第八章组合变形构建的强度习题答案.

合集下载

《材料力学》第八章课后习题参考答案

《材料力学》第八章课后习题参考答案

解题方法与技巧归纳
受力分析
在解题前首先要对物体进行受力分析, 明确各力的大小和方向,以便后续进 行应力和应变的计算。
图形结合
对于一些复杂的力学问题,可以画出 相应的示意图或变形图,帮助理解和 分析问题。
公式应用
熟练掌握材料力学的相关公式,能够 准确应用公式进行计算和分析。
检查结果
在解题完成后,要对结果进行检查和 验证,确保答案的正确性和合理性。
压杆稳定
探讨细长压杆在压缩载荷作用下的稳定性问题。
解题方法与技巧
准确理解题意
仔细审题,明确题目要求和考查的知识点。
选择合适的公式
根据题目类型和所给条件,选用相应的公式 进行计算。
注意单位换算
在计算过程中,要注意各物理量的单位换算, 确保计算结果的准确性。
检查答案合理性
得出答案后,要检查其是否符合实际情况和 物理规律,避免出现错误。
相关题型拓展与延伸
组合变形问题
超静定问题
涉及多种基本变形的组合,如弯曲与扭转 的组合、拉伸与压缩的组合等,需要综合 运用所学知识进行分析和计算。
超静定结构是指未知力数目多于静力平衡 方程数目的结构,需要通过变形协调条件 或力法、位移法等方法进行求解。
稳定性问题
疲劳强度问题
研究细长压杆在压力作用下的稳定性问题 ,需要考虑压杆的临界力和失稳形式等因 素。
研究材料在交变应力作用下的疲劳破坏行为 ,需要了解疲劳极限、疲劳寿命等概念和计 算方法。
THANKS FOR WATCHING
感谢您的观看
重点知识点回顾
材料的力学性质
包括弹性、塑性、强度、硬度等基本概念和 性质。
杆件的拉伸与压缩
涉及杆件在拉伸和压缩状态下的应力、应变及 变形分析。

第八章 组合变形 构件的强度计算1

第八章 组合变形 构件的强度计算1
s max = M y max Wy M z max 6.58创 103 2.39 103 + = + - 6 Wz 141创 10 21.2 10- 6
P
D1

=159.4MPa<[ ]
图示矩形截面梁,截面宽度b=90mm,高度h=180mm。 梁在两个互相垂直的平面内分别受有水平力F1和铅垂 力F2 。若已知F1=800N, F2=1650N, L =1m,试 求梁内的最大弯曲正应力并指出其作用点的位置。 M y = F1 L F2 M z = F2 L
或单向压缩),故:
FN M z ,max s max = + A Wz
强度条件
max≤ [ ]
例1
• 最大吊重P=8kN的起重机, AB杆的工字钢,材料为A3 钢,[]=100MPa,选择工 字钢型号。
“M”
“N”
Mmax=12kN· m

N=40kN
先按弯曲正应力选择工字钢型号; 再按组合变形的最大正应力校核强度,必要 时选择大一号或大二号的工字钢; 若剪力较大时,还需校核剪切强度。

-3
2
求内力(作用于截面形心) 取研究对象如图
N=P kN, -2 My =42.5´ 10 P kNm
危险截面 各截面相同 应力分布

危险截面 各截面相同 应力分布


N引起的应力

My引起的应力
N P = MPa σ¢ = A 15
σⅱ t max =
M y zo Iy M y z1 Iy
z
x
F1
L L
σ max =
My Wy
+
Mz Wz

材料力学习题册参考答案

材料力学习题册参考答案

材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。

(材料力学课件)第8章组合变形作业

(材料力学课件)第8章组合变形作业

F
4
d2
4
80103 222 106
F

52.61MPa[ ]130MPa
bF 1
合 变
(2) 挤压强度计算
形 作 业
bsF Abbss4F d 4282011003106
题 90.91MPa[bs]
Fs
Fs
Fs
3F/4
Fs
F
1F
(3) 板拉伸强度计算
上板轴力图
F/4
(+)
2 孔 F 面 A N 4 ( b 3 F 2 d d ) 4 ( 8 1 0 3 2 8 0 2 1 0 3 1 2 ) 0 1 0 6 0 1.7 6 M 6 [P ] a
故接头符合强度条件
8-27 解: (1) 由剪切强度条件
b
F
F
F A ss b F l 255 01 10 30 0 3l[]1160
a
l
l
第 得: l0.2m (2) 由挤压强度条件
8 章 组
b s F A b bs s a F ba 5 2 0 1 5 1 30 0 3 0[b]s 1 0 160

业 题
1 O 1 A C 1 A O C 2.7 1 1 (22 .4 3 ) 8 3.4 3 M 5 Pa
2 0
3 O 3 O A C C 3 A 1.7 1 4 2.7 1 1 9 .9M 7 Pa
8-20 解: (1) 剪切强度计算
Fs FAs
轴 卡环
380
30 40
第 A F s 3 18 4 4 0 5 1 0 3 0 1 00 63.3 0M 7 Pa
8 章
故卡环符合剪切强度条件

第八章-组合变形及连接部分的计算-习题选解.docx

第八章-组合变形及连接部分的计算-习题选解.docx

[8-1] 14号工字钢悬臂梁受力情况如图所示。

已知F2 l.OkN,试求危险截面上的最大正应力。

解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因[8-2]矩形截面木標条的跨度1 4m ,荷载及截面尺寸如图所示,木材为杉木, 弯曲许用正应力[]12MPa , E 9GPa ,许可挠度[w] 1/200 o试校核標条的强度和刚度。

1 0.8m , Fl 2.5kN ,钢材的拉压性能相同, 故只计算最大拉应力:maxMz MyWz Wy Wz Wy式中,Wz , Wy由14号工字钢, 查型钢表得到Wz 102cm^ , Wymax79.1 io'Pa MPa79 J2 102 10 6m3 16.1 10 6 n?■ . , ■ l ・6kN/m ________A 戈HHluq习题8解:(1)受力分析COS1.6 cos26° 34 1.431(/ kN mq z q sin 1.6 sin26°340.716( kN/m)(2)内力分析My .max4qz 1 81 2-q yl 2 8(3)应力分析Mz.max-4 0.716 8-1 1.432 84 2 1.432(kN m) 4? 2.864(kN m) 最大的拉应力出现在跨中截面的右上角点, 最大压应力出现在左下角点。

M y ・ maxz.maxmax式中,160 11026322667 mm?maxWz110 16O 26469333mm^1.432 1()6 N mm2.86425 心隔(4)强度分析 因为max(5)变形分析322667 mm?469333mm310.54MPa , [ ] 12MPa ,即max[所以杉木的强度足够。

最大挠度出现在跨中,查表得:■1-60-1-1^ 17746667 (mn?)12(6)刚度分析 12屮一37546667 mm^12Wcy5qyl4 5 1.431N/mm 4000^ mm^ 384EIz 384 9 1()3 N/mn? 37546667mm^14.12mmwcz5qzl^ 5 0.716N/mm 400()4 mn? 384EIy384 9103 N/mm217746667mm° 14.94.mm (Wc/ \i4.12 214.94220,56(mm)式中,ly12因为WmaxWc 20・56(mm) , [ w]400020(mm),即 Wmax [w],200 200 所以,从理论上讲,变形过大,不符合刚度要求。

第八章组合变形时的强度计算

第八章组合变形时的强度计算

Iy
IY
由 mz 产生的正应力
s"' MZ .y Fyp y
IZ
IZ
假设C 点在第一象限内,根据杆件的变形可知, s ',s '',s ''' 均为拉应
力,由叠加原理,即得 C点处的正应力为:
σ σ' σ'' σ'''
任意横截面 n-n上的 C点的正应力为
c
σ F F zP z F yP y
与y轴的夹角θ为:
tgθ z0 Mz Iy Iy tgφ y0 My Iz Iz
公式中角度 是横截面上合成弯矩 M 的矢量与 y 轴的夹角 . 横截面上合成弯矩 M 为:
M
M
2 y
M
2 z
tgθ Iy tgφ Iz
讨论:
(1) 一般情况下,截面的 IzIy ,故中性轴与合成弯矩 M 所在平面不垂直,此为斜弯曲的受力特征。导致挠曲线与外 力(合成弯矩)所在面不共面,此为斜弯曲的变பைடு நூலகம்特征。
s s ' s '' My z - Mz y
Iy
Iz
式中,Iy和Iz分别为横截面对于两对称轴y和z的惯性矩; M y和Mz分别是截面上位于水平和铅垂对称平面内的弯矩,且 其力矩矢量分别与y轴和z轴的正向相一致。在具体计算中,
也可以先不考虑弯矩M y、Mz和坐标y、z的正负号,以它们的 绝对值代入,然后根据梁在P1和P2分别作用下的变形情况, 来判断上式右边两项的正负号。
FN A
Mz Wz
158 MPa
s
所以强度是安全
【例8-4】矩形截面柱如图所示。P1的作用线与杆轴线重合, P2作用在 y 轴上。已知, P1= P2=80kN,b=24cm , h=30cm。 如要使柱的m—m截面只出现压应力,求P2的偏心距e。

结构设计原理 第八章 变形 习题及答案

结构设计原理 第八章 变形 习题及答案

第八章钢筋混凝土构件裂缝及变形的验算一、填空题1.混凝土构件裂缝开展宽度及变形验算属于极限状态的设计要求,验算时材料强度采用。

2. 是提高钢筋混凝土受弯构件刚度的最有效措施。

3. 裂缝宽度计算公式中的,σsk是指,其值是按荷载效应的组合计算的。

4.钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而。

用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距_______(大、小)些。

5.钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在弯矩范围内,假定其刚度为常数,并按截面处的刚度进行计算。

6.结构构件正常使用极限状态的要求主要是指在各种作用下和不超过规定的限值。

7.裂缝间纵向受拉钢筋应变的不均匀系数Ψ是指之比,反映了裂缝间参与工作的程度。

8.平均裂缝宽度是指位置处构件的裂缝宽度。

二、选择题1. 计算钢筋混凝土梁的挠度时,荷载采用()A、平均值;B、标准值;C、设计值。

2. 当验算受弯构件挠度时,出现f>[f]时,采取()措施最有效。

A、加大截面的宽度;B、提高混凝土强度等级;C、加大截面的高度;D、提高钢筋的强度等级。

3. 验算受弯构件裂缝宽度和挠度的目的是()。

A、使构件能够带裂缝工作;B、使构件满足正常使用极限状态的要求;C、使构件满足承载能力极限状态的要求;D、使构件能在弹性阶段工作。

4. 钢筋混凝土轴心受拉构件的平均裂缝间距与纵向钢筋直径及配筋率的关系是()。

A、直径越大,平均裂缝间距越小;B、配筋率越大,平均裂缝间距越大;C、直径越小,平均裂缝间距越小;5. 钢筋混凝土梁截面抗弯刚度随荷载的增加及持续时间增加而()。

A、逐渐减小;B、逐渐增加;C、保持不变;D、先增加后减小。

6. 裂缝间钢筋应变的不均匀系数Ψ的数值越大,说明()。

A、裂缝之间混凝土的应力越大;B、裂缝之间钢筋应力越小;C、裂缝之间混凝土的应力越小;D、裂缝之间钢筋应力为零。

7. 当其他条件完全相同,根据钢筋面积选择钢筋直径和根数时,对裂缝有利的选择是()。

第八章 组合变形的强度计算

第八章 组合变形的强度计算

FAx A FAy FN
l/2
F2
C
B F1
b
cmax
σcmax
l/2
FB F1
h
z
y


z
=
z
M

M max F2 l 4
tmax
Mmax max Wz
σtmax
5.强度计算 (脆性材料)
F M max 1 max t t max A Wz F M c max max 1 max c A Wz
y My M y max Wy

z
My
讨论:无棱角的截面如何确定危险点
b

h
z

y
z

z
Mz
My
y
z
F
y
F
y
t max
Mz M y Wz Wy
Mz M y c max Wz Wy
此时,应先找出组合变形的 中性轴,距中性轴最远的点有最 大的正应力。
F
l
Mz Fy x Fx cos
M y Fz x Fx sin
3.应力计算 (计算A(y,z)点的正应力)
Mz A Mz y Iz
A A A
Mz y M y z A Iz Iy
M y A
M yz Iy
§8-3
概述 两相互垂直平面内的弯曲
拉伸(压缩)与弯曲
§8-4
扭转与弯曲
§8-1 概述
组合变形:由两种或两种以上基本变形组合形成的变形。 工程实例:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 组合变形构件的强度习题答案
一、填空题
1、组合
二、计算题
1、解:31
7888010157.610(N mm)4M =⨯⨯⨯=⨯⋅
336
78810141.8410(N mm)2T =⨯⨯=⨯⋅
33
800.1r d
σ=
=≤ 解得
d ≥30mm
2
、解:(1) 轴的计算简图
画出铰车梁的内力图:
险截面在梁中间截面左侧,P T P M 18.02.0max ==
(2) 强度计算
第三强度理论:()
()[]σπσ≤+=+=
2
2
322318.02.032
P P d
W T M Z r
[]()()()()
mm
m d 5.320325.010118.01012.010
8032
10118.01012.032
3
2
32
36
32
32
3==⨯⨯+⨯⨯⨯⨯=⨯⨯+⨯⨯≥πσπ
所以绞车的轴的最小直径为32.5mm 。

3、解:
m kN 8.1⋅
m kN 2.4⋅
(1)外力分析,将作用在胶带轮上的胶带拉力F 1、F 2向轴线简化,结果如图b . 传动轴受竖向主动力:
kN 1436521=++=++=F F G F , 此力使轴在竖向平面内弯曲。

附加力偶为:
()()m kN 8.16.03621⋅=⨯-=-=R F F M e , 此外力偶使轴发生变形。

故此轴属于弯扭组合变形。

(2)内力分析
分别画出轴的扭矩图和弯矩图如图(c )、(d ) 危险截面上的弯矩m kN 2.4⋅=M ,扭矩m kN 8.1⋅=T (3)强度校核
()()
[]σπσ≤=⨯⨯+⨯=
+=
MPa W T
M Z
r 6.4632
1.0108.110
2.43
2
32
32
23
故此轴满足强度要求。

4、解:1)外力分析
kN F Q Q F 625
.01==∴⨯=⨯Θ
2)内力分析,做内力图
2222
22
37.65.3.7.653600.1d
0.1d 111eq z M kN m T kN m M
T M T W d mm σ==+++=
=
=
≤>L L
3)求直径 []MPa
801.010375.0)1065.7(1.075.075.03
2
62
63
2
2
z
2
2
4r =≤⨯⨯⨯+⨯=⨯+=+=
σσd d T M W T M )(mm 101≥d
5、
F
m B
mm N F ⋅140
mm N F ⋅150
解:
mm
N F T mm
N F M ⋅=⋅=140150()()
22
22
4150140[]160r z
F F M T Mpa W σσ++=
=
≤=
2353N 2.4kN F ≤≈ 故此结构的许可载荷F 为2.4kN 。

6、解 简化力系
()
()()
[]
200mm
d 32
109.11025.1W T M m 25KN .12
1
5.22D F -2F M 9.5KN
522.52F F F F 3
2
62
6Z
2
Max
2Max r3P ≈≤⨯+⨯=
+=⋅=⨯===++=++=解出总σπσd。

相关文档
最新文档