )在(6,8)上为减函数D.方程f (x )+lg x =0仅有6个实数解【答案】ABD【解析】f (x +1)为偶函数,故f (x +1)=f (-x +1),令x =52得:f 72 =f -52+1 =f -32,f (x -1)为奇函数,故f (x -1)=-f (-x -1),令x =12得:f -32 =-f 12-1 =-f -12,其中f -12 =-14+1=34,所以f 72 =f -32 =-f -12 =-34,A 正确;因为f (x -1)为奇函数,所以f (x )关于-1,0 对称,又f (x +1)为偶函数,则f (x )关于x =1对称,所以f (x )周期为4×2=8,故f (x +7)=f (x -1),所以f (-x +7)=f (-x -1)=-f x -1 =-f x -1+8 =-f x +7 ,从而f (x +7)为奇函数,B 正确;f (x )=-x 2+1在x ∈(-1,0)上单调递增,又f (x )关于-1,0 对称,所以f (x )在-2,0 上单调递增,且f (x )周期为8,故f (x )在(6,8)上单调递增,C 错误;根据题目条件画出f (x )与y =-lg x 的函数图象,如图所示:其中y =-lg x 单调递减且-lg12<-1,所以两函数有6个交点,故方程f (x )+lg x =0仅有6个实数解,D 正确.故选:ABD18.(2023·全国·高三专题练习)已知f (x )是定义域为(-∞,+∞)的奇函数,f (x +1)是偶函数,且当x ∈0,1 时,f (x )=-x (x -2),则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为-1,1D.y =f x 在0,2π 上有4个零点【答案】BCD【解析】对于A ,f x +1 为偶函数,其图像关于x 轴对称,把f x +1 的图像向右平移1个单位得到f x 的图像,所以f (x )图象关于x =1对称,即f (1+x )=f (1-x ),所以f (2+x )=f (-x ),f x 为R 上的奇函数,所以f (-x )=-f x ,所以f (2+x )=-f (x ),用2+x 替换上式中的x 得, f (4+x )=-f (x +2),所以,f (4+x )=f (x ),则f x 是周期为4的周期函数.故A 错误.对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1.故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域-1,1 .故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2)①∴x ∈[0,2]时,f (x )=-x (x -2),此时函数的零点为0,2;∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),②∴x ∈2,4 时,∵f (x )的周期为4,∴x -4∈-2,0 ,f x =f x -4 =x -2 x -4 ,此时函数零点为4;③∴x ∈4,6 时,∴x -4∈0,2 ,f x =f x -4 =-(x -4)(x -6),此时函数零点为6;④∴x ∈6,2π 时,∴x -4∈2,4 ,f x =f x -4 =x -6 x -8 ,此时函数无零点;综合以上有,在(0,2π)上有4个零点.故D 正确;故选:BCD19.(2023春·广东广州·高三广州市禺山高级中学校考阶段练习)已知f x 是定义域为(-∞,+∞)的奇函数,f x +1 是偶函数,且当x ∈0,1 时,f x =-x x -2 ,则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为[-1,1]D.f x 的图象与曲线y =cos x 在0,2π 上有4个交点【答案】BCD【解析】根据题意,对于A ,f x 为R 上的奇函数,f x +1 为偶函数,所以f (x )图象关于x =1对称,f (2+x )=f (-x )=-f (x )即f (x +4)=-f (x +2)=f (x )则f x 是周期为4的周期函数,A 错误;对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1;故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域[-1,1].故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2),∴x ∈[0,2],f (x )=-x (x -2),∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),∵f (x )的周期为4,∴x ∈[2,4],f (x )=(x -2)(x -4),∴x ∈[4,6],f (x )=-(x -4)(x -6),∴x ∈[6,2π],f (x )=(x -6)(x -8),设g (x )=f (x )-cos x ,当x ∈[0,2],g (x )=-x 2+2x -cos x ,g ′(x )=-2x +2+sin x ,设h(x)=g′(x),h′(x)=-2+cos x<0在[0,2]恒成立,h(x)在[0,2]单调递减,即g′(x)在[0,2]单调递减,且g′(1)=sin1>0,g′(2)=-2+sin2<0,存在x0∈(1,2),g′(x0)=0,x∈(0,x0),g′(x)>0,g(x)单调递增,x∈(x0,2),g′(x)<0,g(x)单调递减,g(0)=-1,g(1)=1-cos1>0,g(x0)>g(1)>0,g(2)=-cos2>0,所以g(x)在(0,x0)有唯一零点,在(x0,2)没有零点,即x∈(0,2],f x 的图象与曲线y=cos x有1个交点,当x∈2,4时,,g x =f x -cos x=x2-6x+8-cos x,则g′x =2x-6+sin x,h x =g′x =2x-6+sin x,则h′x =2+cos x>0,所以g′x 在2,4上单调递增,且g′3 =sin3>0,g′2 =-2+sin2<0,所以存在唯一的x1∈2,3⊂2,4,使得g′x =0,所以x∈2,x1,g′x <0,g x 在2,x1单调递减,x∈x1,4,g′x >0,g x 在x1,4单调递增,又g3 =-1-cos3<0,所以g x1<g(3)<0,又g2 =-cos2>0,g4 =-cos4>0,所以g x 在2,x1上有一个唯一的零点,在x1,4上有唯一的零点,所以当x∈2,4时,f x 的图象与曲线y=cos x有2个交点,,当x∈4,6时,同x∈[0,2],f x 的图象与曲线y=cos x有1个交点,当x∈[6,2π],f(x)=(x-6)(x-8)<0,y=cos x>0,f x 的图象与曲线y=cos x没有交点,所以f x 的图象与曲线y=cos x在0,2π上有4个交点,故D正确;故选:BCD.20.(2023·全国·高三专题练习)已知函数f2x+1的图像关于直线x=1对称,函数y=f x+1关于点1,0对称,则下列说法正确的是( )A.f1-x=f1+xB.f x 的周期为4C.f1 =0D.f x =f32-x【答案】AB【解析】f2x的图像关于直线x=32对称,f x 的图像关于x=3对称,又关于点2,0中心对称,所以周期为4,所以B正确而D错误;又f 3-x =f 3+x ,其中x 换x +1得f 2-x =f 4+x =f x ,再将x 换x +1得f 1-x =f 1+x ,但无法得到f (1)=0 所以A 正确C 错误.故选:AB .21.(2023·全国·高三专题练习)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x ,g (2+x )均为偶函数,则( )A.f (0)=0B.g -12 =0C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x=f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x =g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R ,所以g 32=0,结合g (x )关于x =2对称,从而周期T =4×2-32 =2,所以g -12 =g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .[方法二]:【最优解】特殊值,构造函数法.由方法一知g (x )周期为2,关于x =2对称,故可设g x =cos πx ,则f x =1πsin πx +c ,显然A ,D 错误,选BC .故选:BC .[方法三]:因为f 32-2x,g (2+x )均为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ,g (2+x )=g (2-x ),所以f 3-x =f x ,g (4-x )=g (x ),则f (-1)=f (4),故C 正确;函数f (x ),g (x )的图象分别关于直线x =32,x =2对称,又g (x )=f (x ),且函数f (x )可导,所以g 32 =0,g 3-x =-g x ,所以g (4-x )=g (x )=-g 3-x ,所以g (x +2)=-g (x +1)=g x ,所以g -12=g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.22.(2023·全国·高三专题练习)定义f x 是y =f x 的导函数y =f x 的导函数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数y =f x 的“拐点”.可以证明,任意三次函数f x =ax 3+bx 2+cx +d a ≠0 都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题,其中正确命题是( )A.存在有两个及两个以上对称中心的三次函数B.函数f x =x 3-3x 2-3x +5的对称中心也是函数y =tan π2x 的一个对称中心C.存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心D.若函数g x =13x 3-12x 2-512,则g 12021+g 22021 +g 32021 +⋅⋅⋅+g 20202021 =-1010【答案】BCD【解析】对于A .设三次函数f x =ax 3+bx 2+cx +d a ≠0 ,易知y =f x 是一次函数,∴任何三次函数只有一个对称中心,故A 不正确;对于B .由f x =x 3-3x 2-3x +5,得f x =3x 2-6x -3,f x =6x -6,由6x -6=0,得x =1,函数f x 的对称中心为1,0 ,又由π2x =k π2,k ∈Z ,得x =k ,k ∈Z ,∴f x 的对称中心是函数y =tan π2x 的一个对称中心,故B 正确;对于C .设三次函数h x =ax 3+bx 2+cx +d a ≠0 ,所以h x =3ax 2+2bx +c ,h x =6ax +2b联立3ax 02+2bx 0+c =0,6ax 0+2b =0,得3ac -b 2=0,即当3ac -b 2=0时,存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心,故C 正确.对于D .∵g x =13x 3-12x 2-512,∴g x =x 2-x ,g x =2x -1,令g x =2x -1=0,得x =12,∵g 12 =13×12 3-12×12 2-512=-12,∴函数g x =13x 3-12x 2-512的对称中心是12,-12,∴g x +g 1-x =-1,设T =g 12021+g 22021 +g 32021 +⋯+g 20202021 ,所以2T =g 12021 +g 20202021 +g 22021 +g 20192021 +⋯+g 20202021 +g 12021 =-2020所以g 12021 +g 22021 +g 32021+⋯+g 20202021 =-1010,故D 正确.故选:BCD .三、填空题23.(2023·全国·高三专题练习)设f x 的定义域为R ,且满足f 1-x =f 1+x ,f x +f -x =2,若f 1 =3,则f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030=___________.【答案】2024【解析】因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1,f 2 =f 0 =1,由f 1-x =f 1+x ,得f -x =f x +2 ,f x =f 2-x ,有f x +2 +f 2-x =2,可得f x +f 2-x -2 =2,有f x +f 4-x =2,又由f x +f -x =2,可得f 4-x =f -x ,可知函数f x 的周期为4,可得f 2023 =f -1 =-1,f 2028 =f 0 =1,f 2030 =f 2 =1,有f 2023 +f 2028 +f 2030 =1,因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1由f 1-x =f 1+x 得f -x =f x +2 ,所以f x +f x +2 =2,f x +1 +f x +3 =2,即f x +f x +1 +f x +2 +f x +3 =4,所以f -1 +f 0 +f 1 +f 2 + f 3 +f 4 +⋯+f 2021 +f 2022 =4×506=2024所以f 1 +f 2 +f 3 +⋯+f 2022 =2024-f 0 -f -1 =2024-1--1 =2024.故f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030 =2024.故答案为:202424.(2023·全国·高三专题练习)对于定义在D 上的函数f x ,点A m ,n 是f x 图像的一个对称中心的充要条件是:对任意x ∈D 都有f x +f 2m -x =2n ,判断函数f x =x 3+2x 2+3x +4的对称中心______.【答案】-23,7027【解析】因为f x =x 3+2x 2+3x +4,由于f x +f -23×2-x =x 3+2x 2+3x +4+-23×2-x 3+2-23×2-x 2+3-23×2-x +4=7027×2=14027.即m =-23,n =7027.所以-23,7027是f x =x 3+2x 2+3x +4的一个对称中心.故答案为:-23,7027 .25.(2023·全国·高三专题练习)对于三次函数f x =ax 3+bx 2+cx +d a ≠0 ,现给出定义:设f x 是函数y =f x 的导数,f x 是f x 的导数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数f x =ax 3+bx 2+cx +d a ≠0 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =2x 3-3x 2+1,则g 1100+g 2100+⋯+g 99100 =____.【答案】4912【解析】依题意得,g x =6x 2-6x ,g x =12x -6,令g x =0,得x =12, ∵g 12 =12,∴函数g x 的对称中心为12,12,则g 1-x +g x =1,∵1100+99100=2100+98100=⋯=49100+51100=1,∴g 1100 +g 99100 =g 2100 +g 98100 =⋯=g 49100 +g 51100 =1∴g 1100 +g 2100+⋯+g 99100 =g 1100 +g 99100 +g 2100 +g 98100 +⋯+g 49100 +g 51100 +g 12=49+12=4912,故答案为4912.26.(2023·四川成都·成都七中校考模拟预测)已知S n 为数列a n 的前n 项和,数列a n 满足a 1=-2,且S n =32a n+n ,f x 是定义在R 上的奇函数,且满足f 2-x =f x ,则f a 2021 =______.【答案】0【解析】∵S n =32a n +n ,∴S n -1=32a n -1+n -1n ≥2 ,两式相减得,a n =32a n -32a n -1+1,即a n -1=3a n -1-1 ,∴a n -1a n -1-1=3,即数列a n -1 是以-3为首项,3为公比的等比数列,∴a n -1=-3⋅3n -1=-3n ,∴a n =-3n +1.∵f x 是定义在R 上的奇函数,且满足f 2-x =f x ,∴令x =2,则f 2 =f 0 =0,又f2-x=f x =-f(-x),∴f(2+x)=-f(x),∴f(x+4)=f(x+2+2)=-f(x+2)=-[-f(-x)]=f(x),即f(x+4)=f(x),即f x 是以4为周期的周期函数.∵a2021=-32021+1=-4-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+C2021202140⋅-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+2其中C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020能被4整除,∴f a2021=f-32021+1=f2 =0.故答案为:0.27.(2023·全国·高三专题练习)已知定义域为R的奇函数f x 满足f x+1=f3-x,当x∈0,2时,f x =-x2+4,则函数y=f x -a a∈R在区间-4,8上的零点个数最多时,所有零点之和为__________.【答案】14【解析】由于定义域为R的奇函数f x 满足f x+1=f3-x,∴f-x=-f x ,f x+4=f-x,∴f x+4=-f x ,∴f x+8=-f x+4=f x ,∴函数f x 为周期函数,且周期为8,当x∈0,2时,f x =-x2+4,函数y=f x -a a∈R在区间-4,8上的零点的个数,即为函数y=f x 与y=a 的交点的个数,作出函数 y=f x ,x∈-4,8上的函数的图象,显然,当a=0 时,交点最多,符合题意,此时,零点的和为-4+-2+0+2+4+6+8=14 .28.(2023·全国·高三专题练习)已知函数f(x)满足f(x+3)=f(1-x)+9f(2)对任意x∈R恒成立,又函数f x +9 的图象关于点(-9,0)对称,且f (1)=2022,则f (45)=_________.【答案】-2022【解析】因为函数f (x )满足f (x +3)=f (1-x )+9f (2)对任意x ∈R 恒成立,所以令x =-1,即f (2)=f (2)+9f (2),解得f (2)=0,所以f (x +3)=f (1-x )对任意x ∈R 恒成立,又函数f x +9 的图象关于点(-9,0)对称,将函数f x +9 向右平移9个单位得到f (x ),所以f (x )关于点(0,0),即f (x )为R 上的奇函数,所以f (x )=-f -x ,又f (x +3)=f (1-x )对任意x ∈R 恒成立,令x =-x -3,得f (-x )=f (x +4),即-f (x )=f (x +4),再令x =x +4,得-f (x +4)=f (x +8),分析得f (x )=f (x +8),所以函数f (x )的周期为8,因为f (1)=2022,所以在f (x +3)=f (1-x )中,令x =0,得f (3)=f (1)=2022,所以f (45)=f 6×8-3 =f -3 =-f 3 =-2022.故答案为:-2022.29.(2023·全国·高三专题练习)已知f x 是定义在R 上的函数,若对任意x ∈R ,都有f (x +8)=f (x )+f (4),且函数f (x -2)的图像关于直线x =2对称,f (2)=3,则f (2022)=_______.【答案】3【解析】因为函数f (x -2)的图像关于直线x =2对称,所以函数f (x )的图像关于直线x =0对称,即函数f x 是偶函数,则有f x =f -x ;因为对任意x ∈R ,都有f (x +8)=f (x )+f (4),令x =-4,得f -4+8 =f -4 +f 4 ⇒f -4 =f 4 =0,所以对任意x ∈R ,都有f (x +8)=f (x )+f (4)=f x ,即函数f x 的周期为8,则f 2022 =f 252×8+6 =f 6 =f 6-8 =f -2 =f 2 =3,故答案为:3.30.(2023·全国·高三专题练习)已知定义在R 上的函数f (x )和函数g (x )满足2f (x )=g (x )-g (-x ),且对于任意x 都满足f (x )+f (-x -4)+5=0,则f (2021)+f (2019)=________.【答案】5050【解析】由题意知:f (x )定义域为R ,2f (-x )=g (-x )-g (x ),可得:f (x )+f (-x )=0,f (x )为奇函数,又f (-x -4)=-f (x )-5=-f (x +4),则f (x +4)=f (x )+5,可得:f (2021)+f (2019)=f (1+4×505)+f (-1+4×505)=f (1)+5×505+f (-1)+5×505=5050.故答案为:5050.31.(2023·全国·高三专题练习)已知定义域为R 的奇函数f x ,当x >0时,有f x =-log 34-x ,0<x ≤54f x -3 ,x >54,则f 2 +f 4 +f 6 +⋅⋅⋅+f 2022 =______.【答案】0【解析】R上的奇函数f x ,则有f-x=-f(x),而当x>0时,有f x =-log34-x,0<x≤5 4f x-3,x>5 4,于是有f(2)=f(-1)=-f(1)=1,f(4)=f(1)=-1,f(6)=f(3)=f(0)=0,因∀x>54,f(x)=f(x-3),则有∀n∈N∗,f(6n-4)=f(2)=1,f(6n-2)=f(1)=-1,f(6n)=f(3)=0,所以f2 +f4 +f6 +⋅⋅⋅+f2022=337f2 +f4 +f6=0.故答案为:032.(2023·全国·高三专题练习)已知函数f x =x3-3x2+9x+4,若f a =7,f b =15,则a+b=___________.【答案】2【解析】因为f x =3x2-6x+9,对称轴为x=1,所以f x 的对称中心为1,f1,即1,11,因为f x =3x2-6x+9=3(x-1)2+6>0,所以f x 在R上单调递增,所以方程f a =7,f b =15的解a,b均有且只有一个,因为f a +f b =2f1 =22,所以a,7,b,15关于对称中心1,11对称,所以a+b=2,故答案为:233.(2023·全国·高三专题练习)已知函数f x 的定义域为R,且f x 为奇函数,其图象关于直线x=2对称.当x∈0,4时,f x =x2-4x,则f2022=____.【答案】4【解析】∵f x 的图象关于直线x=2对称,∴f(-x)=f(x+4),又f x 为奇函数,∴f(-x)=-f x ,故f(x+4)=-f x ,则f(x+8)=-f(x+4)=f x ,∴函数f x 的周期T=8,又∵2022=252×8+6,∴f2022= f6 =f(-2)=-f2 =-(4-8)=4.故答案为:4.34.(2023·全国·高三专题练习)若函数f(x)=1-x2x2+ax+b,a,b∈R的图象关于直线x=2对称,则a+b=_______.【答案】7【解析】由题意f(2+x)=f(2-x),即f(x)=f(4-x),所以f(0)=f(4)f(1)=f(3),即b=-15(16+4a+b)0=-8(9+3a+b),解得a=-8b=15,此时f(x)=(1-x2)(x2-8x+15)=-x4+8x3-14x2-8x+15,f(4-x)=-(4-x)4+8(4-x)3-14(4-x)2-8(4-x)+15=-(x4-16x3+96x2-256x+256)+8(64-48x+12x2-x3)-14(16-8x+x2)-32+8x+15= -x4+8x3-14x2-8x+15=f(x),满足题意.所以a=-8,b=15,a+b=7.故答案为:7.35.(2023·全国·高三专题练习)已知函数f x =3x-5x-2,g x =2x+22x-2+1,记f(x)与g(x)图像的交点横,纵坐标之和分别为m与n,则m-n的值为________.【答案】-2.【解析】f(x)=3x-5x-2=3+1x-2在(-∞,2)和(2,+∞)上都单调递减,且关于点(2,3)成中心对称,g(x)=2x+22x-2+1=4×2x-2+22x-2+1=4-22x-2+1在(-∞,+∞)上单调递增,g(4-x)+g(x)=4-222-x+1+4-22x-2+1=8-2(2x-2+1)+2(22-x+1)(22-x+1)(2x-2+1)=8-2(2x-2+22-x+2)2+2x-2+22-x=8-2=6,所以g(x)的图像也关于点(2,3)成中心对称,所以f(x)与g(x)图像有两个交点且关于点(2,3)对称,设这两个交点为(x1,y1)、(x2,y2),则x1+x2=2×2=4,y1+y2=2×3=6,所以m=4,n=6,所以m-n=4-6=-2.故答案为:-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称性
一、有关对称性的常用结论
(一)函数图象自身的对称关系(加法)
1、轴对称
(1))(x f -=)(x f ⇔函数)(x f y =图象关于y 轴对称;
(2)函数)(x f y =图象关于a x =对称⇔)()(x a f x a f -=+⇔()(2)f x f a x =-
(32(1(2(3(4,则函数
1.
2.
推论:函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2(a b -对称。

类型一:双对称问题
1.设)(x f 是定义在R 上的偶函数,且)1()1(x f x f -=+,当01≤≤-x 时,x x f 2
1)(-=,则=)6.8(f ___________
解:因为f(x)是定义在R 上的偶函数,所以)(0x f y x ==是的对称轴;又因为(1)(1)f x f x +=-,所以1x =也是()y f x =的对称轴,故)(x f y =是以2为周期的周期函数,所以x =2,2(c a b -
3.0)6.0()6.0()6.08()6.8(=-==+=f f f f 。

2.(2005年广东卷I )设函数)2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f 。

(1)试判断函数)(x f y =的奇偶性;非奇非偶函数
(2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。

3.设,则:
,图1. 2. (3.4..
2个单位所得.
因为反比例函数3y x
=的对称中心是()0,0,O 自然也进行相应地平移, 所以函数()121x f x x
-=+图象的对称中心是()1,2.-- 类型三:求值
1.已知函数f (x )=,若f (a )=,则f (-a )=________.
2.设函数f (x )=的最大值为M ,最小值为m ,则M +m =________.
解析:f (x )==1+.设g (x )=,则g (-x )==-g (x ),
所以g (x )是R 上的奇函数.所以若g (x )的最大值是W ,则g (x )的最小值是-W .所以函数f (x )的最大值是1+W ,最小值是1-W ,即M =1+W ,m =1-W ,所以M +m =2.
答案:2
3.()()311f x x =-+,则()()()()()43056f f f f f -+-+++++=.
解析()()311f x x =-+是由3y x =平移得到的,
由于3y x =是奇函数,图象关于原点对称,
因此()f x 的对称中心为()1,1,()()22f x f x +-=,
所以()()()()()43056f f f f f -+-+++++ =))3b a 数列,()1a f A.0218π D.1316
π所以f 是公差为又因为已知条件()()()1255,a a a f f f π+++=
所以32a π=,()3f a π=,13284a a ππ=-⨯=,533284
a a ππ=+⨯=. 所以()()222231333153132cos cos .24416a a a a a a a f πππππ⎛⎫---=--⨯=⎡⎤ ⎪⎣⎦⎝⎭
=。

相关文档
最新文档