九年级数学圆的知识点总结大全
九年级圆的全部知识点归纳

九年级圆的全部知识点归纳圆是几何学中的重要概念,具有广泛的应用价值。
在九年级的学习中,我们需要对圆的相关知识进行全面的了解,包括定义、性质、定理等方面。
本文将对九年级学习中的圆相关知识点进行归纳总结。
一、定义与基本术语1. 圆:由平面上到定点的距离相等的所有点的轨迹称为圆。
2. 圆心:圆上所有点到圆心的距离相等,圆心是圆的中心点。
3. 半径:连接圆心和圆上任意一点的线段称为半径,用字母r 表示。
4. 直径:通过圆心并且两端点都在圆上的线段称为直径,直径的长度等于半径的两倍。
5. 弧:圆上的两点间的部分称为弧。
6. 弦:圆上任意两点之间的线段称为弦。
二、圆的性质与定理1. 弧长公式:在圆心角相等的情况下,弧长和半径的乘积是相等的。
即L = rθ,其中L为弧长,r为半径,θ为对应的圆心角的度数。
2. 弧度制:1个圆周角对应的弧长等于圆周长的2π,使用弧度制时,1个圆周角对应的弧长等于半径的2π,即1圆周角= 2π弧度。
3. 弦弧定理:在圆上,相等弧所对应的弦相等,弦所对应的弧相等。
4. 弦切定理:一条弦上的两个切线所截的弧相等。
5. 切线与半径的关系:切线与半径的垂直分离定理,切线切圆的点与圆心连线垂直。
三、圆的重要定理与推论1. 中心角定理:圆上的中心角的度数等于它所对应的弧的度数。
2. 弧度的定义与利用:弧度是角度制的单位,通过弧长和半径之间的比值得到。
利用弧度可以简便地描述与计算圆的相关问题。
3. 圆周角定理:圆周角的度数等于360度,对应的弧度等于2π。
4. 平行弦定理:平行弦所对应的圆心角相等。
5. 弦割定理:当两条弦交于圆的内部一点时,各自所对应的弧之积相等。
四、圆的应用圆具有广泛的应用价值,在日常生活中有很多应用场景。
比如在建筑领域,圆经常用于设计弧形的拱门、圆顶等;在工程测量中,圆常被用于测量水井、桥梁等的半径;在电子工程中,圆被运用于制作集成电路的微缩线路等。
总结:通过本文对九年级学习中的圆相关知识点进行归纳总结,我们了解了圆的定义与基本术语、性质与定理以及应用。
九年级圆的知识点总结

九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。
2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。
3. 半径(r):圆心到圆上任意一点的距离。
4. 直径(d):通过圆心的最长弦,是半径的两倍长度。
5. 弦(c):连接圆上任意两点的线段。
6. 弧(a):圆上两点之间的圆周部分。
7. 优弧:大于半圆的弧。
8. 劣弧:小于半圆的弧。
9. 半圆:圆的一半,由直径所界定的弧。
10. 切线(t):与圆只有一个公共点的直线。
二、圆的性质1. 所有半径的长度相等。
2. 直径是圆内最长的弦。
3. 圆的任意两点之间的弧,优弧总是大于劣弧。
4. 切线与半径相交于圆外的一点,形成直角。
5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。
6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。
4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。
四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。
2. 圆与圆的关系:内含、外离、相交、内切、外切。
3. 圆的切线问题:求切线长度、切点坐标等。
4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。
5. 圆的面积问题:根据圆的半径、直径、周长等求面积。
五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。
2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。
3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。
九年级圆的知识点详细总结归纳

九年级圆的知识点详细总结归纳一、圆的定义和关键概念圆是一个平面上的简单闭曲线,由与一个固定点的所有点到该点的距离相等的点组成。
下面是一些重要的圆的关键概念:1. 圆心 (Center):圆心是圆的中心点,标记为O。
2. 圆周 (Circumference):圆的周长,也称为圆周,用C表示。
3. 直径 (Diameter):直径是通过圆心的、连接圆上两点的线段。
直径的长度是圆直径的两倍。
直径用d表示。
4. 半径 (Radius):半径是从圆心到圆上任意一点的线段。
半径的长度是直径的一半。
半径用r表示。
5. 弧 (Arc):圆上两点之间的一段路径叫做弧。
6. 弦 (Chord):圆上两点之间的线段叫做弦。
7. 切线 (Tangent):切线是切于圆的一条直线,且与圆仅有一个交点。
二、圆的性质和定理圆的性质和定理是研究圆的重要基础,下面是一些常见的圆的性质和定理:1. 直径定理:直径是最长的弦,且它把一个圆分成两个半圆。
2. 弧长定理:一个圆的弧长是根据圆的半径和弧度来计算的。
弧长等于半径乘以弧的弧度。
3. 弧心角定理:圆心角是以圆心为顶点的角,它的弧度等于弧长与半径的比值。
4. 切线定理:切线与半径的关系是垂直。
5. 切线和半径的性质:当一条直线与圆相切时,与切点相连的半径垂直于切线。
6. 切割定理:如果一个弦垂直于一个半径,那么它将被切分成两个互为正方向的弧。
7. 切割角度定理:互不相交的弧它们对应的圆心角相等,相交的弧,它们对应切线切割的角相等。
8. 重合弧定理:在同一个圆上,两个重合的弧对应的圆心角相等。
三、圆的应用圆在日常生活和实际问题中有很多应用,下面是一些常见的圆的应用:1. 圆的测量:通过测量圆的直径或半径可以计算圆的周长和面积。
2. 圆的构造:通过给定圆的半径或直径可以构造圆。
3. 圆的几何关系:圆与直线、圆与圆之间有各种几何关系,如相离、相切、相交等。
4. 圆的运动学:在物理学中,圆的运动学广泛应用于描述物体的圆周运动和周期性运动。
九年级数学下册圆的知识点整理

1.圆的定义与性质-定义:圆是平面上所有距离等于半径的点的集合。
-圆心:圆上任意两点的连线的垂直平分线的交点。
-半径:从圆心到圆上任意一点的长度。
-直径:通过圆心的两个点所确定的线段的长度,等于半径的2倍。
-弦:连接圆上两点的线段。
-弧:圆上的一段弯曲的连续的部分。
-弧长:弧所对应的圆的周长的比例,弧长等于弧所对应的圆的弧度乘以半径。
-圆周角:以圆心为顶点的角,大小等于所对弧的弧度。
2.圆心角与弧长的关系-弧度制:弧所对应的圆的半径长的角,记作弧长/半径。
-弧度制与度角制的换算:180°=Π弧度,1°=Π/180弧度。
-圆心角的弧度等于所对弧的弧长除以半径。
3.圆的位置关系-相交:两个圆的内部有公共点。
-外切:一个圆与另一个圆的外部只有一个公共点。
-两圆相切:两个圆的外部有一个公共点。
-相离:两个圆的内部没有公共点,也没有公共切点。
4.弧与弦的关系-弦分弧:一个弦所对的两条弧,互为补角。
-等弧等价:等长的弧。
5.切线与圆的关系-切线:与圆仅有一个公共点的直线。
-切线的性质:切线与半径垂直,半径在切点上的垂线上。
6.直径、弦与切线的关系-直径是两个切点的连线。
-沿切线作的直径过切点的垂线,则直径上的垂直弦与切线相交于切点。
-公共切线:与两个圆分别有且仅有一个公共切点的直线。
7.线段与圆的位置关系-线段在圆内:线段的两个端点在圆内部。
-线段与圆相交:线段的一个端点在圆内部,另一个端点在圆外部。
-线段切圆:线段的一个端点在圆上,另一个端点在圆外部。
-线段被圆所截:线段的两个端点都在圆外部。
8.弦的性质-弦的中点:连接圆弧两端点的线段的中点在圆的内部。
-等弧等价:等长的弦所对的两条弧相等。
-弦的位置:两个相等长的弦互为等幅弦。
-垂直弦:以圆心为直径的弦是直径。
-到圆心的距离:从圆心到弦的中点的距离等于半径的长度。
第二十四章圆(完整知识点)人教版九年级数学上册

第二十四章 圆一、圆的有关概念及表示方法 (一)圆的定义1、描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。
其固定的端点O 叫做圆心,线段OA 叫做半径。
2、集合性定义:圆可以看成是所有到定点(圆心)的距离等于定长(半径)的点的集合。
(二)圆的表示方法:以点O 为圆心的圆,记作⨀O ,读作“圆O ”。
(三)圆具有的特性1、圆上各点到定点(圆心O )的距离都等于定长(半径r )。
2、到定点的距离等于定长的点都在同一个圆上。
注:(1)确定一个圆需要两个因素:圆心确定圆的位置,半径确定圆的大小。
(2)同一个圆中的所有半径都相等,所以圆上任意两点和圆心[三点不共线(直径)]构成的三角形都是等腰三角形。
(四)圆的有关概念1、弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。
以AC 为端点的弦,记作:弦AC 。
注:圆中有无数条弦,其中直径是最长的弦,但弦不一定是直径。
2、弧2.1圆上任意两点间的部分叫做圆弧、简称弧。
以A 、B 为端点的弧记作⨀AB ,读作“圆弧AB ”或“弧AB ”。
2.2圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
大于半圆的弧叫做优弧,如图中的⨀ABC 。
小于半圆的弧叫做劣弧,如图中的⨀AC。
注:(1)在一个圆中,任意一条弦都对着两条弧,任意一条弧只对着一条弦。
(2)弧包括优弧、劣弧、半圆;半圆既不是劣弧,也不是优弧。
3、同圆或等圆:能够重合的两个圆叫做等圆。
同圆或等圆的半径相等。
4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
等弧是全等的,不仅仅是弧的长度相等。
5、同心圆:圆心相同,半径不相等的圆叫做同心圆。
二、圆的有关性质 (一)垂直于弦的直径1、圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。
名称 文字语言 符号语言 图示垂径 定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧。
九年级初三 圆 知识点大汇总

九年级初三圆知识点大汇总考点一、圆的相关概念1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”考点二、弦、弧等与圆有关的定义(1)弦连接圆上任意两点的线段叫做弦。
(如图中的AB)(2)直径经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。
(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧考点四、圆的对称性1、圆的轴对称性,圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性,圆是以圆心为对称中心的中心对称图形。
考点五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角,顶点在圆心的角叫做圆心角。
2、弦心距,从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
考点六、圆周角定理及其推论1、圆周角,顶点在圆上,并且两边都和圆相交的角叫做圆周角。
九年级数学圆的知识点总结大全
一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。
二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。
2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。
3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。
4.圆周角的度量:可以用角的度数来衡量。
三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。
2.切线与半径的关系:切线与半径的关系是切线⊥半径。
3.弦的定义:两点之间的线段叫做弦。
4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。
四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。
2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。
五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。
2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。
六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。
九年级圆知识点总结归纳完整版
九年级圆知识点总结归纳完整版圆是初中数学中一个重要的几何概念,它有着广泛的应用。
本文将对九年级圆的相关知识点进行总结和归纳,帮助同学们更好地理解和掌握这一内容。
一、圆的定义圆是平面上的一个几何图形,由与其内部距离相等的所有点组成。
其中,距离圆心最远的点称为圆上的点,这个距离称为半径,用字母r表示。
圆上的任意两点之间的距离称为弦,圆的直径是一条穿过圆心并且与圆上的两点相接的弦,直径的长度是半径的两倍。
二、圆的性质1. 圆的周长公式:C = 2πr,其中C是圆的周长,r是圆的半径,π是一个无理数,近似值为3.14或22/7。
周长是圆上一周的长度,也可以说是圆的边界长度。
2. 圆的面积公式:A = πr²,其中A是圆的面积。
面积是圆所包围的平面区域的大小。
3. 切线的性质:切线是与圆只有一个交点的直线。
圆与切线相切时,切线与半径的夹角是直角。
4. 弦的性质:圆的直径是最长的弦,且直径平分圆。
如果两弦在圆内或圆上的交点连线通过圆心,则交线垂直于这两条弦。
三、圆的定位1. 圆的内切和外切:当一个圆与一个三角形的三条边都相切时,该圆称为三角形的内切圆;当一个圆与一个三角形的每条边的延长线相切时,该圆称为三角形的外切圆。
2. 圆的相似:两个圆的半径之比等于两个圆的周长之比,它们是相似的。
四、圆的推理与证明1. 直径在同一直线上的圆是同心圆:当两个圆的直径重合时,它们是同心圆。
2. 圆内接四边形的性质:一个四边形能够内切于一个圆的充要条件是,这个四边形的对角线互相垂直。
3. 正多边形外接圆的性质:一个正n边形可以内切与一个圆的充要条件是,这个正n边形的对角线互相垂直。
五、圆的应用1. 圆与三角形的应用:可以利用圆的性质来解决三角形的推理证明题,如证明三角形内切圆的性质、利用相似三角形证明圆的性质等。
2. 圆的平移、旋转和镜像:圆可以通过平移、旋转和镜像等变换来进行操作,这在解决几何问题时有着重要的作用。
(完整版)九年级数学圆的知识点总结大全
第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²—r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心.连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径.圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系A1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
图4图5推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
初三数学圆的知识点和公式总结
初三数学圆的知识点和公式总结数学圆的知识点和公式总结如下:1. 圆的定义:圆是由平面上所有到一个固定点的距离等于一个常数的点的集合。
2. 圆的要素:- 圆心:到圆上任意一点的距离相等的点,通常用大写字母O表示。
- 圆的半径:连接圆心和圆上任意一点的线段的长度,通常用小写字母r表示。
- 圆的直径:通过圆心的两个点之间的距离的两倍,即2r。
- 圆周:圆上所有的点构成的曲线。
- 圆内部:圆周所围成的区域。
3. 圆的相关公式:- 圆的周长:C=2πr,其中π≈3.14。
- 圆的面积:A=πr²。
- 圆的直径与周长的关系:C=πd,其中d为直径。
- 圆的直径与面积的关系:A=π(d/2)²。
4. 圆与圆的位置关系:- 相离:两个圆没有交点,且两个圆心之间的距离大于两个半径之和。
- 外切:两个圆内切于一个切点,且两个圆心之间的距离等于两个半径之和。
- 相交:两个圆有两个交点,且两个圆心之间的距离小于两个半径之和。
- 内切:一个圆在另一个圆的内部,且两个圆心之间的距离等于两个半径之差。
- 同心:两个圆的圆心重合,半径可以相等也可以不相等。
5. 圆的常用定理:- 弧长公式:弧长L=2πr(θ/360°),其中θ为所对的圆心角的度数。
- 弦长公式:弦长l=2r*sin(θ/2),其中θ为所对的圆心角的度数。
- 弧度制与角度制的转换:1弧度=180°/π,1°=π/180弧度。
- 正弦定理:在任意三角形ABC中,a/sinA=b/sinB=c/sinC。
- 余弦定理:在任意三角形ABC中,c²=a²+b²-2ab*cosC。
- 勾股定理:在直角三角形ABC中,a²+b²=c²。
希望以上总结对你有帮助!如有其他问题,请随时提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:《圆》
一、知识回顾
圆的周长: C=2πr 或C=πd 、圆的面积:S=πr ²
圆环面积计算方法:S=πR ²-πr ²或S=π(R ²-r ²)(R 是大圆半径,r 是小圆半径)
二、知识要点 一、圆的概念
集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
固定的端点O 为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系
1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;
2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;
3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;
三、直线与圆的位置关系
1、直线与圆相离 ⇒ d r > ⇒ 无交点;
2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;
A
3、直线与圆相交⇒d r
<⇒有两个交点;
四、圆与圆的位置关系
外离(图1)⇒无交点⇒d R r
>+;
外切(图2)⇒有一个交点⇒d R r
=+;
相交(图3)⇒有两个交点⇒R r d R r
-<<+;
内切(图4)⇒有一个交点⇒d R r
=-;
内含(图5)⇒无交点⇒d R r
<-;
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2
个即可
图4
图5
推出其它3个结论,即:
①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD
六、圆心角定理
顶点到圆心的角,叫圆心角。
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,
只要知道其中的1个相等,则可以推出其它的3个结论,
即:①AOB DOE ∠=∠;②AB DE =; ③OC OF =;④ 弧BA =弧BD
七、圆周角定理
顶点在圆上,并且两边都与圆相交的角,叫圆周角。
1、圆周角定理:同弧所对的圆周角等于它所对的圆
心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角
∴2AOB ACB ∠=∠ 2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角
所对的弧是等弧;
即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠
推论2:半圆或直径所对的圆周角是直角;圆周角是直
角所对的弧是
B
D
B
半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直
角三角形。
即:在△ABC 中,∵OC OA OB ==
∴△ABC 是直角三角形或90C ∠=︒
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
八、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O 中,
∵四边形ABCD 是内接四边形 ∴
180C BAD ∠+∠=︒
180B D ∠+∠=︒
DAE C ∠=∠
九、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端
∴MN 是⊙O 的切线 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过
切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:
B
A
O
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理 切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠
十一、圆幂定理
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅
(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅
(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中
项。
即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅
(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅
D
B
B
A
十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共
弦。
如图:12O O 垂直平分AB 。
即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB 十三、圆的公切线 两圆公切线长的计算公式: (1)公切线长:
12Rt O O C
∆中
,
221AB CO =
(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。
十四、圆内正多边形的计算 (1)正三角形
在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中
进行
:
::2OD BD OB =;
(2)正四边形
同理,四边形的有关计算在Rt OAE ∆中进行
,
::OE AE OA =
(3)正六边形
同理,六边形的有关计算在Rt OAB ∆中进行
,
::2AB OB OA =.
十五、扇形、圆柱和圆锥的相关计算公式
1、扇形:(1)弧长公式:180
n R
l π=
; (2)扇形面积公式: 21
3602
n R S lR π=
= n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积
2、圆柱:
(1)A 圆柱侧面展开图 2S S S =+侧表底=2
22rh r ππ+
B 圆柱的体积:2V r h π= (2)A 圆锥侧面展开图
S S S =+侧表底=2Rr r ππ+
B 圆锥的体积:21
3
V r h π=
C 1
D 1。