运筹学部分课后习题集解答1

合集下载

运筹学课后习题答案

运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学习题集(第一章)

运筹学习题集(第一章)

判断题判断正误,如果错误请更正第1章线性规划1.任何线形规划一定有最优解。

2.若线形规划有最优解,则一定有基本最优解。

3.线形规划可行域无界,则具有无界解。

4.在基本可行解中非基变量一定为0。

5.检验数λj表示非基变量Xj增加一个单位时目标函数值的改变量。

6.minZ=6X1+4X2|X1-2X|︳<=10 是一个线形规划模型X1+X2=100X1>=0,X2>=07.可行解集非空时,则在极点上至少有一点达到最优解.8.任何线形规划都可以化为下列标准型Min Z=∑C j X j∑a ij x j=b1, i=1,2,3……,mX j>=0,j=1,2,3,……,n:b i>=0,i=1,2,3,……m9.基本解对应的基是可行基.10.任何线形规划总可用大M 单纯形法求解.11.任何线形规划总可用两阶段单纯形法求解。

12.若线形规划存在两个不同的最优解,则必有无穷多个最优解。

13.两阶段中第一阶段问题必有最优解。

14.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解。

15.人工变量一旦出基就不会再进基。

16.普通单纯形法比值规则失效说明问题无界。

17.最小比值规则是保证从一个可行基得到另一个可行基。

18.将检验数表示为λ=C B B-1A-的形式,则求极大值问题时基本可行解是最优解的充要条件为λ》=0。

19.若矩阵B为一可行基,则|B|≠0。

20.当最优解中存在为0的基变量时,则线形规划具有多重最优解。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第1章线性规划1.线形规划具有无界解是指:A可行解集合无界B有相同的最小比值C存在某个检验数λk>0且a ik<=0(i=1,2,3,……,m) D 最优表中所有非基变量的检验数非0。

2.线形规划具有多重最优解是指:A 目标函数系数与某约束系数对应成比例B最优表中存在非基变量的检验数为0 C可行解集合无界D存在基变量等于03.使函数Z=-X1+X2-4X3增加的最快的方向是:A (-1,1,-4)B(-1,-1,-4)C(1,1,4)D(1,-1,-4-)4.当线形规划的可行解集合非空时一定A包含原点X=(0,0,0……)B有界C 无界D 是凸集5.线形规划的退化基本可行解是指A基本可行解中存在为0的基变量B非基变量为C非基变量的检验数为0 D最小比值为06.线形规划无可行解是指A进基列系数非正B有两个相同的最小比值C第一阶段目标函数值大于0 D用大M法求解时最优解中含有非0的人工变量E可行域无界7.若线性规划存在可行基,则A一定有最优解B一定有可行解C可能无可行解D可能具有无界解E全部约束是〈=的形式8.线性规划可行域的顶点是A可行解B非基本解C基本可行解D最优解E基本解9.minZ=X1-2X2,-X1+2X2〈=5,2X1+X2〈=8,X1,X2〉=0,则A有惟一最优解B有多重最优解C有无界解D无可行解E存在最优解10.线性规划的约束条件为X1+X2+X3=32X1+2X2+X4=4X1,X2,X3,X4〉=0 则基本可行解是A(0,0,4,3)B(0,0,3,4)C(3,4,0,0)D(3,0,0,-2)计算题1.1 对于如下的线性规划问题MinZ= X1+2X2s.t. X1+ X2≤4-X1+ X2≥1X2≤3X1, X2≥0的图解如图所示。

规划数学(运筹学)第三版课后习题答案 习 题 1(1)

规划数学(运筹学)第三版课后习题答案 习 题 1(1)

习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。

⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。

⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。

⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x xx 3x 2x minz )b (32121321321答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。

运筹学版熊伟编著习题答案

运筹学版熊伟编著习题答案

运筹学(第3版)习题答案P36 P74 P88 P105 P142 P173 P195 P218 P248 P277 P304 品P343 P371全书420页第1章 线性规划工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.产品 资源 A B C 资源限量 材料(kg) 4 2500 设备(台时) 3 1400 利润(元/件)101412310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:型号A 型号B 每套窗架需要材料长度(m ) 数量(根)长度(m) 数量(根)A 1:2 2B 1: 2 A 2:3 B 2:23需要量(套)300400问怎样下料使得(1)用料最少;(2)余料最少. 【解 方案 一 二 三 四 五 六 七 八 九 十 需要量 B1 2 1 1 1 0 0 0 0 0 0 800 B2 2 0 1 0 0 2 1 1 0 0 0 1200 A1 2 0 0 1 0 0 1 0 2 1 0 600 A2120 2 3 900 余料(m) 0 1 1 1 01设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩某企业需要制定1~6月份产品A 的生产与销售计划。

运筹学课后习题解答_1.(DOC)

运筹学课后习题解答_1.(DOC)

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题min z=2x1 3x2a4x1 6x2 6 )2x2 4 st.. 4x1x1, x2 0解:由图 1 可知,该问题的可行域为凸集 MABCN,且可知线段 BA上的点都为最优解,即该问题有无量多最优解,这时的最优值为3z min =23 0 3 2P47 1.3 用图解法和纯真形法求解线性规划问题max z=10x1 5x 2a )3x1 4x2 95x1 2x2 8st..x1, x2 0解:由图 1 可知,该问题的可行域为凸集OABCO,且可知 B 点为最优值点,3x1 4x2x1 1 T 9 3,即最优解为x*1,3即2x2 8x2 2 5x1 2这时的最优值为 z max =10 1 5 3 35 2 2纯真形法:原问题化成标准型为max z=10x15x23x1 4 x2x39st.. 5x12x2x48x1 , x2 , x3 ,x4 010 5 0 0c jC B X B b x1 x2 x3 x49 3 4 1 0x38 [5] 2 0 1x410 5 0 0C j Z j21/5 0 [14/5] 1 -3/5 x38/5 1 2/5 0 1/5 10x10 1 0 -2C j Z j53/2 0 1 5/14 -3/14 x21 1 0 -1/7 2/7 10x10 0 -5/14 -25/14C j Z j1,3 T1015335因此有 x*, zmax2 2 2P78 2.4 已知线性规划问题:max z 2 x1 4x2 x3 x4x1 3x2 x4 82x1 x2 6x2 x3 x4 6x1 x2 x3 9x1 , x2 , x3,x4 0求: (1) 写出其对偶问题;(2)已知原问题最优解为X* (2,2,4,0) ,试依据对偶理论,直接求出对偶问题的最优解。

解:( 1)该线性规划问题的对偶问题为:min w 8 y1 6 y2 6 y3 9 y4y1 2 y2 y4 23y1 y2 y3 y4 4y3 y4 1y1 y3 1y1, y2 , y3 ,y4 0(2)由原问题最优解为X* ( 2,2,4,0) ,依据互补废弛性得:y1 2 y2 y4 23y1 y2 y3 y4 4y3 y4 1把 X * (2,2,4,0) 代入原线性规划问题的拘束中得第四个拘束取严格不等号,即 2 2 4 8 9 y4 0y1 2 y2 2进而有3y1 y2 y3 4y3 1得 y 4 , y2 3, y31, y 01 5 5 4( 4,3,1,0)T,最优值为w min16因此对偶问题的最优解为y*5 5P79 2.7考虑以下线性规划问题:min z 60x140x280x33x12x2x3 24x1x23x3 42x12x22x3 3x1, x2 , x30( 1)写出其对偶问题;( 2)用对偶纯真形法求解原问题;解:( 1)该线性规划问题的对偶问题为:max w 2y1 4 y23y33y1 4 y2 2 y3602 y1 y22y340y13y22y380y1, y2 , y30(2)在原问题加入三个废弛变量x4 , x5 , x6把该线性规划问题化为标准型:max z 60x1 40x2 80x33x1 2x2 x3 x4 24x1 x2 3x3 x5 42 x1 2x2 2x3 x6 3x j 0, j 1, ,6c j-60 -40 -80 0 0 0 C B X B b x1 x2 x3 x4 x5 x6x4-2 -3 -2 -1 1 0 0x5-4 [-4] -1 -3 0 1 0x6-3 -2 -2 -2 0 0 1 C j Z j-60 -40 -80 0 0 0x41 0 -5/4 5/4 1 -1/12 080x11 1 1/4 3/4 0 -1/4 0x6-1 0 [-3/2] -1/2 0 -1/2 1C j Zj0 -25 -35 0 -15 0x411/6 0 0 5/3 1 1/3 -5/680x15/6 1 0 2/3 0 -1/3 1/640x22/3 0 1 1/3 0 1/3 -2/3C j Zj0 0 -80/3 0 -20/3 -50/3x* ( 5 , 2 ,0) T , z max 60 5 40 2 80 0 2306 3 6 3 3P81 2.12某厂生产A、B、C三种产品,其所需劳动力、资料等相关数据见下表。

规划数学(运筹学)第三版课后习题答案-习-题-1(1)

规划数学(运筹学)第三版课后习题答案-习-题-1(1)

习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。

⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。

⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。

⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x x x 3x 2x minz )b (32121321321 答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。

运筹学课后习题解答-1.

运筹学课后习题解答-1.

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB X b 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学部分课后习题解答P47 1.1用图解法求解线性规划问题min z=2x 3x 2 4为 6x 2 6 a )s.t 4x i 2x 24X i ,X 2 0解:由图1可知,该问题的可行域为凸集 MABCN ,且可知线段BA 上的点3都为最优解,即该问题有无穷多最优解,这时的最优值为Z m i n =2 3 * 3 0 3P47 1.3用图解法和单纯形法求解线性规划问题max z=10x.| 5x 23x 1 4x 2 9 s.t 5x 1 2x>8x 1, x> 0解:由图1可OABCO ,且可知B 点为最优值点,小 3x-| 4x 29 即125x 1 2x 28x 1X 213,即最优解为x * 21,3v1图1单纯形法:原问题化成标准型为max z=10x15x23\ 4x2 x39 s.t 5\ 2x2 x48X i,X2,X3,X40P78 2.4已知线性规划问题:max z 2X | 4x 2 x 3 x-i 3X 2 X 4 82为 x 26 x 2 x 3 x 4 6 x | x 2 x 39XiXX, x 4求:(1)写出其对偶问题;(2)已知原问题最优解为X * (2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。

解:(1)该线性规划问题的对偶问题为:min w 8y 1 6y 2 6y 3 9y 4y 1 2y 2 y 4 2 3y 1 y 2 y 3 y 4 4 y 3 y 4 1y 1y 31%,丫2”3,丫4(2)由原问题最优解为X * (224,0),根据互补松弛性得:y 1 2y 2 y 4 2 3y 1 y 2 y w 4y a y 4 1把X *(2,2,4,0)代入原线性规划问题的约束中得第四个约束取严格不等号, 即 2 2 48 9 y 4 0 y 1 2y 22从而有3y 1 y 2 y 34所以有x *13,zmax 10 1 5I35 "2X 4y a 1/曰 4 3 “门得y i 、目2 ,y3 i,y4 05 5所以对偶问题的最优解为y* (-,3,1,0)T,最优值为W min 165 5P79 2.7考虑如下线性规划问题:(1)写出其对偶问题;min z 60为40x2 80x33为2x2x3 24x1 X2 3x3 42x1 2x2 2x3 3捲必,怡0(2 )用对偶单纯形法求解原问解:(1)该线性规划问题的对偶问题为:max w 2y1 4y2 3y33y i 4y2 2y3 602y1 y2 2y3 40 >y1 3y2 2y3 80 ,y1,y2,y3 0(2)在原问题加入三个松弛变量X4,X5,X6把该线性规划问题化为标准型max z 6 0x140X280x3x12x2X3 X4 24为x3x3 x 42x-| 2x22X3 X6 3X j 0,j 1L ,6* 52max 56 3 6 3 3P81 2.12某厂生产A、B、C三种产品,其所需劳动力、材料等有关数据见下表。

要求:(a)确定获利最大的产品生产计划;(b)产品A的利润在什么范围内变动时,上述最优计划不变;(c)如果设计一种新产品D,单件劳动力消耗为8单位,材料消耗为2单位,每件可获利3元,问该种产品是否值得生产?(d)如果劳动力数量不增,材料不足时可从市场购买,每单位0.4元。

问该厂要不要购进原材料扩大生产,以购多少为宜。

解:由已知可得,设X j表示第j种产品,从而模型为:max z 3x1x24x36x 3x2 5x345st 3x-\ 4x2 5x330MMX 0a)用单纯形法求解上述模型为:得到最优解为x* (5,0,3)Z max 3 5 4 3 27b)设产品A的利润为3 ,则上述模型中目标函数捲的系数用3 替代并求解得:要最优计划不变,要求有如下的不等式方程组成立0解得:3 92 4从而产品A 的利润变化范围为:353 -,即 2-,4-C )设产品D 用X 6表示,从已知可得16 C6 C B B P 61/5 1 1 33 812 5 5把X 6加入上述模型中求解得:2 -31 _5 3 3 _5 3从而得最优解x (0,0,5,0,0,5 /2);最优值为Z max 4 5 3 27.5 27 2所以产品D值得生产。

P101 3.1已知运输问题的产销量与单位运价如下表所示,用表上作业法求各题的最优解及最小运费。

表3-35B i B2 B3 B4 产量销地产地<A i 10 2 20 11 15A2 12 7 9 20 25A3 2 14 16 18 5销量 5 15 15 10解:由已知和最小元素法可得初始方案为产地销地^B1 B2 B3 B4 产量A1 15 15A2 0 15 10 25A3 5 0 5销量 5 15 15 10检验:B1E2 I J行位势A1 A2)2] 15 201516A30 1 =列位勢-111314由于有两个检验数小于零,所以需调整,调整一:检验:Bl B2 B3 M行位帮A1 A210]Mi)2] 15 巴珂a 0 11®^,®15 史J 101@诃0164列柱势-2 1 3 14由于还有检验数小于零,所以需调整,调整二:A151015 A2101525A3 55销量5151510从上表可以看出所有的检验数都大于零,即为最优方案 最小运费为:z min 2 5 2 5 7 10 9 15 11 10 18 0335表 3-36销地 产地^B 1 B 2 B 3 B 4产量A 1 8 4 1 2 7 A 2 6 9 4 7 25 A 3534326销量101020153 4因为 a i 58 b j 55,即产大于销,所以需添加一个假想的销地,销量为3,构成产销平衡问题,其对应各销地的单位运费都为 0检验:解:由上表和最小元素法可得初始方案为检验:B1E2B3K BE行位势A11714134斗④A35] 1皿10g3列位2000 -4势从上表可以看出所有的检验数都大于零,即为最优方案最小运费为:z min 6 9 5 1 3 10 1 7 4 13 3 15 0 3 193解:因为a i 80 b j 100,即销大于产,所以需添加一个假想的产地,产i 1 j 1量为20,构成产销平衡问题,其对应各销地的单位运费都为0B1 B2 B3 B4 B5 产量销地产地弋、A1 8 6 3 7 5 20A2 5 M 8 4 7 30A3 6 3 9 6 8 30A4 0 0 0 0 0 20销量25 2520 10 20由上表和最小元素法可得初始方案为、'销地产地^B1 B2 B3 B4 B5 产量A1 20 20A2 5 10 15 30A3 25 5 30A4 20 0 20检验:由于有两个检验数小于零,所以需调整,调整一:销地B1 B2 B3 B4 B5 -^r~、曰. 产量A1 20 20A2 20 10 30 A3 25 5 30 A4 5 0 15 20销量25 2520 10 20检验:由于还有检验数小于零,所以需调整,调整二:产地销地^B1 B2 B3 B4 B5 产量A1 20 20A2 20 10 30A3 5 25 0 30A4 0 20 20销量25 25 20 10 20检验:从上表可以看出所有的检验数都大于零,即为最优方案0 305 最小运费为:Z min 3 20 5 20 4 10 6 5 3 25 8 0 0 20 0P127 4.8用割平面法求解整数规划问题max z 7为9x2X 3x2 6a)7为x235x1,x20,且为整数解:该问题的松弛问题为:max z 7x 9x 2X 3屜 6 7为 x 2 35 x 1,x 2 0:割平面 1 为:(3 1/2) X 2 (0 7/22)X 3 (0 1/22)^1 71c c 7 11X3X 4 X 23 0X3X 4 X52 22 22 22 22 2 从而有割平面 2 为:(4 4/7) x i (0 1/7)X 4( 1 6/7)x 5X4丄7X56一X41一7 X i 4 i 0 0 0 -i i0 X3 i 0 0 i 0 -4 i0 X4 4 0 0 0 i 6 -7-2 -7C j Z j0 0 0 0由上表可知该问题已经达到整数解了,所以该整数解就是原问题的最优解,即X* 4,3 T,最优值为Z max 7 4 9 3 55P144 5.3用图解分析法求目标规划模型min Z = P i 小-+ P2 d2++ P3(2d3-+1 d4-)C) 「x i + X2 + d i-- d i+= 40x i + X2 + d2-- d2+= 40+10=50 s.t. W x i + d3-- d3+= 24x2 + d4-- d4+= 30L x i、X2、d i+、d i-、d2+、d2-、d3+、d3-、d4+、d4-> 0解:由下图可知,满足目标函数的满意解为图中的A点Pi70 6.4求下图中的最小树/h>7解:避圈法为:f^=(A,B)t^ = (C,D r B t F t G r i£} % = (A RQ匹沁G D总眄咼% 匸SEGC}局二{DE, F t H}n—GG巧込二但码H) 巧二{AEGQ D.蜀.吗RF用}⑺ 眄=SEGCDE川}耳={应}⑻ f>{—GCQ耳F,H)耳Y得到最小树为:解:如下图所示:P 173 6.14用Ford-Fulkerson 的标号算法求下图中所示各容量网络中从v到V t的最大流,并标出其最小割集。

图中各弧旁数字为容量q,括弧中为流量fj.B)解:对上有向图进行2F标号得到所以从V s 到Vt 的最大流为:f st 1 2 5 3 2 1 14科Si )由于所有点都被标号了,即可以找到增广链,所以流量还可以调整,调整量为1,得由图可知,标号中断,所以已经是最大流了,最大流量等于最小割的容量,最小 割为与直线KK 相交的弧的集合,即为(V s ,V 3),(V s ,V 4),(V s ,V 5),(V !,V t ),(V 2,V t ),(V 2,V 3)--)4)(2 3 5(4’((2 - 2由图可知,标号中断,所以已经是最大流了,最大流量等于最小割的容量,最小割为与直线(V s ,V i ),(V s ,V 3),( V 2,V 5),所以 从 V s 到 Vt 的最大流为:KK 相交的弧的集合,即为5G),4 [4〕V33(0)2 00)B ⑷解:对上有向图进行 2F 标号得到由于所有点都被标号了,即可以找到增广链,所以流量还可以调整,调整量为 1,得f st 5 3 5 13P193 7.1根据下表给定的条件,绘制 PERT 网络图。

相关文档
最新文档