生物化学--第六章 生物氧化(3-4节)

合集下载

生物化学--生物氧化

生物化学--生物氧化

脱电子 Fe2+
Fe3+ + e
生物氧化中的CO2的生成
绝大部分有机物生物氧化中的CO2生成是经 ? 中的脱羧作用产生的。
答案:三羧酸循环
其他一些CO2产生途径如: 糖异生
草酰乙酸 + GTP → PEP +GDP + CO2 氨基酸脱羧
NH2
脱羧酶
NH2
R C COOH
R C H + CO2
磷酸烯醇式丙酮 酸羧激酶
COCOOH
GTP
GDP
β-氧化脱羧:
CH2 CO~ P + CO2 COOH
CHOH-COOH CH-COOH CH2-COOH
异柠檬酸脱氢酶
CO-COOH CH2
NAD+
NADH+H+ CH2-COOH
+CO2
生物氧化中H2O的生成
真核生物线粒体内膜上的电子传递链作用下产生
化合物
磷酸烯醇式丙酮酸 氨基甲酰磷酸
kJ/mol -61.9 -51.4
△E0′
(kcal/mol) (-14.8) (-12.3)
1,3-二磷酸甘油酸 磷酸肌酸
ATP →ADP+Pi 乙酰辅酶A
ADP →AMP+Pi 焦磷酸
1-磷酸葡萄糖
-49.3 -43.1 -30.5 -31.5 -27.6 -27.6 -20.9
线粒体结构模式图
二、ATP
NH2
NN
O- OOPγ~- O
OP~β O O-
O Pα O-
O CH2
N O
N
OH OH AM P ADP
ATP
高能磷酸键与高能磷酸化合物

生物化学及分子生物学(人卫第九版)-06-03节生物氧化

生物化学及分子生物学(人卫第九版)-06-03节生物氧化

本章小结
氧化过程:线粒体基质的NADH和FADH2通过电子传递链进行氧化,产生 CO2、H2O 磷酸化过程:是产生ATP的主要机制,电子传递链在氧化电子的过程中、 泵出质子储存能量、至膜间隙侧而产生跨膜质子电化学梯度,储存电子氧 化释放的能量,形成质子驱动力,促使质子回流至基质释能而产成ATP
一、体内能量状态可调节氧化磷酸化速率
氧化磷酸化是机体合成能量载体ATP的最主要的途径
机体根据能量需求调节氧化磷酸化速率,从而调节ATP的生成量 细胞内ADP的浓度以及ATP/ADP的比值感应机体能量状态的变化 耗能代谢反应活跃时,ATP分解为ADP和Pi的速率增加,使ATP/ADP的比值降 低、ADP的浓度增加,氧化磷酸化速率加快 ATP和ADP也同时调节糖酵解、柠檬酸循环途径,调节NADH和FADH2的生成
抗氧化
抗氧化体系清除ROS
超氧化物歧化酶(superoxide dismutase,SOD)
催化2分子·O2-分别进行氧化和还原,生成O2和H2O2
活性强,是人体防御超氧离子损伤的重要酶
哺乳动物细胞有3 种SOD 同工酶:

Cu/Zn-SOD:胞外、胞质
Mn-SOD:线粒体
过氧化氢酶(catalase)
二羧酸转运蛋白
α -酮戊二酸转运蛋白 天冬氨酸-谷氨酸转运蛋白 单羧酸转运蛋白 三羧酸转运蛋白 碱性氨基酸转运蛋白 肉碱转运蛋白
HPO42苹果酸 谷氨酸 丙酮酸 苹果酸 鸟氨酸 脂酰肉碱
苹果酸
α -酮戊二酸 天冬氨酸 OH柠檬酸 瓜氨酸 肉碱
胞浆NADH的跨膜转运
胞浆NADH需转运至线粒体基质进行氧化
为何生物氧化主要的能量 代谢产物是ATP?
ATP合酶的作用 ATP的作用

人民卫生出版社《生物化学》第六章 生物氧化

人民卫生出版社《生物化学》第六章  生物氧化

⊿Gº’ = -nF ⊿Eº'
n:传递电子数;F:法拉第常数
➢ 合成1摩尔ATP 需能量约30.5kJ
偶联部位
NADH~CoQ CoQ~Cytc Cyta-a3~O2
电位变化 (∆E0')
0.36V 0.21V 0.53V
自由能变化 (∆G0')
69.5KJ/mol 40.5KJ/mol 102.3KJ/mol
三、NADH和FADH2是呼吸链的电子供体
1、NADH氧化呼吸链 NADH →复合体Ⅰ→CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
2、琥珀酸氧化呼吸链 琥珀酸 →复合体Ⅱ →CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
呼吸链各组分的排列顺序的实验依据
➢ 标准氧化还原电位 ➢ 特异抑制剂阻断 ➢ 还原状态呼吸链缓慢给氧 ➢ 将呼吸链拆开和重组
生物氧化与体外氧化之不同点
生物氧化
➢ 反应环境温和,酶促反应逐步进 行,能量逐步释放,能量容易捕 获,ATP生成效率高。
体外氧化
➢ 能量突然释放。
➢ 通过加水脱氢反应使物质能间接 获得氧;脱下的氢与氧结合产生 H2O,有机酸脱羧产生CO2。
➢ 物质中的碳和氢直接氧 结合生成CO2和H2O 。
生物氧化的一般过程
胞液侧 4H+
2H+ 4H+ Cyt c
+
+++++ +
++
+
Q

--
NADH+H+
NAD+

-
延胡索酸
琥珀酸

Ⅲ- - -

生物化学教案:第六章 生物氧化

生物化学教案:第六章 生物氧化

一系列酶促反应逐步进行,能
量逐步释放有利于机体捕获
能量,提高 ATP 生成的效率
通过加水脱氢反应使物
物质中的碳和氢直接氧
质能间接获得氧,并增加脱氢 结合生成 CO2 和 H2O 。 的机会;脱下的氢与氧结合产
生 H2O , 有 机 酸 脱 羧 产 生 CO2。
二、生成 ATP 的氧化磷酸化体系 1、呼吸链
15 mins
教学主要内容
备注
高能磷酸键:水解时释放的能量大于 21KJ/mol 的磷酸酯键,常
表示为 P
高能磷酸化合物即含有高能磷酸键的化合物 5、线粒体内膜对各种物质进行选择性转运
25 mins
线粒体外膜通透性高,线粒体对物质通过的选择性主要依
赖于内膜中不同转运蛋白(transporter)对各种物质的转运。 胞液中 NADH 的氧化 转运机制主要有:
Cyt c1 ,
Cyt a
复 合 细胞色素 162
体Ⅳ
C 氧化酶
13 血红素 a, Cyt c(膜
a3,
间隙侧)
CuA, CuB
排列顺序:(1)NADH 氧化呼吸链 NADH →复合体Ⅰ→Q →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
(2)琥珀酸氧化呼吸链 琥珀酸 →复合体Ⅱ →Q →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
氧化磷酸化偶联机制是产生跨线粒体内膜的质子梯度
偶联机制:化学渗透假说
电子经呼吸链传递时,可将质子(H+)从线粒体内膜的基质侧
泵到内膜胞浆侧,产生膜内外质子电化学梯度储存能量。当质子顺
浓度梯度回流时驱动 ADP 与 Pi 生成 ATP。
质子顺梯度回流释放能量被 ATP 合酶利用催化 ATP 合成

生物化学--第六章 生物氧化(3-4节)

生物化学--第六章 生物氧化(3-4节)

2019/1/4
17
2019/1/4
18
化学渗透假说的内容★★
1.呼吸链中传氢体和电子传递体是间隔交替排列的,且
在线粒体内膜都有特定的位置,催化反应是定向的。
2.内膜对H+不能自由通过,泵出膜外侧的H+不能自由
返回膜内侧,造成电化学梯度
3.复合体Ⅰ、Ⅲ、Ⅳ都有质子泵的作用
4.ATP合酶存在于线粒体内膜上,H+梯度是ATP合成的 驱动力
2019/1/4 24
ATP
四 线粒体 ATP合酶(mitochondrial ATPase) 形成ATP的机理
F1

F0
2019/1/4
25
2019/1/4
26
ATP合酶
Hale Waihona Puke ATP合成酶由 疏水的 F0(a1b2c1012) 和亲水的 F1(33)组 成. 质子穿过a时, 推动c环象水 车一样转动, 连带F1转动.
(二)质子梯度的形成
(三)线粒体 ATP合酶(mitochondrial ATPase)
(四)ATP合成的机制
2019/1/4
16
(一)能量偶联假说 1953年 Edward Slater 化学偶联假说
1964年 Paul Boyer 构象偶联假说 1961年 Peter Mitchell 化学渗透假说
2019/1/4
44
2019/1/4
45
七、有关氧化磷酸化物质的运输
• 胞液中的3-磷酸甘油醛,3-磷酸甘油或乳 酸脱氢,均可产生NADH。 • 这些NADH可经穿梭系统而进入线粒体氧 化磷酸化,产生H2O和ATP。
2019/1/4 46
-磷酸甘油穿梭示意图
呼吸链

6生物化学习题(答案)

6生物化学习题(答案)

6生物化学习题(答案)6 生物氧化一、名词解释1、生物氧化:生物细胞将糖、脂、蛋白质等燃料分子氧化分解,最终生成CO2和H2O并释放出能量的作用。

生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。

2、呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。

电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。

3、氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP磷酸化生成ATP的作用,称为氧化磷酸化。

氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP的主要方式。

4、P/O:电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP磷酸化生成ATP。

经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数(也是生成ATP的分子数)称为磷氧比值(P/O)。

如NADH的磷氧比值是3,FADH2的磷氧比值是2。

5、底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。

此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。

6、能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP系统的能量状态。

1、真核细胞的呼吸链主要存在于线粒体内膜,而原核细胞的呼吸链存在于细胞质膜。

2、NADH呼吸链中氧化磷酸化的偶联部位是复合体Ⅰ、复合体Ⅲ、复合体Ⅳ。

3、在呼吸链中,氢或电子从电负性较大(氧化还原电位较低)的载体依次向电正性较大(氧化还原电位较高)的载体传递。

基础生物化学第6章

基础生物化学第6章
FAD(FMN)H2
类别:黄素脱氢酶类(如NADH脱氢酶、琥珀酸脱氢酶)
需氧脱氢酶类(如L—氨基酸氧化酶)
加单氧酶(如赖氨酸羟化酶)
铁硫蛋白
特点:含有Fe和对酸不稳定的S原子,Fe和
S常以等摩尔量存在(Fe2S2, Fe4S4 ),构成 Fe—S中心,Fe与蛋白质分子中的4个Cys残 基的巯基与蛋白质相连结。 +e
NO2
• 离子载体
短杆菌肽等
• 解偶联蛋白
NADH 鱼藤酮 安密妥 FMN Fe-S
电 子 传 递 抑 制 剂
复合物 I
琥珀酸
FMN
Fe-S
CoQ
Cyt b
复合物 II
抗霉素A
复合物 III
Fe-S Cyt c1 Cyt c Cyt aa3
氰化物 CO
复合物 IV
O2
化学渗透假说示意图
+++++++++
电 子 传 递 链 中 各 中 间 体 的 顺 序
NADH
FMN
复合物 I
NADH 脱氢酶
Fe-S
琥珀酸等
FMN
Fe-S
CoQ
复合物 II
琥珀酸-辅酶Q 还原酶
Cyt b
复合物 III
Fe-S
辅酶Q-细胞色素 还原酶
Cyt c1
Cyt c
复合物 IV
Cyt aa3
细胞色素C 还原酶
O2
呼吸链中电子传递时自由能的下降
NADH呼吸链
还原型代 谢底物
MH2
NAD+
FMNH2
CoQ
2Fe2+
细胞色素

06生物化学习题与解析--生物氧化

06生物化学习题与解析--生物氧化

06⽣物化学习题与解析--⽣物氧化⽣物氧化⼀、选择题A 型题1 .下列对呼吸链的叙述不正确的是A .复合体Ⅲ和Ⅳ为两条呼吸链所共有B .呼吸链中复合体Ⅰ、Ⅲ、Ⅳ有质⼦泵功能C .递氢体也必然递电⼦D .除 Cytaa 3 外,其余细胞⾊素都是单纯的递电⼦体E . Cyta 和 Cyta 3 结合较紧密2 .⼈体内⽣成 ATP 的主要途径是A .三羧酸循环B .氧化C .氧化磷酸化D .底物⽔平磷酸化E .糖酵解3 .呼吸链存在的部位是A .胞浆B .线粒体内膜C .线粒体内D .线粒体外膜E .细胞膜4 .细胞⾊素 C 氧化酶含有下列哪种⾦属元素A .鋅B .镁C .钙D .酮E .钼5 .下列哪种酶中含有硒元素A .乳酸脱氢酶B .⾕胱⽢肽过氧化物酶C .细胞⾊素 C 氧化酶D .过氧化氢酶A .两条呼吸链排列在线粒体外膜上B .两条呼吸链都含有复合体ⅡC .解偶联后,呼吸链就不能传递电⼦了D .通过呼吸链传递 1 个氢原⼦都可能⽣成 2.5 分⼦ ATPE .两条呼吸链的汇合点是辅酶 Q7 .能直接与氧结合的细胞⾊素类是A . CytbB . CytcC . Cytc 1D . Cytaa 3E . CytP 4508 .在线粒体内 NADH 进⾏氧化磷酸化的 P/O ⽐值为A. 1B. 1.5 C . 2.5 D. 4 E. 59 .电⼦按下列各式传递时能偶联磷酸化的是A .Cytc→Cytaa 3B .CoQ→CytbC .Cytaa 3 →1/2O 2D .琥珀酸→ FAD E. 以上都不是10 .关于化学渗透假说叙述错误的是A .必须把线粒体内膜外侧的 H + 通过呼吸链泵到内膜来B .需在线粒体内膜两侧形成电位差C .质⼦泵的作⽤在于存储能量D .由英国学者 Mitchell 提出E . H + 顺浓度梯度由膜外回流时驱动 ATP 的⽣成11 下列代谢物经过⼀种酶催化后脱下的 2H 不能经过 NADH 呼吸链氧化的是A . CH 3 CH 2 CH 2 CO~SCoAB .异柠檬酸C .α- 酮戊⼆酸D . HOOC-CHOH-CH 2 -COOHE . CH 3 -CO-COOH12 .影响氧化磷酸化的激素是A .胰岛素D .胰⾼⾎糖素E .肾上腺⽪质激素13 . NADH 和 NADPH 中含有共同的维⽣素是A . VitB 1 B . VitB 2C . VitPPD . VitB 12E . VitB 614 .体内能量存储的主要形式是A . ATPB . CTPC . ADPD .肌酸E .磷酸激酸15 .下列化合物中哪⼀个不是⾼能化合物A .⼄酰 CoAB .琥珀酰 CoAC . AMPD .磷酸激酸E .磷酸烯醇式丙酮酸16 .体内 CO 2 来⾃A .碳原⼦被氧原⼦氧化B .呼吸链的氧化还原过程C .有机酸脱羧D .脂肪分解E .糖原分解17 .苹果酸穿梭系统需要下列哪种氨基酸参与A . GlnB . AspC . AlaD . LysE . Val18 .肌⾁中能量的主要存储形式是C . UTPD . CTPE .磷酸肌酸19 .氰化物中毒是由于它抑制了A . CytbB . CytcC . CytP 450D . Cytaa 3E . Fe-S20 .下述各酶催化的反应与 H 2 O 2 有关,但例外的是A .⾕胱⽢肽过氧化物B .触酶C . SOD D .黄嘌呤氧化酶E .混合功能氧化酶(⼆)B 型选择题A. Vit-PPB. Vit-B 12 C . Fe-S D. ⾎红素 E. 苯醌结构1. CoQ 分⼦中含有2. NAD + 分⼦中含有A. 核醇B. 铁硫蛋⽩C. 苯醌结构D. 铁卟啉类E. 异咯嗪环3. CoQ 能传递氢是因为分⼦中含有4. FAD 传递氢其分⼦中的功能部分是A. F 1B. F 0 C . α- 亚基 D. OSCP E. β- 亚基5. 能与寡酶素结合的是6. 质⼦通道是A. NAD + /NADHB. NADP + /NADPHE. CoQ/ CoQH 27. 物质氧化时,⽣成 ATP 数的依据是8. 调节氧化磷酸化运转速率的主要因素是A. CH 3 -CO-S~ CoAB. PEPC. CPD. GTPE. 1,3- ⼆磷酸⽢油酸9. 上述化合物不含⾼能磷酸键的是10. 属于磷酸酐的物质是11. 属于混合酸酐的物质是(三) X 型题1. ⽣物氧化的特点是A. 反应条件温和B. 有酶参加的酶促反应C. 能量逐步释放D. 不需要氧E. 在细胞内进⾏2. 脱氢( 2H )进⼊琥珀酸氧化呼吸链的物质是A. 琥珀酸B. β- 羟丁酸C. 线粒体内的α- 磷酸⽢油D. HOOC-CH 2 -CH 2 -COOH3. 以 NAD + 为辅酶的脱氢酶有A. α- 磷酸⽢油醛脱氢酶B. 异柠檬酸脱氢酶C. 琥珀酸脱氢酶D. 苹果酸脱氢酶E. 脂酰 CoA 脱氢酶4. 琥珀酸氧化呼吸链和 NADH 氧化呼吸链的共同组成部分是A. NADHB. 琥珀酸C. CoQ5. 下列含有⾼能键的物质有A. ATPB. AMPC. ⼄酰 CoAD. 磷酸肌酸E. 琥珀酰 CoA6. 氧化磷酸化偶联部位有A. NADH→CoQB. CoQ→Cyt b , cC. Cy t c→Cyt aa 3D. Cyt aa 3 → O 2E. FAD→CoQ7. 琥珀酸氧化呼吸链中氢原⼦或电⼦的传递顺序为A. 琥珀酸→FADB. FMN→CoQ→CytC. FAD→CoQD. b→c 1 →c→aa 3E. FAD→Cyt b8. 下列每组内有两种物质,都能抑制呼吸链同⼀个传递步骤的是A. 粉蝶霉素 A 和鱼藤酮B. BAL 和寡霉素C. DNP 和 COD. H 2 S 和 KCNE. 异戊巴⽐妥和 CO9. 脱氢需经过α- 磷酸⽢油穿梭系统的物质有A. 琥珀酸B. CH 3 -CHOH-COOHC. 3- 磷酸⽢油醛D. 柠檬酸E. 丙酮酸10. 线粒体内可以进⾏的代谢是A. 三羧酸循环B. 氧化磷酸化E. 酮体的合成11. ⽣物氧化中 CO 2 的⽣成⽅式有A. α- 单纯脱羧B. α- 氧化脱羧C. β- 单纯脱羧D. β- 氧化脱羧E. 以上都是12. 体内清除 H 2 O 2 的酶有A. 过氧化氢酶B. SODC. 过氧化物酶D. 加双氧酶E. 单加氧酶⼆、是⾮题1.NAD + 在呼吸链中传递两个氢原⼦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧化途 主要存 主要承 径 在的组 担酶 织
-磷酸 骨骼肌、 α-磷酸
甘油穿 神经细 甘油脱


氢酶
苹果酸 肝、心 苹果酸 穿梭 肌组织 脱氢酶
胞液中 主要承 担酶的
辅基 NAD+
NAD+
线粒体 内主要 承担酶 的辅基
FAD
被完全 氧化时 经过的 呼吸链
琥珀酸氧 化呼吸链
完全氧 化时产 生的 ATP量
下的氢和电子沿呼吸链传递过程
中,逐步释放能量使ADP氧化生
成ATP。这种氧化与磷酸化紧密
偶联的过程称氧化磷酸化作用。
17.11.2020
h
5
AH2 2H
A
NADH++H (或 FADH2)
H2O
NAD+ (或 FAD)
电子传递链
氧化过程

1/2 O2


释放能量
酸 化
ADP + Pi ATP合成酶 ATP 磷酸化过程
第三节 底物水平磷酸化
一ATP的生成方式
底物水平磷酸化 氧化磷酸化
17.11.2020
h
1
(一)底物水平磷酸化
1.定义:由底物分子因脱氢或脱
水而使分子内部能量重新分配产生
的高能磷酸键(或高能硫酯键),
在激酶作用下将高能键上的键能直
接转移给ADP(或 GDP)而生成
ATP(或 GTP)的反应。
17.11.2020
Fe-S Cyt c1
Cyt c
Cyt aa3 复合物 IV
O2
呼吸链抑制剂的阻断位点
抗霉素A 二巯基丙醇
17.11.2020
鱼藤酮 粉蝶霉素A 异戊巴比妥 h
CO、CN-、 N3-及H2 S
38
17.11.2020
h
39
(四) 解偶联剂
不阻断电子传递,但拆散氧化和磷酸化的 偶联作用。
P/O很低,甚至为零
17.11.2020
h
19
化学渗透假说的支持证据
①电子传递能形成H+浓度梯度 ②线粒体内膜对H+、OH-、Cl-、K+等不能透过 ③ ATP合成需要有完整的内膜 ④破坏H+浓度梯度使得磷酸化不能进行 ⑤膜表面能储存大量质子,也能迅速转移质子
17.11.2020
h
20
化学渗透假说示意图
H
+
H
+
H
H
17.11.2020
h
36
(三) 呼吸链抑制剂
粉蝶霉素A
鱼藤酮 安密妥
琥珀酸
作用:阻断电子传递
FMN
Fe-S
复合物 II
抗霉素A
NAD FP Q b c aa3
NAD FP Q b c aa3
抗霉素 A的 抑制部位
呼吸链的比拟图解
氰化物 CO
NADH
FMN 复合物 物 III
17.11.2020
h
40
2,4一二硝基酚(DNP)
使电子传递和ATP两个过程分离,失掉它们的 紧密联系,只抑制ATP的形成过程,但不抑制 电子传递过程
17.11.2020
h
41
解偶联作用机制
H+
H+
H+
解偶联蛋白
H+
17.11.2020

H+
ADP+ ATP+H
P
2
h
i
42O
氧化磷酸化抑制剂
17.11.2020
h
6
2、呼吸链成分的排列次序
标准氧化还原电位及自由能变化 复合体体外拆开与重组 特异抑制剂阻断 还原状态呼吸链缓慢给氧
17.11.2020
h
8
17.11.2020
h
9
呼吸链电子传递过程中,哪些区段 放出的能量能实现ADP的磷酸化?
17.11.2020
h
10
二、氧化磷酸化偶联部位 确定
(二)质子梯度的形成 (三)线粒体 ATP合酶(mitochondrial ATPase) (四)ATP合成的机制
17.11.2020
h
16
(一)能量偶联假说 1953年 Edward Slater 化学偶联假说 1964年 Paul Boyer 构象偶联假说 1961年 Peter Mitchell 化学渗透假说
直接干扰 ATP的生成 过程
阻止质子从 F0质子通道 回流。
寡霉素
17.11.2020
h
43
(五) 离子载体抑制剂 能与某些离子结合并作为载体使之穿越膜 它们能与除H+以外的所有一价阳离子结合
17.11.2020
h
44
17.11.2020
h
45
七、有关氧化磷酸化物质的运输
• 胞液中的3-磷酸甘油醛,3-磷酸甘油或乳 酸脱氢,均可产生NADH。
h
33
六、氧化磷酸化的影响因素 (一) 激素 甲状腺素 (二) ADP/ATP (三)抑制剂的作用 (四) 线粒体DNA突变
17.11.2020
h
34
(一) 激素 甲状腺素 促进细胞膜上的Na+-K + -ATPase 的生成,
促进ATP的分解
Na+-K+ ATP酶活性 ATP分解 ADP/ATP 氧化磷酸化
质子穿过a时,
推动c环象水 车一样转动,连 带F1转动.
17.11.2020
h
27
17.11.2020
h
28
五 ATP合成的机制
旋转催化机制
定子
转子
ba
17.11.2020
c
h
29
17.11.2020
h
30
17.11.2020
h
31
17.11.2020
h
32
旋转催化具体过程
17.11.2020
2ATP
NAD+ NADH氧 3ATP
化呼吸链
17.11.2020
h
52
17.11.2020
h
17
17.11.2020
h
18
化学渗透假说的内容★★
1.呼吸链中传氢体和电子传递体是间隔交替排列的,且 在线粒体内膜都有特定的位置,催化反应是定向的。
2.内膜对H+不能自由通过,泵出膜外侧的H+不能自由 返回膜内侧,造成电化学梯度
3.复合体Ⅰ、Ⅲ、Ⅳ都有质子泵的作用
4.ATP合酶存在于线粒体内膜上,H+梯度是ATP合成的 驱动力
• 这些NADH可经穿梭系统而进入线粒体氧
化磷酸化,产生H2O和ATP。
17.11.2020
h
46
-磷酸甘油穿梭示意图
NADH 油-脱磷氢酸酶甘+H+
NA D
+
呼吸链
FAD H
-磷酸甘
2
油脱氢酶
FA D
17.11.2020
h
47
α-磷酸甘油穿梭
NADH
(细胞液)
磷酸二羟丙酮
NAD+
3-磷酸甘油
磷酸二羟丙酮
17.11.2020
h
35
(二) ADP/ATP
定义式:能荷=
[ATP]+0.5[ADP] —————————
[ATP]+[ADP]+[AMP]
意义: 能荷由ATP 、 ADP和AMP的相对数量决定, 数值在0~1之间,反映细胞能量水平。
能荷对代谢的调节可通过ATP 、 ADP和AMP作为代 谢中某些酶分子的别构效应物进行变构调节来实现。

谷氨酸 草酰乙酸 NADH+H+
谷草转氨酶
谷草转氨酶
天冬氨酸 -酮戊二酸 Ⅲ -酮戊二酸 天冬氨酸
呼吸链
17.11.2020

h
50
(Ⅰ、 Ⅱ、 Ⅲ、 Ⅳ为膜上的转运载体)
线粒体外NADH两种氧化途径的比 较
穿梭物质 进入线粒 体前后转变 成的物质 进入呼吸链 生成ATP数 存在组织
α-磷酸甘油穿梭 α-磷酸甘油 磷酸二羟丙酮
NAD+/FAD H2
琥珀酸氧化呼吸链 1.5/2
某些肌肉、神经组织
苹果酸-天冬氨酸穿梭 苹果酸、 谷氨酸 天冬氨酸、α-酮戊二酸
NAD+/NADH+ H+ NADH 氧化呼吸链
2.5/3 肝脏和心肌组织
相同点
17.11.2020
将胞浆中NADH的还原当量转送到线粒体

h
51
NADH两种氧化途径的比较
氧化过程
物质氧化
高能电子 氧
energy
质子动力势 energy
ADP+Pi
ATP
17.11.2020
磷酸化过程
h
24
四 线粒体 ATP合酶(mitochondrial ATPase)
形成ATP的机理
F1
17.11.2020
h

F0
25
17.11.2020
h
26
ATP合酶
ATP合成酶
由疏水的 F0(a1b2c1012) 和亲水的 F1(33)组 成.
h
2
2.举例:糖酵解过程的底物磷酸化:
CHO
dehydrogenase
O
CO~ P
CHOH +NAD+ + Pi
CHOH
CH2O P
CH2O P
+NADH +H+
O
CO~ P
CHOH
相关文档
最新文档