二次函数应用(1)抛物线形问题
二次函数抛物线型问题

1. (2011河北,8,3分)一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( ) A .1米 B .5米C .6米D .7米 【答案】C 【思路分析】在二次函数61t 5h 2+--=)(中,顶点坐标为(1,6),∵a=-5<0,∴当t=1时,h 取得最大值6.∴小球距离地面的最大高度是6米。
【方法规律】在二次函数顶点式2()y a x h k =-+中,顶点坐标为(h ,k )。
当a>0时,开口向上,当x h =时,y 取得最小值k ;当a<0时,开口向下,当x h =时,y 取得最大值k 。
【易错点分析】不能够正确的应用二次函数的顶点式,将其化成一般式,再计算,从而引起计算性的错误。
【关键词】二次函数、最大值【推荐指数】★★☆☆☆【题型】常规题,好题,易错题2. (2011株洲,8,3分)某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4x (单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米【答案】A【思路分析】直接根据二次函数的顶点坐标公式计算即可,最大高度为2244(1)04444(1)ac b a -⨯-⨯-==⨯-. 【方法规律】在二次函数求最值的问题,一般是直接代入顶点公式计算即可.【易错点分析】弄不清在函数解析式中a 、b 、c 的值各是什么,造成计算错误.【关键词】二次函数的最值 【难度】★★☆☆☆3. (2011山东聊城,12,3分)某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m【答案】C【思路分析】建立如图所示的坐标系,设抛物线的解析式为y =a x 2+05,将(1,0)代入得a =-05,所以抛物线的解析式为y =-0.5x 2+0.5,分别将x =0.2和0.6代入,求得y 值为048,032,所以一个防护栏需不锈钢支柱长为2(048+032)=16,所以则这条防护栏需要不锈钢支柱的总长度为16×100=160【方法规律】先计算一个抛物线左边或右边需要不锈钢支柱的长度,根据抛物线的对称性来解【易错点分析】1、不能正确求出抛物线的解析式;2、不能利用抛物线的对称性【关键词】抛物线 【难度】★★★☆☆ 【题型】好题4. (2011广西梧州,11,3分)20XX 年5月22日—29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线21b c 4y x x =-++的一部分,其中出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是4m ,那么这条抛物线的解析式是( ) A . 213144y x x =-++ B .213144y x x =-+- C .213144y x x =--+ D .213144y x x =---【答案】A【思路分析】根据出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是4m ,所以A ,B 两点坐标分别为(4,0),(0,1),在抛物线抛物线y =-14x 2+bx +c 上.将A(4,0),(0,1)代入抛物线解析式,得c =1,b =43,故选A . 【方法规律】首先把实际问题转化为二次函数的数学问题,求二次函数解析式,表达式中有几个待定系数,就需要几个点代入函数解析式,然后在接方程组,求出待定系数,从而求出函数解析式.【易错点分析】一是不能数形结合看出点B 、点A .坐标,二是计算错误.【关键词】二次函数解析式 【难度】★★☆☆☆ 【题型】常规题,易错题5. (2011青海西宁,7,3分)西宁中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为12米,在如图3所示的坐标系中,这个喷泉的函数关系式是A .y =﹣(x ﹣12 )2+3B .y =﹣(x +12)2+3 C .y =﹣12(x ﹣12 )2+3 D .y =﹣12(x +12)2+3【答案】C 【思路分析】根据题意知,抛物线的顶点坐标为(12,3)可设抛物线的解析式为1()32y a x =-+,又抛物线经过点(0,0)代入可求得a=12-,所以抛物线的解析式为y =﹣12(x ﹣12)2+3. 【方法规律】待定系数法求函数解析式.【易错点分析】颠倒横纵坐标.【关键词】待定系数法【推荐指数】★☆☆☆☆【题型】常规题6. (2011山东济南,13,3分)竖直向上发射的小球的高度h (m )关于运动时间t (s )的函数表达式为h =at 2+bt ,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是A .第3秒B .第3.5秒C .第4.2秒D .第6.5秒【答案】C【思路分析】由题意知,当t=4时小球的高度最高,当t=3与t=5时小球高度相等,当t<4时,h随t的增大而增大;当t>4时,h随t的增大而减小,∴四个选项中,当t=4.2时,小球高度最高.【方法规律】本题考查二次函数图象的对称性,这类问题最好结合图象来解决.【易错点分析】学生不易想到利用对称性来判断点的位置.【关键词】二次函数【推荐指数】★★★☆☆【题型】常规题,新题,好题.7. (2011山东济南,13,3分)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是()A.第3秒B.第3.5秒C.第4.2秒D.第6.5秒【答案】C【思路分析】由题意可知:h(2)=h(6),即4a+2b=36a+6b,解得b=﹣8a,函数h=at2+bt 的对称轴t=﹣2ba=4,故在t=4s时,小球的高度最高,题中给的四个数据只有C第4.2秒最接近4秒,故在第4.2秒时小球最高.故选C.【方法规律】本题主要考查了二次函数的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.【易错点分析】不能根据二次函数图象的对称性得到函数的性质【关键词】二次函数的应用【推荐指数】★★★☆☆【题型】好题,难题.8.9.8. (2011山东滨州,25,12分)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1)请建立适当的直角坐标系,求抛物线的函数解析式;(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省h/mt/sO 2 6(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)【解】(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,……………1分设抛物线的函数解析式为y=ax2,………………2分由题意知点A的坐标为(4,8),且点A在抛物线上.………………3分所以8=a×42,解得a=12,故所求抛物线的函数解析式为212y x=.………………4分(2)找法:延长AC,交建筑物造型所在抛物线于点D,………………5分则点A、D关于OC对称.连接BD交OC于点P,则点P即为所求.………………6分(3)由题意知点B的横坐标为2,且点B在抛物线上,所以点B的坐标为(2,2).………………7分又知点A的坐标为(4,8),所以点D的坐标为(-4,8).………………8分设直线BD的函数解析式为 y=kx+b,………………9分则有2248k bk b+=⎧⎨-+=⎩………………10分解得k=-1,b=4.故直线BD的函数解析式为 y=-x+4.………………11分把x=0代入y=-x+4,得点P的坐标为(0,4).两根支柱用料最省时,点O、P之间的距离是4米.………………12分【思路分析】(1)以点O为原点,OC为y轴的正半轴建立坐标系,则可以设二次函数的解析式为y=ax2,同时易确定A点的坐标为(4,8),代入即可求出二次函数的解析式.(2)由用料最省,可确定点A关于y轴的对称点D,连结对称点D和点B,连线与y轴的交点就是点P的位置.(3)用待定系数法求出直线BD的解析式,把x=0代入求得的解析式,求出点P的坐标,即求出O、P之间的距离.【方法规律】建立适当的坐标系时,可以以顶点为原点,对称轴为y轴,则二次函数的解析式为最简单的y=ax2的形式,求解析式较为方便.两个点在直线的同侧,在直线上求一个点到两个点的距离之和最小,确定动点的方法是轴对称.【易错点分析】确定点P位置时,不能联系轴对称知识是导致错误的最根本原因.【关键词】二次函数,一次函数,待定系数法,轴对称【推荐指数】★★★★★【题型】新题,好题,难题,压轴题16. (2011山东滨州,25,12分)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。
华师版九年级数学下册作业课件 第26章 二次函数 专题课堂(三) 二次函数的应用

则 CD 长度为(21-3x)m,∴总种植面积为(21-3x)·x=-3(x2-7x)=-3(x-72 )2+
147 4
,∵-3<0,∴当 x=72
时,总种植面积有最大值为1447
m2,即 BC 应设计为
7 2
m 时总种植面积最大,此时最大面积为1447
m2
类型三 利润问题 4.(2022·贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会 的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一 批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套 售价提高2元,则每天少卖4套. (1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关 系式; (2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?
解:(1)设一次函数的关系式为 y=kx+b,由图可知,函数图象过点(25,50)和点 25k+b=50, k=-2,
(35,30).把这两点的坐标代入一次函数 y=kx+b,得35k+b=30, 解得b=100, ∴一次函数的关系式为 y=-2x+100 (2)由题意,得(x-10)×(-2x+100)=600,解 得 x1=40,x2=20,∴当天玩具的销售单价是 40 元或 20 元 (3)根据题意,得 w=(x -10)×(-2x+100),整理得 w=-2(x-30)2+800.∵-2<0,∴当 x=30 时,w 有最 大值,最大值为 800 元.∴当玩具的销售单价定为 30 元时,日销售利润最大,最大 利润是 800 元
解:(1)y=-35 x2+3x+1=-35 (x-52 )2+149 ,当 x=52 时,y 有最大值
19 4
二次函数应用题(一)(含答案)

学生做题前请先回答以下问题问题1:二次函数应用题的解题思路是什么?问题2:应用题结果的验证需要考虑哪些方面?问题3:题中出现哪些关键字时,考虑用函数求解?二次函数应用题(一)一、单选题(共4道,每道25分)1.有一座抛物线型拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米,建立如图所示的平面直角坐标系,若正常水位时,桥下水深6米.为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过( )米时,就会影响过往船只的顺利航行.A.2.76米B.6.76米C.6米D.7米答案:B解题思路:1.解题要点①理解题意,建立数学模型将题目中的数据转化为图中对应的线段长,确定关键点坐标,求出抛物线解析式.观察图形,抛物线的顶点为(0,0),由题意,抛物线过点(10,-4),故可求出抛物线的解析式.②明确目标及判断标准,利用二次函数图象性质求解要求影响过往船只顺利航行的水深,可先分析临界状态,分析当水面宽度为18米时的水深.由二次函数的对称性,可转化为分析当x=9时的水深.首先可得对应的y值,结合拱顶到水底的总的距离为6+4=10,可求出保证过往船只顺利航行临界水深.③回归目标,判断验证,结果总结2.解题过程设该抛物线的解析式为,由题意得,抛物线过点(10,-4),代入解析式得,∴,∴该抛物线的解析式为.令x=9,可得y=-3.24,此时水深为6+4-3.24=6.76米,即桥下水深6.76米时正好可以保证过往船只顺利航行,所以当水深超过6.76米时就会影响过往船只的顺利航行.故选B.试题难度:三颗星知识点:二次函数的应用2.如图,隧道的截面是抛物线,可以表示为,该隧道内设双行道,限高为3m,那么每条行道宽是( )A.不大于4mB.恰好4mC.不小于4mD.大于4m,小于8m答案:A解题思路:由题意,把代入中得:(舍去).由于设计的是双行道,所以每条行道宽应不大于4m.故选A.试题难度:三颗星知识点:二次函数的应用3.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图,正在甩绳的甲,乙两名学生拿绳的手间距为4m,距地面均为1m,学生丙,丁分别站在距甲拿绳的手水平距离1m,2.5m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5m,则学生丁的身高为(建立的平面直角坐标系如图所示)( )A.1.5mB.1.625mC.1.66mD.1.67m答案:B解题思路:设抛物线的解析式为,由题意,抛物线过点(-1,1),(3,1),(0,1.5),代入解得,,,∴.当时,.即学生丁的身高是1.625m.故选B.试题难度:三颗星知识点:二次函数的应用4.如图,排球运动员甲站在点O处练习发球,将球从O点正上方的A处发出,把球看成点,其运行路线是抛物线的一部分,点D为球运动的最高点.球网BC 离O点的水平距离为9m,以O为坐标原点建立如图所示的坐标系,乙站立地点M的坐标为(m,0).乙原地起跳可接球的最大高度为2.4米,若乙因为接球高度不够而失球,则m的取值范围为( )A. B.C. D.答案:B解题思路:由题意,将y=2.4代入中得:,解得,若乙因为接球高度不够而失球,则结合图象有.∵,∴.故选B.试题难度:三颗星知识点:函数类应用题。
二次函数在几何问题中的应用解析

二次函数在几何问题中的应用解析二次函数是一种常见的数学函数形式,它在几何问题中扮演了重要的角色。
本文将探讨二次函数在几何问题中的应用,并对其解析进行分析。
1. 抛物线的性质抛物线是二次函数的图像,其标准形式为y = ax² + bx + c。
在几何中,抛物线具有以下性质:- 对称轴:抛物线的对称轴是一个垂直于x轴的直线,过抛物线的顶点。
对称轴的方程可以通过求抛物线的顶点坐标得到。
- 顶点:抛物线的顶点是曲线的最高点或最低点,可以通过求导数等方法求得。
- 开口方向:抛物线的开口方向由二次项的系数决定。
若a>0,则抛物线开口向上;若a<0,则抛物线开口向下。
- 零点:抛物线与x轴的交点称为零点,可以通过解方程求得。
2. 抛物线在几何中的应用抛物线在几何问题中的应用广泛,以下是其中几个典型的应用示例。
2.1 求解最值问题抛物线的顶点即为其最值点,可通过二次函数的最值性质求解几何问题。
例如,在确定水平距离为d的情况下,求抛物线y = ax² + bx + c的最大值或最小值。
我们可以通过求导数找到使得导数为0的x坐标,再代入函数得到对应的y坐标。
2.2 确定几何形状抛物线的开口方向可以用来确定几何形状。
若抛物线开口向上,则形状类似一个U;若开口向下,则形状类似一个倒置的U。
这在建模物体的运动轨迹、桥梁设计等问题中有广泛的应用。
2.3 优化问题二次函数可以被用于解决优化问题。
例如,当我们需要绘制一个围起来面积最大的矩形时,可以通过分析矩形的边长与面积的关系,建立二次函数模型,并通过求解最值问题得到最大面积。
3. 示例分析假设有一块长为L的铁板,要制作一个没有顶盖的长方体盒子,使得盒子的体积最大。
设长方体的底边宽度为x,高度为h,由此可以得到体积函数V(x) = x( L - 2x )h。
我们可以通过建立函数模型并求解最值问题来解决这个几何问题。
对于函数V(x),我们首先计算其导数V'(x),然后令导数为0,解得x = L/4。
【冀教版九年级数学下册教案】30.4第1课时抛物线形问题

30.4二次函数的应用第 1 课时抛物线形问题1.掌握二次函数模型的建立,会把实质问题转变成二次函数问题.2.利用二次函数解决拱桥、涵洞关问题.3.能运用二次函数的图象与性质进行决策.一、情境导入某大学的校门是一抛物线形的水泥建筑物( 以下列图 ) ,大门的宽度为8 米,双侧距地面4 米高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为 6 米,请你确立校门的高度是多少?二、合作研究研究点:拱桥、涵洞问题如图是一个横断面为抛物线形状的拱桥,离水面 2 米.水面降落 1 米时,水面的宽度为当水面宽________米.4 米时,拱顶 ( 拱桥洞的最高点)分析:如图,建立直角坐标系,设这条抛物线为y =ax2,把点 (2 ,- 2) 代入,得- 2=×22,a1 1 212a=-2,∴ y=-2x ,当 y=-3时,-2x=- 3,x=± 6. 故答案为 2 6.方法总结:在解决呈抛物线形状的实质问题时,平时的步骤是:(1)建立适合的平面直角坐标系; (2)将实质问题中的数目转变成点的坐标;(3)设出抛物线的分析式,并将点的坐标代入函数分析式,求出函数分析式;(4)利用函数关系式解决实质问题.如图,某地道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为 6 米,底部宽度为12 米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1) 直接写出点 M 及抛物线极点 P 的坐标;(2) 求出这条抛物线的函数关系式;(3) 若要搭建一个矩形“支撑架” AD - DC -CB ,使 C 、 D 点在抛物线上, A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?分析: 解决问题的思路是第一建立适合的坐标系,发掘条件确立图象上点的坐标M (12 , 0) 和抛物线极点 (6 ,6) ;已知极点坐标,可设二次函数关系式为 y = ( x- 6) 2+ 6,可利用Pa待定系数法求出二次函数关系式;再利用二次函数上某些点的坐标特色, 求出有关 “ 支撑架 ”总长 AD +DC + CB 二次函数的关系式,依据二次函数的性质,求出最值,从而解决问题.解: (1) 依据题意,分别求出M (12 , 0) ,最大高度为 6 米,点 P 的纵坐标为6,底部宽度为 12 米,因此点 P 的横坐标为 6,即 P (6 , 6) .(2) 设此函数关系式为 = ( x-6)2 + 6. 由于函数y = ( - 6) 2+6 经过点 (0 ,3) ,因此 3y aa x211212= a (0 - 6) + 6,即 a =- 12. 因此此函数关系式为 y =- 12( x - 6) + 6=- 12x + x +3.1 2 1 2(3) 设 A ( m , 0) ,则 B (12 - m , 0) , C (12 -m ,- 12m +m + 3) ,D ( m ,- 12m + m + 3) .即“支撑架”总长+ += ( - 12+ +3)+(12-2 )+(-12+ +3)=-1 2+18. 因AD DC CB12mm m 12mm6m为此二次函数的图象张口向下.因此当m = 0 时, AD + DC + CB 有最大值为 18.三、板书设计建立二次函数模型: ( 1)拱桥问题;( 2)涵洞问题 .教课过程中, 重申学生自主研究和合作交流, 经历将实质问题转变成函数问题, 建立二次函数模型,解决生活中的实质问题 .。
二次函数的应用抛物线的实际应用

二次函数的应用抛物线的实际应用二次函数的应用:抛物线的实际应用引言:二次函数是数学中重要的一种函数形式,它的图像为一个抛物线。
抛物线在现实生活中有着广泛的应用,无论是物理学、经济学还是工程学,都离不开对二次函数的应用。
本文将重点介绍抛物线的实际应用,并探讨二次函数在这些应用中的角色。
一、抛物线在物理学中的应用1. 自由落体运动自由落体运动是我们熟知的物理现象,物体在重力作用下自由下落。
这一过程可以用二次函数来描述。
假设物体从高度 h0 自由下落,高度随时间的变化可以用二次函数 h(t) = -gt^2 + h0 来表示,其中 g 是重力加速度,t 是时间。
抛物线的开口向下,表达了物体的下降趋势,通过解析二次函数,我们可以计算物体的下落时间、最大高度等重要物理量。
2. 抛物线弹道在射击或投掷物体时,抛物线弹道也是常见的现象。
例如,运动员射击目标、棒球手投掷棒球等。
这些抛物线弹道可以利用二次函数进行建模。
通过观察抛物线的顶点和开口方向,我们可以分析射击或投掷的角度、速度等因素,帮助运动员准确命中目标。
二、抛物线在经济学中的应用1. 成本与收益在经济学中,成本与收益是决策的重要因素。
当生产或经营某种产品时,成本和收益之间往往存在着二次函数关系。
成本一般随着产量的增加而呈抛物线增长,而收益则随着产量的增加而呈抛物线增长,二者的交点即为盈亏平衡点。
通过分析二次函数的图像,我们可以找到最大化收益、最小化成本的最优产量或定价策略。
2. 市场供需市场供需关系也可以用二次函数进行建模。
供需的交点是市场均衡点,也就是商品的实际价格。
市场需求一般随着价格的下降而增加,而市场供应一般随着价格的上升而增加,二者的交点即为市场均衡。
通过分析二次函数的图像,我们可以预测市场的价格波动和供需的变化趋势。
三、抛物线在工程学中的应用1. 科学研究在科学研究中,抛物线的应用非常广泛。
例如,在天体力学中,通过二次函数可以描述天体的轨迹;在工程力学中,通过二次函数可以建立材料的变形模型,以便研究材料的受力行为。
第1章 1.5 第1课时 实物抛物线

A.当小球抛出高度达到 7.5 m 时,小球距 O 点水 平距离为 3 m
B.小球距 O 点水平距离超过 4 米呈下降趋势 C.小球落地点距 O 点水平距离为 7 5=4x-12x2,整理得 x2-8x +15=0,解得 x1=3,x2=5,∴当小球抛出高度达到 7.5 m 时,小球水平距 O 点水平距离为 3 m 或 5 m,A 错误, 符合题意;y=4x-12x2=-12(x-4)2+8,则抛物线的对称 轴为 x=4,∴当 x>4 时,y 随 x 的增大而减小,即 B 正
解得 x=6 或 x=-4(∵x≥1,故舍去), 把 x=6 代入 y=1x8,得 y=168=3 米. ∴运动员与下方滑道的竖直距离为 13-3=10 米.
(3)依题意,得 1.8=18-5t2,解得 t=1.8 (负值舍去); ∴1.8v 乙-1.8×5>4.5,∴v 乙>7.5 米/秒.
11. 一座隧道的截面由抛物线和长方形构成,长方形 的长为 8 m,宽为 2 m,隧道最高点 P 位于 AB 的中央且 距地面 6 m,建立如图所示的坐标系.
(1)求抛物线的解析式; (2)一辆货车高 4 m,宽 2 m,能否从该隧道内通过, 为什么?
解:(1)由题意可知抛物线经过点 A(0,2),P(4,6), B(8,2),设抛物线的解析式为 y=ax2+bx+c,
m 时,水面宽 4 m,水面下降 2 m,水面宽度增加
4
2-4
m.
10. 如图是一抛物线形拱桥,已知水位在 AB 位置 时,水面宽 4 6米,水位上升 3 米就达到警戒线 CD, 这时水面宽 4 3米.若洪水到来时,水位以每小时 0.25 米的速度上升,求水过警戒线后几小时能淹到拱桥顶.
解:建立如图所示的直角坐标系,设抛物线的解析 式为 y=ax2,由题意,点 B(2 6,y1),D(2 3,y2), 又 y2-y1=12a-24a=3,∴a=-14,抛物线解析式为 y =-41x2,∴点 D 的坐标为(2 3,-3),则 OE=3,水 过警戒线再淹到拱桥顶所需时间为 3÷0.25=12(小时).
二次函数的应用 (抛物线型)

抛物线的解析式为y=
-
1
1 6
(x-4)2+3
OC 4 4 3
y
10.928 10.9
2A
C精选Oppt源自7x例2.在体育测试时,初三的一名高个子男生推 铅球,已知铅球所经过的路线是某个二次函数 的图象的一部分(如图),如果这个男生的出 手处A点坐标为(0,2),铅球路线的最高处 B的坐标为(6,5)。
(1)求这个二次函数的解析式。
y
B(6,5)
2A C
O
x
实际问题
数学问题
实际问题------求铅球所精经选ppt过的路线。
8
数学问题:
已知:抛物线的顶点坐标(6,5),并 经过A(0,2).
求:抛物线的解析式.
y
2A
O
精选ppt
B(6,5)
C x
9
解:(1)∵抛物线的顶点为(6,5)
∴可设抛物线的解析式为 y=a(x-6)2+5.
∵抛物线经过点A(0,2)
∴2=a(0-6) 2 +5
∴a=- 1
12
故抛物线的解析式为y= - 1 12(x-6)2+5
即 y= - 1 12x2+x+2 y
B(6,5)
2A
精O选ppt
C x
10
例2. 在体育测试时,初三的一名高个子男生推 铅球,已知铅球所经过的路线是某个二次函数 的图象的一部分(如图),如果这个男生的出 手处A点坐标为(0,2),铅球路线的最高处B 的坐标为(6,5).
(2)该男生把铅球推出去多远?(精确到0.01
米) 15 3.87
y
(2)当y=0时,
B(6,5)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:30.4二次函数应用1----抛物线形问题 时间: 姓名:
学习目标:1.能根据题意建立适当坐标系,求出二次函数解析式
2. 会运用二次函数性质及其图像的知识解决现实生活中的抛物线形问题
一、知识链接:
1.二次函数y=a(x-h)2
+k 的顶点坐标为(2,4)且过点(0,1)则其解析式为
二、新知初探:
如图,一位运动员在距篮框水平距离4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.
(1)建立如图所示的直角坐标系,求抛物线的表达式;
(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?
(3)你还有其它建坐标系的方法吗?不同坐标系所对应的的解析式有何异同?得到的第(2)问答案是否相同?
题组训练:
1.如图,在相距2m 的两棵树上栓了一根绳子做成一个简易秋千,栓绳子的地方都高出地面
2.6m ,绳子自然下垂近似呈抛物线形.当身高1.1m 的小妹距较近的那棵树0.5m 时,头部刚好接触到绳子,则绳子的最低点距地面的距离为_______m .
2. 随着新农村的建设和旧城的改造,我们的家园越来越美
丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米。
(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式; (2)求出水柱的最大高度的多少?
达标测评:
1. 一座拱桥的轮廓呈抛物线形,拱高6米,跨度为20米,相邻两立柱间的距离均为5米.
(1)建立适当的直角坐标系,求这条抛物线的表达式. (2)求立柱EF 的长. (3)拱桥下面拟铺设行车道,要保证高3
米的汽车能够通过
(车顶与桥拱的距离不小于
0.3米),行车道最宽可铺设多少米?
(提升题)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度12米时,球移动的水平距离为9米.已知山坡OA 与水平方向OC 的夹角为30°,O 、A 两点相距83 米. (1)求出点A 的坐标;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点?。