实际问题与二次函数(抛物线模型).doc

合集下载

26.3实际问题与二次函数(1)

26.3实际问题与二次函数(1)
做一做
= − 20 x + 100 x + 6000 (0≤x≤20)
2
当x = −
1 所以降价时,定价为 所以降价时 定价为 57 2 6125元. 元
b 5 5 5 = 时, y 最大 = − 20 × + 100 × + 6000 = 6125 2a 2 2 2
2
元,利润最大,最大利润为 利润最大,
S=- 2 +30l =-l =- 因此, 因此,当 l = −
( 0 < l < 30 )
b 30 时 =− = 15 , 2a 2× (−1)
4ac − b2 − 302 = = 225, S有最大值 有最大值 4a 4×(−1)
也就是说, 最大( = 也就是说, 当l是15m时,场地的面积 最大(S= 是 时 场地的面积S最大 225m2).
6 4 2 0
x 2
-4 -2
探究
用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边 的篱笆围成矩形场地,矩形面积 随矩形一边 用总长为 的篱笆围成矩形场地 的变化而变化, 是多少时,场地的面积S最大 最大? 长 l 的变化而变化,当 l 是多少时,场地的面积 最大?
分析: 的函数关系式, 分析:先写出S与l的函数关系式,再求出使S最大的l值. s 矩形场地的周长是60m,一边长为 , 矩形场地的周长是 ,一边长为l, 60 则另一边长为 − l m ,场地的面积 2 200 S=l ( 30-l ) = - 即 S=- +30l =-l =-
请大家带着以下几个问题读题
(1)题目中有几种调整价格的方法? )题目中有几种调整价格的方法? (2)题目涉及到哪些量之间的关系? )题目涉及到哪些量之间的关系? (3)哪一个量是自变量?哪些量随之发生 哪一个量是自变量? 哪一个量是自变量 了变化? 了变化?

实际问题与二次函数(最大值问题)

实际问题与二次函数(最大值问题)
小结:
26.3实际问题与二次函 数
1.什么样的函数叫二次函数? 形如y=ax2+bx+c(a、b、c是常数,a≠0)
的函数叫二次函数
2.如何求二次函数y=ax2+bx+c(a≠0) 的最值?有哪几种方法?写出求二 次函数最值的公式
(1)配方法求最值(2)公式法求最值
b 4ac-b 当x=- 时,y有最大(小)值 2a 4a
综上x=64时y最大,最大值为6240元
创新学习
某果园有100棵橙子树,每一棵树平均结 600个橙子.现准备多种一些橙子树以提高 产量,但是如果多种树,那么树之间的距离和 每一棵树所接受的阳光就会减少.根据经验 估计,每多种一棵树,平均每棵树就会少结5 个橙子.若每个橙子市场售价约2元,问增种 多少棵橙子树,果园的总产值最高,果园的 总产值最高约为多少?
某商品现在的售价为每件60 元,每星期可卖出300件,市 场调查反映:每涨价1元,每 星期少卖出10件;每降价1元, 每星期可多卖出20件,已知 商品的进价为每件40元,如 何定价才能使利润最大?
请大家带着以下几个问题读题:
(1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是 自变量?哪些量随之发生了变化?
解:设商品售价为x元,则x的取值范围 为40(1+40%)≤x≤40(1+60%) 即56≤x≤64
若涨价促销,则利润 y=(x-40)[300-10(x-60)] =(x-40)(900-10x) =-10x2-1300x-36000 =-10[(x-65)2-4225]-36000 =-10(x-65)2+6250 ∵60≤x≤64 ∴由函数图像或增减性知当 x=64时y最大,最大值为6240元 若降价促销,则 利润y=(x-40)[300+20(60-x)] =(x-40)(1500-20x) =-20(x2-115x+3000) =-20(x-57.5)2+6125 ∵56≤x≤60 ∴由函数图像或增减性知 当x=57.5时y最大,最大 值为6125元

实际问题与二次函数(3)——抛物线形实际问题+课件++2023—2024学年人教版数学九年级上册

实际问题与二次函数(3)——抛物线形实际问题+课件++2023—2024学年人教版数学九年级上册
5
解得x=9或x=-1(不符合题意,舍去).
∴小明这次投掷的成绩为9 m.
课堂导学
多维导学案九年级全一册数学(RJ)
【变式1】足球训练中,小军从球门正前方8 m的A处射门,球射向
球门的路线呈抛物线.当球离球门的水平距离为2 m时,球达到最高
点,此时球离地面3 m ,现以点O为原点建立如图所示直角坐标系.
的高度为1.8 m,当铅球飞行的水平距离为4 m时距离地面最高为5
m . 铅 球 飞 行 的 高 度 y(m) 与 水 平 距 离 x(m) 之 间 的 函 数 图 象 如 图 所
示.求: (2)小明这次投掷的成绩.
1
(2)由(1)知y=- (x-4)2+5,
5
1
当y=0时,0=- (x-4)2+5,
25
课堂导学
多维导学案九年级全一册数学(RJ)
【变式2】现要修建一条隧道,其截面为抛物线形,如图所示,线
段OE表示水平的路面,以点O为坐标原点,以OE所在直线为x轴,以过
点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE
=10 m,该抛物线的顶点P到OE的距离为9 m.
(2)现需在这一隧道内壁上安装照明灯,如图所
解决抛物线形问题的步骤
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标,由x求y或由y求x,要弄清题意.
重难导学
1.跳绳时,绳子甩到最高处的形状可近似看做抛物线,如图所
1 2 1
3
示,抛物线的函数表达式为y=- x + x+ (单位:m),绳子甩到最高
6
3
2
1.5
处时刚好通过站在x=2处跳绳的小明的头顶,则小明身高为________m.

22.3实际问题与二次函数(一)

22.3实际问题与二次函数(一)

22.3实际问题与二次函数(一)一、课前导学1.二次函数c bx ax y ++=2的顶点坐标是( _, )2.一般地:(1)如果抛物线c bx ax y ++=2中a>0,那么当=x _______时,二次函数c bx ax y ++=2有最_______值是_____________;(2)如果抛物线c bx ax y ++=2中a<0,那么当=x _______时,二次函数c bx ax y ++=2有最_______值是_____________。

3.分别用配方法和公式法,求当x 取何值时,y 有最值。

(1)223y x x =+- (2)21252y x x =-+-二、自主探究,合作交流问题:从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系为2305(06)h t t t =-≤≤.小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?探究:借助函数图象解决这个问题,画出2305(06)h t t t =-≤≤函数图象如图 可以看出这个函数图象是一条抛物线的 一部分,这条抛物线的顶点是这个函数图象的最高点,也就是说,当t 取顶点横坐标时这个函数之最大. 因此,当2b t a =-=时,h 有最大值244ac b a -=.也就是说小球运动 秒时,小球运动最大高度 米.三、自主探究,交流展示☆探究1:用总长为60m 的篱笆围成矩形场地,矩形的面积S 随一边长l 的变化而变化,当l 是多少米时,场地面积S 最大?☆应用举例:1.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).(1)若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)绿化带的最大面积是多少?2.如图,点E 、F 、G 、H 分别位于正方形ABCD 的四条边上,四边形EFGH 也是正方形.当点E 位于何处时,正方形EFGH 的面积最小?H G F E DC BA☆练检巩固:1. 用长为20cm 的铁丝作两个正方形,两个正方形的边长分别为多少时,面积和最大?是多少?2. 已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?3. 如图,四边形的两条对角线AC 、BD 互相垂直,AC +BD =10,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?4.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12.用这块废料剪出一个长方形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的长方形CDEF 面积最大,点E 应造在何处?D C BAF E DC BA☆能力提升:1. 如图,点E,F,G,H 分别在菱形ABCD 的四条边上,BE=BF=DG=DH ,连接EF 、FG 、GH 、HE ,得到四边形EFGH.(1)求证:四边形EFGH 是矩形;(1)设AB=a ,∠A=60°,当BE 为何值时,矩形EFGH 面积最大?BAC2.为了改善小区环境,某小区决定要在一块一边靠墙(墙长16m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).(1)若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y与x 之间的函数关系式,并写出自变量x 的取值范围.(2)绿化带的最大面积是多少?。

第09讲 实际问题与二次函数 (解析版)

第09讲 实际问题与二次函数 (解析版)

第9讲实际问题与二次函数一、知识梳理1.根据实际问题列二次函数解析式【例1】.(1)某工厂1月份的产值是200万元,平均每月产值的增长率为x(x>0),则该工厂第一季度的产值y 关于x的函数解析式为y=200x2+600x+600(x>0).【分析】首先分别表示出二月、三月的产值,然后再列出函数解析式即可.【解答】解:由题意得:y=200+200(1+x)+200(1+x)2=200x2+600x+600(x>0),故答案为:y=200x2+600x+600(x>0).(2)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【变式训练1】.(1)某种商品的价格为5元,准备进行两次降价,如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y与x之间的关系式为y=5(1﹣x)2.【分析】根据题意可得第一次降价后的价格为5(1﹣x),第二次降价后价格为5(1﹣x)(1﹣x),进而可得y与x之间的关系式.【解答】解:由题意得:y=5(1﹣x)2,故答案为:y=5(1﹣x)2.(2)学校准备将一块长20m,宽14m的矩形绿地扩建,如果长和宽都增加xm,设增加的面积是ym2.(1)求x与y之间的函数关系式.(2)若要使绿地面积增加72m2,长与宽都要增加多少米?【分析】(1)根据题意可以得到y与x之间的函数关系式;(2)将y=72代入(1)中的函数关系式,即可解答本题.【解答】解:(1)由题意可得,y=(20+x)(14+x)﹣20×14化简,得y=x2+34x,即x与y之间的函数关系式是:y=x2+34x;(2)将y=72代入y=x2+34x,得72=x2+34x,解得,x1=﹣36(舍去),x2=2,即若要使绿地面积增加72m2,长与宽都要增加2米.2.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.【例2】.(1)如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2.5m,那么水面宽度为()m.A.3B.6C.8D.9【分析】根据已知确定平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2.5代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,∴水面宽度为3﹣(﹣3)=6(m).故选:B.(2)如果矩形的周长是16,则该矩形面积的最大值为()A.8B.15C.16D.64【分析】首先根据矩形周长为16,设一条边长x,矩形面积为y,可表示出另一边长为8﹣x,再根据矩形面积=长×宽列出函数解析式并配方即可得结论.【解答】解:∵矩形周长为16,∴设一条边长x,矩形面积为y,则另一边长为8﹣x,∴y=(8﹣x)x=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,y有最大值是16.(3)若实数m、n满足m+n=2,则代数式2m2+mn+m﹣n的最小值是﹣6.【分析】设y=2m2+mn+m﹣n,由m+n=2得n=2﹣m,再由二次函数的性质即可解决问题.【解答】解:设y=2m2+mn+m﹣n,∵m+n=2,∴n=2﹣m,∴y=2m2+m(2﹣m)+m﹣(2﹣m)=m2+4m﹣2=(m+2)2﹣6,此为一个二次函数,开口向上,有最小值,当m=﹣2时,y有最小值为﹣6,故答案为:﹣6.(4)某百货商店服装在销售过程中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件,当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?【分析】根据题意可以得到利润与所将价格的关系式,根据二次函数的性质求最值即可.【解答】解:设每件童装降价x元,利润为y元,由题意,得:y=(40﹣x)(20+2x)=﹣2(x﹣15)2+1250,∴当x=15时,y取得最大值,此时y=1250元,答:每件童装降价15元时,每天销售这种童装的利润最高,最高利润是1250元.【变式训练2】.(1)一次足球训练中,小明从球门正前方将球射向球门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高是2.44m,若足球能射入球门,则小明与球门的距离可能是()A.10m B.8m C.6m D.5m【分析】建立直角坐标系,根据题意求出函数解析式,求y<2.44对应的x的值.【解答】解:如图,建立直角坐标系,设抛物线解析式为y=a(x﹣6)2+3,将(0,0)代入解析式得a=,∴抛物线解析式为y=(x﹣6)2+3,当x=10时,y=,<2.44,满足题意,故选:A.(2)如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.【分析】设P(x,x2﹣2x﹣3)根据矩形的周长公式得到C=﹣2(x﹣)2+.根据二次函数的性质来求最值即可.【解答】解:设P(x,x2﹣2x3),∵过点P分别向x轴和y轴作垂线,垂足分别为A、B,∴四边形OAPB为矩形,∴四边形OAPB周长=2P A+2OA=﹣2(x2﹣2x﹣3)+2x=﹣2x2+6x+6=﹣2(x2﹣3x)+6,=﹣2+.∴当x=时,四边形OAPB周长有最大值,最大值为.故答案为.(3)已知抛物线y=﹣x2﹣3x+3,点P(m,n)在抛物线上,则m+n的最大值是4.【分析】把点P(m,n)代入抛物线的解析式,得到n=﹣m2﹣3m+3,等式两边同加m得m+n=﹣m2﹣2m+3,得到m+n关于m的二次函数解析式,然后整理成顶点式形式,再根据二次函数的最值问题解答.【解答】解:∵点P(m,n)在抛物线y=﹣x2﹣3x+3上,∴n=﹣m2﹣3m+3,∴m+n=﹣m2﹣2m+3=﹣(m+1)2+4,∴当m=﹣1时,m+n有最大值4.故答案为:4.(4)某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套.现因临近春节,商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套.设保暖内衣售价为x元,每星期的销量为y件.(1)求商家降价前每星期的销售利润为多少元?(2)求y与x之间的函数关系式.(3)当每件售价定为多少时,每星期的销售利润最大?最大销售利润是多少?【分析】(1)商家降价前,每套的利润是30元,销售量是80套,根据利润=每套的利润×销售量,即可得出结论;(2)根据每降价5元,每星期可多卖出20套,当保暖内衣售价为x元时列出函数关系即可;(3)根据每星期的销售利润等于单套的利润乘以销售量列出函数的关系式,然后根据二次函数的性质求函数最值.【解答】解:(1)由题意得:(130﹣100)×80=2400 (元),∴商家降价前每星期的销售利润为2400元;(2)由题意可得:y=×20+80=﹣4x+600,∴y与x之间的函数关系式为y=﹣4x+600;(3)设每星期的销售利润为w元,则:w=(x﹣100)y=(x﹣100)(﹣4x+600)=﹣4(x﹣125)²+2500,∴当每件售价定为125 元时,每星期的销售利润最大,最大销售利润2500元.答:当每件售价定为125 元时,每星期的销售利润最大,最大销售利润2500元.二、课堂训练1.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y,则y关于x的函数关系式为()A.y=x(40﹣x)B.y=x(18﹣x)C.y=x(40﹣2x)D.y=2x(40﹣2x)【分析】先用含x的代数式表示苗圃园与墙平行的一边长,再根据面积=长×宽列出y关于x的函数关系式.【解答】解:设这个苗圃园垂直于墙的一边长为x米,则苗圃园与墙平行的一边长为(40﹣2x)米.依题意可得:y=x(40﹣2x).故选:C.2.如图1,是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作抛物线,在如图2所示的平面直角坐标系中,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点C)距球网的水平距离为2.5米,则排球运动路线的函数表达式为()A.y=﹣x2﹣x+B.y=﹣x2+x+C.y=x2﹣x+D.y=x2+x+【分析】方法一:根据题意结合函数的图象,得出图中A、B、C的坐标,再利用待定系数法求出函数关系式即可;方法二:根据四个选项中关系式系数的特点,结合抛物线位置,确定a、b的符号和c的值,就可以直接得出答案.【解答】解:方法一:0.26+2.24=2.5=(米)根据题意和所建立的坐标系可知,A(﹣5,),B(0,),C(,0),设排球运动路线的函数关系式为y=ax2+bx+c,将A、B、C的坐标代入得:,解得,a=﹣,b=﹣,c=,∴排球运动路线的函数关系式为y=﹣x2﹣x+,故选:A.方法二:排球运动路线的函数关系式为y=ax2+bx+c,由图象可知,a<0,a、b同号,即b<0,c=,故选:A.3.对于向上抛出的物体,在没有空气阻力的条件下,满足这样的关系式:h=vt﹣gt2,其中h是上升高度,v是初始速度,g为重力加速度(g≈10m/s2),t为抛出后的时间.若v=20m/s,则下列说法正确的是()A.当h=20m时,对应两个不同的时刻点B.当h=25 m时,对应一个时刻点C.当h=15m时,对应两个不同的时刻点D.h取任意值,均对应两个不同的时刻点【分析】把v=20m/s,g≈10m/s2代入h=vt﹣gt2,将其写成顶点式,根据二次函数的性质可得函数的最大值,则问题得解.【解答】解:∵h=vt﹣gt2,v=20m/s,g≈10m/s2,∴h=20t﹣5t2=﹣5(t2﹣4t)=﹣5(t﹣2)2+20,∴当t=2s时,h有最大值为20m,即物体能达到的最大高度为20m,且h=20m时,只有一个时刻,∴A、B、D均不正确.∵h=20t﹣5t2为开口向下的二次函数,h有最大值为20m,∴当h=15m时,对应两个不同的时刻点.∴C正确.故选:C.4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外【分析】根据题目中的二次函数解析式可以判断各个小题中的说法是否正确,从而可以解答本题.【解答】解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1(舍去),故D选项正确,故选:C.5.如图,已知二次函数的图象(0≤x≤1+2).关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值﹣2,无最大值B.有最小值﹣2,有最大值﹣1.5C.有最小值﹣2,有最大值2D.有最小值﹣1.5,有最大值2【分析】根据图象及x的取值范围,求出最大值和最小值即可.【解答】解:根据图象及x的取值范围,当x=1时,y取最小值为﹣2,当x=1+2,y取最大值为2,∴该函数有最小值﹣2,有最大值2,故选:C.6.一台机器原价为60万元,如果每年价格的折旧率为x,两年后这台机器的价格为y万元,则y关于x的函数关系式为y=60(1﹣x)2.【分析】原价为60万元,一年后的价格是60×(1﹣x),二年后的价格是为:60×(1﹣x)×(1﹣x)=60(1﹣x)2,可得结论.【解答】解:由题意知:两年后的价格是为:y=60×(1﹣x)×(1﹣x)=60(1﹣x)2,则函数解析式是:y=60(1﹣x)2,故答案为:y=60(1﹣x)2.7.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=﹣2x2+4x+1,则喷出水珠的最大高度是3 m.【分析】先把函数关系式配方,求出函数的最大值,即可得出水珠达到的最大高度.【解答】解:∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3,∴当x=1时,y有最大值为3,∴喷出水珠的最大高度是3m,故答案为:3.8.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为39元.【分析】设销售单价为x元时,销售利润最大,单价利润为x﹣20元,销售数量为280﹣(x﹣30)•10,根据公式利润=(售价﹣进价)×销售数量.通过配方可求利润最大值.【解答】解:设销售单价为x元时,销售利润最大,单价利润为(x﹣20)元,销售数量为280﹣(x﹣30)•10,∴利润总额为y=(x﹣20)•[280﹣(x﹣30)•10],化简得:y=﹣10x2+780x﹣11600,配方得:y=﹣10(x﹣39)2+3160,当单价为39元时,有最大利润3610元,故答案为:39.9.汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=﹣3t2+8t,汽车从刹车到停下来所用时间是秒.【分析】当汽车停下来时,s最大,故将s=﹣3t2+8t写成顶点式,则顶点横坐标值即为所求.【解答】解:∵s=﹣3t2+8t,=﹣3(t﹣)2+,∴当t=秒时,s取得最大值,即汽车停下来.故答案为:.10.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测,某校统计了学生早晨到校情况,发现从7:00开始,在校门口的学生人数y(单位:人)随时间x(单位:分钟)的变化情况的图象是二次函数图象的一部分,如图所示.(1)求y与x之间的函数解析式;(2)求校门口排队等待体温检测的学生人数最多时有多少人;(3)从7:00开始,需要多少分钟校门口的学生才能全部进校?【分析】(1)根据图象用待定系数法求函数解析式即可;(2)根据函数的性质求最值;(3)令y=0,解方程﹣x2+16x+34=0即可.【解答】解:(1)设y与x之间的函数解析式为y=ax2+bx+c,根据题意得:,解得:,∴y=﹣x2+16x+34;(2)由(1)知,﹣<0,∴y有最大值,y max===162,∴校门口排队等待体温检测的学生人数最多时有162人;(3)令y=0,得:﹣x2+16x+34=0,解得:x1=﹣2(舍),x2=34,∴从7:00开始,需要34分钟校门口的学生才能全部进校.11.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量×(售价﹣成本)=4000”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.【解答】解:(1)∵依题意,得:y=50+(100﹣x)××10=﹣5x+550,∴y与x的函数关系式为y=﹣5x+550;(2)∵依题意得:y(x﹣50)=4000,即(﹣5x+550)(x﹣50)=4000,解得:x1=70,x2=90,∵70<90,∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w,依题意得w=y(x﹣50)=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵﹣5<0,此图象开口向下,∴当x=80时,w有最大值为4500元,∴为了每月所获利润最大,该商品销售单价应定为80元.三、课后巩固1.设等边三角形的边长为x(x>0),面积为y,则y与x的函数关系式是()A.y=x2B.y=C.y=D.y=【分析】作出三角形的高,利用直角三角形的性质及勾股定理可得高,利用三角形的面积=底×高,把相关数值代入即可求解.【解答】解:作出BC边上的高AD.∵△ABC是等边三角形,边长为x,∴CD=x,∴高为h=x,∴y=x×h=x2.故选:D.2.如图1是一只葡萄酒杯,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,若AB=4,CD=3,以顶点C为原点建立如图2所示的平面直角坐标系,则抛物线的表达式为()A.B.C.D.【分析】直接根据题意得出B点坐标,进而假设出抛物线解析式,进而得出答案.【解答】解:∵AB=4,CD=3,∴B(2,3),设抛物线解析式为:y=ax2,则3=4x,解得:a=,故抛物线的表达式为:y=x2.故选:A.3.中国贵州省内的射电望远镜(F AST)是目前世界上口径最大,精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点O到口径面AB的距离是100米,若按如图(2)建立平面直角坐标系,则抛物线的解析式是()A.y=x2﹣100B.y=﹣x2﹣100C.y=x2D.y=﹣x2【分析】直接利用抛物线解析式结合已知点坐标得出答案.【解答】解:由题意可得:A(﹣250,0),O(0,﹣100),设抛物线解析式为:y=ax2﹣100,则0=62500a﹣100,解得:a=,故抛物线解析式为:y=x2﹣100.故选:A.4.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是()①图象具有对称性,对称轴是直线x=1;②当﹣1<x<1或x>3时,函数值随x值的增大而增大;③当x=﹣1或x=3时,函数的最小值是0;④当x=1时,函数的最大值是4.A.4B.3C.2D.1【分析】观察图象,分别计算出对称轴、函数图象与x轴的交点坐标,结合图象逐个选项分析判断即可.【解答】解:观察图象可知,图象具有对称性,对称轴是直线x=﹣=1,故①正确;令|x2﹣2x﹣3|=0可得x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x1=﹣1,x2=3,∴(﹣1,0)和(3,0)是函数图象与x轴的交点坐标,又对称轴是直线x=1,∴当﹣1<x<1或x>3时,函数值y随x值的增大而增大,故②正确;由图象可知(﹣1,0)和(3,0)是函数图象的最低点,则当x=﹣1或x=3时,函数最小值是0,故③正确;由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故④错误.综上,只有④错误.故选:B.5.如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线.图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米.当喷射出的水流距离喷水头20米时,达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O处,草坡上距离O的水平距离为30米处有一棵高度约为2.3米的石榴树AB,因为刚刚被喷洒了农药,近期不能被喷灌.下列说法正确的是()A.水流运行轨迹满足函数y=﹣x2﹣x+1B.水流喷射的最远水平距离是40米C.喷射出的水流与坡面OA之间的最大铅直高度是9.1米D.若将喷灌架向后移动7米,可以避开对这棵石榴树的喷灌【分析】设抛物线的解析式为y=a(x﹣20)2+c,用待定系数法求得解析式,则可判断A;当x=40时,y=0.1×40=4,y=4,解方程,即可判断B;计算当x=30时的y值,则可判断选项C和D.【解答】解:由题意可设抛物线的解析式为y=a(x﹣20)2+c,将(0,1),(20,11)分别代入,得:,解得:,∴y=﹣(x﹣20)2+11=﹣x2+x+1,故A错误;∵坡度为1:10,∴直线OA的解析式为y=0.1x,当x=40时,y=0.1×40=4,令y=4,得﹣x2+x+1=4,∴x2﹣40x+120=0,解得x=20±2≠40,∴B错误;设喷射出的水流与坡面OA之间的铅直高度为h米,则h=﹣x2+x+1﹣0.1x=﹣x2+x+1,∴对称轴为x=﹣=18,∴h max=9.1,故C正确;将喷灌架向后移动7米,则图2中x=30时抛物线上的点的纵坐标值等于x=37时的函数值,当x=37时,y=﹣×372+37+1=3.775,在图2中,当x=30时,点B的纵坐标为:0.1×30+2.3=5.3>3.775,故D错误.故选:C.6.如图,某抛物线型桥拱的最大高度为16米,跨度为40米,如图所示建立平面直角坐标系,则该抛物线对应的函数关系式为y=﹣x2+x.【分析】由图象可知抛物线顶点坐标(20,16),经过(0,0),(40,0).利用顶点式即可解决问题.【解答】解:由图象可知抛物线顶点坐标(20,16),经过(0,0),(40,0).设抛物线的解析式为y=a(x﹣20)2+16,把(0,0)代入得到a=﹣,∴抛物线的解析式为y=﹣(x﹣20)2+16,即y=﹣x2+x,故答案为:y=﹣x2+x.7.一个球从地面上竖直向上弹起的过程中,距离地面高度h(米)与经过的时间t(秒)满足以下函数关系:h=﹣5t2+15t,则该球从弹起回到地面需要经过3秒,距离地面的最大高度为米.【分析】当该球从弹起回到地面时h=0,代入求出时间t即可;对函数关系式进行配方找到最大值即距离地面的最大高度.【解答】解:当该球从弹起回到地面时h=0,∴0=﹣5t2+15t,解得:t1=0或t2=3,t=0时小球还未离开地面,∴t=3时小球从弹起回到地面;∵h=﹣5t2+15t=﹣5(t﹣)2+,﹣5<0,∴当t=时,h取得最大值;故答案为:3,.8.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2,飞机着陆至停下来共滑行750m.【分析】将函数解析式配方成顶点式求出y的最大值即可得.【解答】解:∵y=60t﹣t2=﹣(t﹣25)2+750,∴当t=25时,y取得最大值750,即飞机着陆后滑行750米才能停下来,故答案为:750m.9.二次函数y=x2﹣2x+m的最小值为2,则m的值为3.【分析】先把y=x2﹣2x+m配成顶点式得到y=(x﹣1)2+m﹣1,根据二次函数的性质得到当x=1时,y有最小值为m﹣1,根据题意得m﹣1=2,然后解方程即可.【解答】解:y=x2﹣2x+m=(x﹣1)2+m﹣1,∵a=1>0,∴当x=1时,y有最小值为m﹣1,∴m﹣1=2,∴m=3.故答案为:3.10.为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.【分析】(1)分为8≤x≤32和32<x≤40求解析式;(2)根据“利润=(售价﹣成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.【解答】解:(1)当8≤x≤32时,设y=kx+b(k≠0),则,解得:,∴当8≤x≤32时,y=﹣3x+216,当32<x≤40时,y=120,∴y=.(2)设利润为W,则:当8≤x≤32时,W=(x﹣8)y=(x﹣8)(﹣3x+216)=﹣3(x﹣40)2+3072,∵开口向下,对称轴为直线x=40,∴当8≤x≤32时,W随x的增大而增大,∴x=32时,W最大=2880,当32<x≤40时,W=(x﹣8)y=120(x﹣8)=120x﹣960,∵W随x的增大而增大,∴x=40时,W最大=3840,∵3840>2880,∴最大利润为3840元.11.为鼓励更多的农民工返乡创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给农民工自主销售,成本价与出厂价之间的差价由政府承担.王明按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系满足一次函数:y=﹣5x+400.(1)王明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设王明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少?(3)物价部门规定,这种节能灯的销售单价不得高于35元,如果王明想要每月获得的利润不低于4125元,那么政府为他承担的总差价最少为多少元?【分析】(1)求出销售量,根据政府每件补贴2元,即可解决问题;(2)构建二次函数,利用二次函数的性质解决问题即可;(3)根据条件确定出自变量的取值范围,求出y的最小值即可解决问题.【解答】解:(1)当x=20时,y=﹣5x+400=﹣5×20+400=300,300×(12﹣10)=300×2=600(元),答:政府这个月为他承担的总差价为600元;(2)依题意得,w=(x﹣10)(﹣5x+400)=﹣5x2+450x﹣4000=﹣5(x﹣45)2+6125,∵a=﹣5<0,∴当x=45时,w有最大值6125元.答:当销售单价定为45元时,每月可获得最大利润6125元;(3)由题意得:﹣5x2+450x﹣4000=4125,解得:x1=25,x2=65,∵a=﹣5<0,抛物线开口向下,当25≤x≤65时,4125≤w≤6125,又∵x≤35,∴当25≤x≤35时,w≥4125,∴当x=35时,政府每个月为他承担的总差价最小,y=﹣5×35+400=225,225×2=450(元),∴政府每个月为他承担的总差价最小值450元,答:销售单价定为35元时,政府每个月为他承担的总差价最少为450元.。

二次函数解决实际问题

二次函数解决实际问题

二次函数解决实际问题【文章主题】二次函数解决实际问题【引言】二次函数是高中数学中的重要概念,它可以用来解决各种实际问题。

二次函数不仅具有图像美观和数学特性丰富的优点,还能够帮助我们解决现实生活中的一系列实际问题。

本文将深入探讨二次函数对于解决实际问题的具体应用,并结合示例来进一步加深理解。

【正文】1. 什么是二次函数?二次函数是一种具有形式为y = ax^2+bx+c的函数,其中a、b、c 为常数,且a不等于0。

它的图像通常呈现出一个开口向上或向下的U型曲线,称为抛物线。

二次函数的解析式和图像特性使得它成为解决实际问题的有力工具。

2. 二次函数的实际问题应用2.1 抛物线的轨迹由于二次函数具有抛物线形状,因此它在物理学中的应用非常广泛。

在炮弹的抛射问题中,我们可以利用二次函数来描述弹道的形状和轨迹,从而计算出炮弹的射程、最高点和最大高度等重要参数。

二次函数还可以应用于天体运动的研究、桥梁设计的拱形以及运动物体的轨迹预测等领域。

2.2 最值问题二次函数在经济学和管理学中也有广泛的应用,尤其是涉及利润、成本和收益等问题。

在销售决策中,我们可以建立一个二次函数模型来找到最大利润所对应的产量或价格,从而为企业的营销活动提供科学依据。

二次函数还能够帮助我们解决最小成本和最大效益的问题,为管理决策提供指导。

2.3 预测与优化问题二次函数在预测和优化问题中也有重要应用。

在金融领域,我们可以利用二次函数来建立股票价格的模型,预测未来趋势和价格波动。

二次函数还可以用于优化问题,例如最佳化分工与生产,最佳投资组合等。

3. 示例分析为了更好地理解二次函数解决实际问题的应用,我们以一个典型例子进行分析。

假设有一块田地,面积为1000平方米,现在需要修建一个矩形花坛在田地中。

我们想要找到面积最大的花坛。

我们需要建立数学模型。

设田地的长为x米,宽为(1000/x)米,花坛的面积为A(x) = x*(1000/x) = 1000米^2。

实际问题与二次函数

实际问题与二次函数

实际问题与二次函数引言:二次函数是高中数学中的重要内容,它在实际问题中有着广泛的应用。

本文将从几个实际问题入手,探讨二次函数在解决这些问题中的作用和应用。

第一部分:抛物线与物体运动问题一:一个物体从地面上以初速度v0竖直向上抛出,忽略空气阻力,求物体的运动轨迹。

解决方法:根据物体竖直上抛运动的运动方程,可以得到物体的高度y与时间t的关系为y=-gt^2/2+v0t,其中g是重力加速度。

这个运动方程正好是一个二次函数,它的图像是一个抛物线,描述了物体的运动轨迹。

问题二:一个人从桥上向下抛掷物体,求物体的最大高度和落地点。

解决方法:根据物体竖直抛体运动的运动方程,可以得到物体的高度与时间的关系为y=-gt^2/2+v0t,其中g是重力加速度,v0是初速度。

我们可以通过求解二次函数的顶点,得到物体的最大高度和落地点的位置。

第二部分:二次函数与开口方向问题三:一块矩形花坛,长边是20米,宽边是10米,现在要在花坛四周修建一圈高度为h的围墙,求围墙的最小高度h。

解决方法:假设围墙的高度为h,围墙的长度为L,围墙的宽度为W。

根据题意,可以得到L=2(20+2h),W=2(10+2h),围墙的面积为S=LW。

我们可以将围墙的面积S表示为关于h的二次函数,然后求解这个二次函数的最小值,即可得到围墙的最小高度h。

第三部分:二次函数与最值问题问题四:某公司生产某种产品,每生产x单位的产品需要花费C(x)=80x+2000元,售价为p(x)=0.1x^2+2000元,求使得利润最大的生产数量。

解决方法:利润等于售价减去成本,即P(x)=p(x)-C(x)=0.1x^2-80x。

我们可以求解二次函数P(x)的最大值,得到使得利润最大的生产数量。

问题五:某人在银行存款10000元,银行的年利率为r%,每年计息一次,求多少年后存款会翻倍。

解决方法:存款的本利和可以表示为S(t)=10000(1+r/100)^t,其中t为年数。

利用二次函数解决实际问题

利用二次函数解决实际问题

利用二次函数解决实际问题二次函数是数学中重要的一类函数,它具有许多应用于实际问题的能力。

通过解决二次函数相关的实际问题,我们可以更好地理解和应用这一数学工具。

本文将通过几个实际问题的案例,详细介绍如何利用二次函数解决这些问题。

案例一:抛物线的高度与水平距离的关系假设一个小球以一定的初速度从地面上抛出,并以二次函数描述它的高度与水平距离的关系。

首先,我们可以建立抛物线方程:h = ax² + bx + c其中,h为小球的高度,x为水平距离,a、b、c为常数。

当小球达到最高点时,它的速度为零,根据这一条件,可以求得抛物线的顶点坐标为(-b/2a,c-b²/4a)。

通过这一顶点坐标和给定的初速度,可以解得a、b、c的具体值。

有了这些参数,我们就能方便地计算小球在任意水平距离上的高度。

案例二:曲线拟合与数据预测在实际问题中,我们常常需要通过一些已知数据点来拟合出一个曲线,并利用这个曲线对未知数据进行预测。

二次函数是一种常用的曲线模型,因为它能很好地适应一些非线性的数据分布。

具体做法是,通过最小二乘法来求得二次函数的参数,使得拟合曲线与已知数据点之间的误差最小化。

然后,利用这个拟合曲线,我们就可以对未知数据进行预测。

这一方法在经济预测、气象预报等领域有着广泛的应用。

案例三:最优化问题二次函数也可以应用于最优化问题的求解。

以抛物线形式的二次函数为例,假设我们需要在一条直线上选择一个点,使得它到抛物线的距离最小。

这可以被看作是一个最优化问题,即求解抛物线与直线的最短距离。

我们可以通过求解二次函数和直线的交点来解决这个问题。

具体的求解过程利用了二次函数的性质和一些微积分的知识。

总结:通过上述几个案例,可以看出二次函数在实际问题中的广泛应用。

它可以用于描述抛物线的运动、拟合非线性数据以及求解最优化问题等。

通过解决这些实际问题,我们不仅巩固了对二次函数的理解,也提升了数学在实际应用中的能力。

因此,在学习和应用二次函数时,我们应该注重理论知识和实际问题的结合,这样才能更好地掌握和利用二次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.3 实际问题与二次函数——抛物线型问题
一、学习目标
正确建立直角坐标系,学会运用二次函数的图象性质解决抛物线型的实际问题.
二、自学检测
探究“拱桥”问题(阅读课本P51 探究3,并完成自测1-3 题)
1. 如图所示是一学生推铅球时,铅球行进高度y(m)与水平距离x(m)的函数图象.现观察图象,铅球
到达最高点时距离地面()m,铅球推出的距离是()m .
(第1题)(第2 题)
2.如图所示,桥拱是抛物线形,其函数的表达式为y=- ,当水位线在AB 位置时,水面宽12m ,这时
水面离桥顶的高度为()
A. 3m
B. m
C. 4 m
D. 9m
3. 一个门洞为抛物线形,以门洞底部所在直线为x 轴建立直角坐标系,抛物线所对应的关系式为y=-2x 2+3,
则2m 高处门洞宽为()
2
D. 2 A.2m B.1m C. m
2
三、自学指导
问题:请你对拱桥建立直角坐标系
2.小结:
解决抛物线型问题的基本步骤
①建立②把已知条件转化为
③合理的设出④利用法求出二次函数解析式
⑤得出实际问题的答案
四、随堂练习
1. 某菜农搭建了一个横截面为抛物线的大棚,有关尺寸如图所示,则该抛物线的解析式为(注明自变量的范围)
(第1 题)(第2 题)(第 3 题)
2.小敏在某次投篮中,球的运动路线是抛物线y= x2+
3.5 的一部分(如图),若命中篮圈中心,则他与
篮底的距离L 是()
A. 3.5m
B. 4m
C. 4.5m
D. 4.6m
3.如图,从某建筑物10m 高的窗口 A 处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面
垂直).如果抛物线的最高点M 离墙1m ,离地面m,则水流落地点 B 离墙的距离OB 是()
A. 2m
B. 3m
C. 4m
D. 5m
五、拓展训练
有一座抛物线形拱桥,正常水位时桥下水面宽度为20 m,拱顶距离水面 4 m .
(1)如图所示的直角坐标系中,求出这条抛物线表示的函数的解析式;
(2)设正常水位时桥下的水深为 2 m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18 m .
求水深超过多少m 时就会影响过往船只在桥下顺利航行.
y
O
x
六、中考体验
C D
h B
A 跳绳时,绳甩到最高处时的形状是抛物
线,正在甩绳的甲、乙两名同学拿绳的手间距AB 为6 米,到地面
的距离AO 和BD 均为0.9 米,身高为 1.4 米的小丽站在距点O 的水平距离为 1 米的点 F 处,绳子甩到最
20 m
高处时刚好通过她的头顶点E,以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为
y=ax 2+bx+0.9 。

(1)求该抛物线的解析式;
(2)如果小华站在OD 之间,且离点O 的距离为 3 米,当绳子甩到最高处时刚好通过他的头顶,请你算
出小华的身高;
(3)如果身高为 1.4 米的小丽站在OD 之间,且离点O 的距离为t 米,绳子甩到最高处时超过她的头顶,
请结合图象,写出t 的取值范围_______。

相关文档
最新文档