2012年山东省专升本统一考试高等数学真题试卷

合集下载

专升本 高等数学 2012年专升本高等数学(二)参考答案

专升本 高等数学 2012年专升本高等数学(二)参考答案

第一部分 极限和连续同步练习题1.1参考答案一、选择题1.C2.A3. A 二、填空题4. [4,2][2,4]-- 。

5. π。

6.3cos x 。

三、解答题7.2,1,tan ,12y u u v v w z z x ==+==-。

8.222112111()1()2()1()()21xf x f x x x x x x =++=++→=++。

同步练习题1.2参考答案一、选择题1.D2.C3.D4. C5.B6.C7.C 二、填空题8.2,3 9. 1 10. 0 11. 2-三、解答题12 (1)2121230113lim lim 230332433nn n n n n n n ++→∞→∞⎛⎫+ ⎪++⎝⎭===++⎛⎫+ ⎪⎝⎭。

(2) 221...111lim lim 1...111n n n n n n a a a a b b b b b a b a →∞→∞++++---=⨯=++++---。

(3)111lim ...1335(21)(21)111111111lim 1...lim 12335(21)(21)2(21)2n n n n n n n n →∞→∞→∞⎡⎤++⎢⎥⨯⨯-+⎣⎦⎡⎤⎡⎤=-+-+-=-=⎢⎥⎢⎥-++⎣⎦⎣⎦(4)1lim[ln(1)ln]lim ln(1)ln1xx xx x x ex→+∞→+∞+-=+==。

(5)1114x xx→→→===(6)16x x→→==。

(7)22lim2x xx x→→==--(8)0001(1)11lim lim lim()112x x x x x xx x xe e e e e ex x x x---→→→------==+=+=-。

13.100lim(1)lim[(1)]nmn mnx mxx xmx mx e→→+=+=。

14. ()lim(1)lim[(1)]txt x xt tf x et tπππππ→∞→∞=+=+=,(ln3)3fπ=。

2012年普通高等学校招生全国统一考试(山东卷)数学试题 (文科) 解析版

2012年普通高等学校招生全国统一考试(山东卷)数学试题 (文科) 解析版

2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为(A)3+5i (B)3-5i (C)-3+5i (D)-3-5i 【解析】i i i i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=.故选A.【答案】A (2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则B AC U )(为(A){1,2,4}(B){2,3,4}(C){0,2,4}(D){0,2,3,4}【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.【答案】C(3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]-(D)(1,2]-【解析】要使函数有意义则有⎪⎩⎪⎨⎧≥-≠+>+040)1ln(012x x x ,即⎪⎩⎪⎨⎧≤≤-≠->2201x x x ,即01<<-x 或20≤<x ,选B.【答案】B(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数(B)平均数(C)中位数(D)标准差【解析】设A 样本的数据为变量为X ,B 样本的数据为变量为Y ,则满足2+=X Y ,根据方差公式可得DX X D DY =+=)2(,所以方差相同,标准差也相同,选D.【答案】D(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真(B)q ⌝为假(C)p q ∧为假(D)p q ∨为真【解析】函数x y 2sin =的周期为ππ=22,所以命题p 为假;函数x y cos =的对称轴为Z k k x ∈=,π,所以命题q 为假,所以q p ∧为假,选C.【答案】C(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2-(B)3[,1]2--(C)[1,6]-(D)3[6,]2-【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A.【答案】A(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为(A)2(B)3(C)4(D)5【解析】当4=a 时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.【答案】B(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2-(B)0(C)-1(D)1--【解析】因为90≤≤x ,所以6960ππ≤≤x ,369363πππππ-≤-≤-x ,即67363ππππ≤-≤-x ,所以当336πππ-=-x 时,最小值为3)3sin(2-=-π,当236πππ=-x 时,最大值为22sin 2=π,所以最大值与最小值之和为32-,选A.【答案】A(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切(B)相交(C)外切(D)相离【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B.【答案】B(10)函数cos622x xx y -=-的图象大致为【解析】函数为奇函数,所以图象关于原点对称,排除A,令0=y 得06cos =x ,所以ππk x +=26,ππ612k x +=,函数零点有无穷多个,排除C,且y 轴右侧第一个零点为)0,12(π,又函数x x y --=22为增函数,当120π<<x 时,022>-=-x x y ,06cos >x ,所以函数0226cos >-=-x x x y ,排除B ,选D.【答案】D(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A)23x y =(B)23x y =(C)28x y =(D)216x y=【解析】抛物线的焦点)2,0(p ,双曲线的渐近线为x a b y ±=,不妨取x a b y =,即0=-ay bx ,焦点到渐近线的距离为2222=+⨯b a p a ,即c b a ap 4422=+=,所以4p a c =双曲线的离心率为2=a c ,所以24==p a c ,所以8=p ,所以抛物线方程为y x 162=,选D.【答案】D(12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是(A)12120,0x x y y +>+>(B)12120,0x x y y +>+<(C)12120,0x x y y +<+>(D)12120,0x x y y +<+<【解析】方法一:在同一坐标系中分别画出两个函数的图象,要想满足条件,则有如图,做出点A 关于原点的对称点C,则C 点坐标为),(11y x --,由图象知,,2121y y x x >-<-即0,02121<+>+y y x x ,故答案选B.方法二:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b ==.所以21()()(F x x x x =--,比较系数得1x -=,故1x =.120x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案为B.【答案】B第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.【解析】以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=.【答案】61(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.【解析】最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.【答案】9(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.【解析】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.【答案】14(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.【解析】因为圆心移动的距离为2,所以劣弧2=PA ,即圆心角2=∠PCA,,则22π-=∠PCA ,所以2cos )22sin(-=-=πPB ,2sin 22cos(=-=πCB ,所以2sin 22-=-=CB x p ,2cos 11-=+=PB y p ,所以)2cos 1,2sin 2(--=OP .另解:根据题意可知滚动制圆心为(2,1)时的圆的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,且223,2-==∠πθPCD ,则点P 的坐标为⎪⎩⎪⎨⎧-=-+=-=-+=2cos 1)223sin(12sin 2)223cos(2ππy x ,即)2cos 1,2sin 2(--=OP .【答案】)2cos 1,2sin 2(--三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=.(Ⅰ)求证:,,a b c 成等比数列;(Ⅱ)若1,2a c ==,求△ABC 的面积S .【答案】(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,2sin sin sin B A C =,再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==,∴2223cos 24a cb B ac +-==,sin C =∴△ABC 的面积11sin 1222S ac B ==⨯⨯⨯.(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【答案】(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.(19)(本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .【答案】(19)(I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知,CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(II)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥,所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20)(本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .【答案】(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=.(II)由277m n a n =≤,得217m n -≤,即217m m b -=.∵211217497m k m k b b ++-==,∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948m m m S -==--.(21)(本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.【答案】(21)(I)22234c a b e a a -===……①矩形ABCD 面积为8,即228a b ⋅=……②由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214x y +=.(II)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩,设1122(,),(,)P x y Q x y ,则21212844,55m xx m x x -+=-=,由226420(44)0m m ∆=-->得m <<.||PQ=.当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <<-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST ==其中3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST.②由对称性,可知若1m <<53m =时,||||PQ ST.③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST.综上可知,当53m =±和0时,||||PQ ST.(22)(本小题满分13分)已知函数ln ()(e xx k f x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.【答案】(I)1ln ()e xx k x f x --'=,由已知,1(1)0e k f -'==,∴1k =.(II)由(I)知,1ln 1()e xx x f x --'=.设1()ln 1k x x x=--,则,即()k x 在(0,)+∞上是减函数,由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e xx x x g x x x x --=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+,当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<,所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。

2012年山东专升本高等数学真题答案

2012年山东专升本高等数学真题答案
第 1 页 共 5 页
n•
= lim =
n →∞
1+ n 2 2 n
1 2
1 x −1 1 x −1
4 解: lim e +
x →1 x →1
= +∞(e
1 x −1
x → 1+ e +∞ → +∞)
lim e = 0(e −
1 x −1
x → 1− e −∞ → 0)
1 1 1 + + 2 2011n 2 求 lim 2011 2011 x →∞ 1 1 1 + + 2 2012 2012 2012n
3 设 f ( x) = e , 求 lim
x
1
1 ln [ f (1) f (2) f (n) ] x →∞ n 2
4. lim e x −1
x →1
x+a 5.若 lim = e ,试求常数 a x →∞ x − a
x x2 + 1
x
,则 f [ f ( x) ] =
3. lim(1 + ) =
x →0
1 x
4.曲线 = y x ln(2 + ) 的渐近线为 5.函数 y =
1 x
1 e
x x−2
的间断点为
−1
2
三、计算题(共 50 分,每小题 5 分) 1.设函数 f ( x) = sin x, f [ ( x) ] = 1 − x ,求 ( x)
n
收敛
B.
∑ (−1) a
n =1

n 收敛
C.
∑a a
n =1

n n +1

2012年山东省高考数学试题及答案

2012年山东省高考数学试题及答案

2012年普通高等学校招生全国统一考试(山东卷)理科数学一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为 A {1,2,4} B {2,3,4}C {0,2,4}D {0,2,3,4}3 设a >0 a ≠1 ,则“函数f(x)= a x 在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件(4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为(A )2(B )3(C )4(D )5(7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2=θ,则sin θ=(A )35(B )45(C (D )34(8)定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x<-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x 。

则f (1)+f (2)+f (3)+…+f (2012)= (A )335(B )338(C )1678(D )2012 (9)函数的图像大致为(10)已知椭圆C:的离心率为,双曲线x²-y²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为(11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为(A)232 (B)252 (C)472 (D)484(12)设函数f(x)=,g(x)=ax2+bx若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时, x1+x2>0, y1+y2<0C.当a>0时,x1+x2<0, y1+y2<0D. 当a>0时,x1+x2>0, y1+y2>0第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。

2012年成人高考专升本高等数学一考试真题及参考答案

2012年成人高考专升本高等数学一考试真题及参考答案

2012年成人高考专升本高等数学一考试真题及参考答案第一篇:2012年成人高考专升本高等数学一考试真题及参考答案2012年成人高考专升本高等数学一考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

参考答案:A参考答案:C参考答案:D参考答案:A参考答案:B参考答案:D参考答案:C参考答案:B参考答案:A参考答案:B二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

第11题参考答案:0 第12题设y=sin(x+2),则Y'=_________ 参考答案:cos(x+2)第13题设y=ex-3,则dy=_________.第14题参考答案:5sinx+C 第15题第16题曲线Y=x2-x在点(1,0)处的切线斜率为_________.参考答案:1 第17题设y=x3+2,则y''=__________.参考答案:6x 第18题设z=x2-y,则dz=_________.参考答案:2xdx-dy 第19题过点M(1,2,3)且与平面2x—Y+z=0平行的平面方程为_________.参考答案:2x—y+z=3 第20题参考答案:3π三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第21题参考答案:第22题参考答案:第23题设函数f(x)=x-1nx,求f(x)的单调增区间.参考答案:第24题参考答案:第25题参考答案:第26题参考答案:第27题设L是曲线y=x2+3在点(1,4)处的切线。

求由该曲线,切线L及y轴围成的平面图形的面积S.参考答案:第28题参考答案:第二篇:2013年成人高考专升本高等数学一考试真题及参考答案2013年成人高考专升本高等数学一考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

参考答案:C参考答案:A参考答案:B参考答案:D参考答案:B参考答案:A参考答案:D参考答案:B参考答案:C参考答案:A二、填空题:本大题共10小题。

2012年全国高考理科数学试题(山东卷)

2012年全国高考理科数学试题(山东卷)
6x 的图象大致为( 9.函数 y cos 2x 2 x y y A. B.
) C.
y
D.
y
O
x
O
x
O
x
O
x
2 y2 10.已知椭圆 C : x2 2 1 ( a b 0 )的离心率为 3 ,双曲线 x2 y 2 1 的渐近线与椭圆 2 a b 16 C 有四个交点,以这四个交点为顶点的四边形的面积为 ,则椭圆 C 的方程为( ) 2 2 2 2 y2 y2 y2 y2 x x x x A. 1 B. 1 C. 1 D. 1 8 2 12 6 16 4 20 5
山东高考理 2012 第 4 页 共 4 页
E
C
D A B
第 18 题图
19.(本小题满分 12 分) 现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为 3 ,命中得 1 分,没有命中得 0 4 2 分;向乙靶射击两次,每次命中的概率为 ,每命中一次得 2 分,没有命中得 0 分.该射手每次 3 射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次的概率; (Ⅱ)求该射手的总得分 X 的分布列及数学期望 EX .
D A
y P
1
F
C B
O
1
2
x
山东高考理 2012 第 2 页 共 4 页
2012 年全国各省市高等学校招生全国统一考试数学试题集锦
三、解答题:本大题共 6 小题,共 74 分.解答应写文字说明、证明过程或演算步骤. 17.(本小题满分 12 分) 已知向量 m (sin x, 1) , n ( 3 A cos x, A cos 2x) ( A 0 ),函数 f (x) m n 的最大值为 6. 2 (Ⅰ)求 A ; (Ⅱ)将函数 y f (x) 的图象向左平移 个单位,再将所得图象上各点的横坐标缩短为原来 12 1 的 倍,纵坐标不变,得到函数 y g(x) 的图象,求 g(x) 在 [0, 5 ] 上的值域. 2 24

2012年高数专升本真题及其参考答案.

2012年高数专升本真题及其参考答案.

Passage four Animals seem to have the sense to eat when they are hungry and they do not eat more than their bodies need. It has been demonstrated that rats will, when given a choice over a period of time, prefer water with vitamins to water without vitamins even though there is no difference in taste or smell between the two water bottles. When a fragrant flavor was added to the vitamin-enriched fluid, the rats did seem to develop a taste for it and kept drinking it ,even after the vitamins were switched to the clear water. In time, however ,they broke the habit and went back to where the necessary vitamins were.In a classic experiment, babies of 6 to 12 months old were placed in a cafeteria feeding arrangement, with a wide selection of baby food before them. They were given whatever food they pointed to or appeared interested in. We are told that at first they showed some unusual eating patterns, but that over a period of time they managed to select well-balanced diet.So, in selecting food, rats and babies do seem to know and act on what's best for them. Apparently, there is a kind of "body wisdom,"which humans soon lose. Most of us do not eat as wisely as we could. Many of our food preferences are culturally determined and influenced by long-established habits. Some people eat fox, dog and blackbirds ,while we eat cows and pigs. So what people eat and how much they eat seems to be greatly influenced by what is going on around them.76. In the experiment on rats, a fragrant flavor was added to the rat's drinking water to___.A. encourage rats to drink vitamin-enriched water B. find out rats preference in flavor C. test whether rats know which drink is good for them D. demonstrate that vitamins are tasteless 77. The expression "the habit" (para.1, sentence 4 refers to drinking water which_________. A. has no smell B. is tasteless C. has vitamins D. is flavored 78. According to the passage ,adults eating habits differ from those of babies because_____.A. adults know better than babies what kind of food are good for their healthB. adults usually cannot resist the temptation of various delicious foodsC. adults' eating habits areclosely related to the social and cultural customs D. adults have more choices of food than babies in eating patterns 79. The author implied in the passage that most ofus_________. A. eat a balanced dietB. choose the food that is of nutritionC. have the habits influenced by the surroundingsD. like to eat the food with a fragrant flavor80. As far as their eating habits are concerned, babies and rats are similar inthat______. A. both have the wisdom to choose a balanced diet B. both prefer flavored food and drinkC. both have the same eating patternsD. both develop a taste for the same kinds of flavors Part IV. Translation . ( 30pointSection A: Directions: There are 10 sentences in this section. Please translate sentences 81-85 from Chinese into English, and translate sentences 86-90 from English into Chinese. Write your answer on the Answer Sheet.81 我们向李先生学习,因为他有丰富的工作经验。

2012年普通高等学校招生全国统一考试(山东卷)文科数学及答案

2012年普通高等学校招生全国统一考试(山东卷)文科数学及答案

2012年普通高等学校招生全国统一考试(山东卷)数 学(供文科考生使用)锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件,A B 互斥,那么()()()P A B P A P B +=+.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z 满足()2117z i i -=+(i 为虚数单位),则z 为( )A.35i +B.35i -C.35i -+D.35i -- 2.已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则(C U A )B 为( )A.{}1,2,4B.{}2,3,4C.{}0,2,4D.{}0,2,3,43.函数()()1ln 1f x x =++( ) A.[)(]2,00,2- B.()(]1,00,2- C.[]2,2-D.(]1,2-4.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据.则,A B 两样本的下列数字特征对应相同的是( )A.众数B.平均数C.中位数D.标准差5.设命题:p 函数sin 2y x =的最小正周期为π2;命题:q 函数cos y x =的图象关于直线π2x =对称.则下列判断正确的是( )A.p 为真B.q ⌝为假C.p q ∧为假D.p q ∨为真 6.设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是( )A.3[,6]2-B.3[,1]2--C.[1,6]-D.3[6,]2-7.执行如图的程序框图,如果输入4a =,那么输出的n 的值为( )A.2B.3C.4D.58.函数ππ2sin()(09)63x y x =-≤≤的最大值与最小值之和为( )A.2B.0C.1-D.1-- 9.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离10.函数cos622x xxy -=-的图象大致为( )11.已知双曲线()22122:10,0x y C a b a b-=>>的离心率为2,若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为( )A.2x y =B.2x y =C.28x y =D.216x y =12.设函数()()21,f x g x x bx x==-+,若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点()()1122,,,A x y B x y ,则下列判断正确的是( )A.12120,0x x y y +>+>B.12120,0x x y y +>+<C.12120,0x x y y +<+>D.12120,0x x y y +<+< 二、填空题(本大题共4小题,每小题4分,共16分) 13.如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上一点,则三棱锥1A DED -的体积为________14.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[]20.5,26.5.样本数据的分组为[)[)[)[)[)20.5,21.5,21.5,22.5,22.5,23.5,23.5,24.5,24.5,25.5,[]25.5,26.5.已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________15.若函数()()0,1x f x a a a =>≠在[]1,2-上的最大值为4,最小值为m ,且函数()(14g x m =-[)0,+∞上是增函数,则a =________16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在()0,1,此时圆上一点P 的位置在()0,0,圆在x 轴上沿正向滚动,当圆滚动到圆心位于()2,1时,OP的坐标为________三、解答题(本大题共6小题,共74分.解答题应写出文字说明,证明过程或演算步骤.)17.(本小题12分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知()s i n t a n t a n t a n t a n B A CA C +=. (1)求证:,,a b c 成等比数列;(2)若1,2a c ==,求ABC ∆的面积S .18.(本小题12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.DCB A平均气温/︒CC 1D 1B 1A 1E D CBA19.(本小题12分)如图,几何体E ABCD -是四棱锥,ABD ∆为正三角形,,CB CD EC BD =⊥(1)求证:BE DE =;(2)若120,BCD M ∠=︒为线段AE 的中点,求证:DM 平面BEC .20.(本小题12分)已知等差数列{}n a 的前5项和为105,且1052a a =,(1)求数列{}n a 的通项公式;(2)对任意m N *∈,将数列{}n a 中不大于27m 的项的个数记为m b ,求数列{}n b 的前m 项和m S .21.(本小题13分)如图,椭圆()2222:10x y M a b a b+=>>直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(1)求椭圆M 的标准方程;(2)设直线():l y x m m R =+∈与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.22.(本小题13分)已知函数()ln xx kf x e +=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()yf x =在点()()1,1f 处的切线与x 轴平行.(1)求k 的值;(2)求()f x 的单调区间;(3)设()()'g x xf x =,其中()'f x 为()f x 的导函数.证明:对任意()20,1x g x e -><+.E D C B A一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年山东省专升本统一考试高等数学真题试卷一、单选题(在每个小题的四个备选答案中选出一个正确答案,并将该答案的序号填入题后的括号内。

本大题共5小题,每小题3分,共15分)1.函数y =的定义域为( )。

(A )[)1,-+∞(B )11,2⎡⎫-⎪⎢⎣⎭(C )1,2⎛⎫+∞ ⎪⎝⎭(D )111,,22⎡⎫⎛⎫-+∞⎪ ⎪⎢⎣⎭⎝⎭2.下列各组中,两个函数为同一函数的组是( )。

(A )()()2231,31f x x x g t t t =+-=+-(B )()()24,22x f x g x x x -==+-(C )()()f x g x ==(D )()()3,3f x g x x x ==+- 3.函数y xtgx =是( )。

(A)有界函数(B)单调函数(C)偶函数(D)周期函数4.直线321021030x y z x y z +++=⎧⎨--+=⎩与平面4220x y z -+-=的关系为( )。

(A)直线在平面上(B)直线与平面垂直 (C)直线与平面平行(D)直线与平面斜交5.若级数1nn a∞=∑收敛,下列结论正确的是( )。

(A )1n n a ∞=∑收敛(B )()11nn n a ∞=-∑收敛(C )11n n n a a ∞+=∑收敛(D )112n n n a a ∞+=+∑收敛 二、填空题(本大题共5小题,每小题3分,共15分)1.函数1,0sgn 0,01,0x y x x x -<⎧⎪===⎨⎪>⎩的值域为 .2.设()f x =,则()f f x =⎡⎤⎣⎦ .3.01lim 1xx x →⎛⎫+= ⎪⎝⎭. 4.曲线1ln 2y x x ⎛⎫=+ ⎪⎝⎭的渐近线为 . 5.函数211x y x e-=-的间断点为 .三、计算题(本大题共10小题,每小题5分,共50分)1.设函数()()2sin ,1f x x f x x ϕ==-⎡⎤⎣⎦求()x ϕ.2.求22111201120112011lim 111201220122012n n x n→+++++.3.设()x f x e =,求()()()21lim ln 12n f f f n n →∞⎡⎤⎣⎦.4.求111limx x -→.5.若lim xx x a e x a →∞+⎛⎫= ⎪-⎝⎭,试求常数a .6.设()()ln 1,0y ax a =+>,求ny7.设()2ln 1arctan x t y t⎧=+⎪⎨=⎪⎩,求22d y dx .8.设()'ln 1f x x =+,求()f x .9.设x yu e =,求2ux y∂∂∂.10.求2xDe dxdy ⎰⎰,其中,D 为y x =与3y x =所围区域.四、应用和证明题(本大题共4小题,每小题5分,共20分) 1.求())lim 122n n n →∞++-+++-.2.在曲线()20y x x =>上求一点,使得曲线在该点处的切线与曲线以及x 轴所围图形的面积为112.3.求dy dx =的通解.4.证明:双曲线1xy =上任一点处的切线与两坐标轴所围三角形的面积均相等.2012年山东省专升本统一考试 高等数学真题参老答案及解析一、单选题(在每个小题的四个备选答案中选出一个正确答案,并将该答案的序号填入题后的括号内。

本大题共5小题,每小题3分,共15分) 1.解:因此题为选择题,故根据四个选项,只要测试10,,12三个数是否在定义域内即可,选项(D)正确.2.解:两个函数当定义域和对应法则相同时即为同一函数,与自变量用哪个字母表示是没有关系的,故选项(A)正确.解:由于y x =和y tgx = (正切函数)都是奇函数,故其乘积为偶函数,选项(C)正确. 4.解,由题意,直线的一般方程为321021030x y z x y z +++=⎧⎨--+=⎩,故可得直线的方向向量()()13228,14,774,2,12110i j ks ==-=----,显然与已知平面的法向量()4,2,1n =-平行,故直线与平面垂直,选项(B )正确. 5. 5解:由于1nn a∞=∑收敛,故11n n a+∞=∑也收敛,根据级数收敛的性质可知,112n n n a a +∞=+∑收敛,选项(D)正确.说明;:可举出一反例,证明其他三个选项错误,如级数()11nn ∞=-∑收敛,但11n nn a ∞∞===∑散,故选项(A )错误;()111nn n n a ∞∞==-=∑发散,选项(B )错误;111n n n n a a ∞∞+==⎛⎫= ⎝∑∑发散,故选项(C)也错误.1.解:此题考青分段函数的们域,答案为{}1,0,1-.2.解:此题号青复合函数的构成方法,山题意,因()f x =.()f f x f ⎛⎫===⎡⎤⎣⎦. 3.解:000111'111ln 1lim lim 11111ln 1ln 1lim ln 1'0001lim 1lim lim 1xx x x x x x xx x x x x x xx x x e eee ee x →→→⎛⎫+⎪⎛⎫⎝⎭++ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭→→→⎛⎫+======= ⎪⎝⎭.4.解:因()1lim lim ln 2x x f x x x →∞→∞⎛⎫=+=∞ ⎪⎝⎭,故曲线没有水平渐近线;又因()0001ln 21lim lim ln 2lim 01x x x x f x x x x→→→⎛⎫+ ⎪⎛⎫⎝⎭=+== ⎪⎝⎭.故曲线没有垂直渐近线; 该题考查斜渐近线的求法,()1limlim ln 2ln 2x x f x k x x →∞→∞⎛⎫==+= ⎪⎝⎭,()1111lim lim ln 2ln 2lim ln 1lim 222x x x x b f x kx x x x x x x x →∞→∞→∞→∞⎡⎤⎛⎫⎛⎫=-=+-=+=⋅=⎡⎤ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦,故斜渐近线为1ln 22y x =+. 5. 解:求函数的间断点即求不在函数定义域内的点,由211x x y e-=-可知,0x =和2x =都不在定义域内,故函数的间断点为0x =和2x =.1.解:由题意,()()2sin 1f x x x ϕϕ==-⎡⎤⎣⎦,当210x -≥时,()()22arcsin 1x k x ϕπ=+-或()()22arcsin 1x k x ϕππ=+--;当210x -<时,()()22arcsin 1x k x ϕπ=+-或()()22arcsin 1x k x ϕππ=---.2.解2211120112011111112011201120112011lim lim 11111120122012201220122012112012n n n n n n →∞→∞⎛⎫- ⎪⎝⎭+++-=⎛⎫+++- ⎪⎝⎭-1201111120112011201011201020122011112012-===-. 3.解:()()()()22211limln 12lim ln n n n f f f n e e e n n →∞→∞=⋅⎡⎤⎣⎦()()()112222211111lim ln lim ln lim 22n n n n n n n n e e nn n ++++→∞→∞→∞⎡⎤+===⋅=⎢⎥⎢⎥⎣⎦. 4.解:当1x -→时,1111,lim 01x x e x -→-→-∞=-; 当1x +→时,1111,lim 1x x e x +-→→+∞=+∞-,故111lim x x e -→不存在。

5.解:2222lim lim 1x a axxa x aa x x x a a e e x a x a -⋅-→∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,可得121,2a a ==. 6.解:因()ln 1y ax =+,故1'11ay a ax ax=⋅=++, ()()222'''111a a a a y ax ax ax -⋅⎛⎫===- ⎪+⎝⎭++. 7.解:'2'2111221t ty dy t t dx x t t+===+,221111222d y d dy d d dt d dx dx dx dx dx t dt t dx dt t dt ⎛⎫⎛⎫⎛⎫⎛⎫===⋅=⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 22321112241t t t t t +=⋅=-+.8.解:令ln x t =,则tx e =,()'1t f t e =+,积分得()t f t t e C =++,故()x f x x e C =++.9.解:22221111,1x x x xy y y y u u x x e e e e x y x y y y y y y ⎛⎫⎛⎫⎛⎫∂∂=⋅=⋅-⋅+⋅-=+ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭.10.解:画出图形,将积分区域D 看作X -型区域,01x ≤≤,3x y x ≤≤,由此()22221111330000x x x x De dxdy dx x x e dx xe dx x e dx -=-=-⎰⎰⎰⎰⎰⎰()()22222111112220000011112222x x x x x e d x x d e e x e xe dx ⎧⎫⎪⎪⎡⎤⎡⎤=-=--⎨⎬⎢⎥⎣⎦⎣⎦⎪⎪⎩⎭⎰⎰⎰()()1111112222ee e e ⎡⎤=----=-⎢⎥⎣⎦. 四、应用和证明题(本大题共4小题,每小题5分,共20分) 1.解:())lim 122n n n →∞++-++-()1122n xn nnn →-+=++++++-n x→===2. 解:由题意,画出图形如下图所示,可设所求点的坐标为()200,x x ,由于'2y x =,故切线斜率02k x =,切线方程为()20002y x x x x -=-,令0y =得02x x =,则切线、曲线及x 轴所围成图形的面积为022000112212x x x dx x -⋅⋅=⎰,即33001113412x x -=,解得01x =,故所求点的坐标为()1,1.3.解:当0x >时,原方程即为dy y dx x =,变量代换,令y u x =,则,dy duy xu u x dx dx==+,代入原方程可得du u xu dx +=+,分离变量得dxx =,两边积分dxx=⎰,得()11arcsin ln ,sin ln u x C u x C =+=+,也即()1sin ln yx C x=+,故通解为()1sin ln y x x C =+;当0x <时,原方程即为dy y dx x =-程变为du u xu dx +=dx x =-,两边积分dxx =-⎰,得2arcsin ln u x C =-+,()2sin ln u x C =-+,也即()2sin ln yx C x=-+,故通解为()()23sin ln sin ln y x x C x x C =-+=-+;两个通解可合并为()sin ln y x x C =+.4.证明:1y x =,则21'y x =-,则任意一点001,x x ⎛⎫⎪⎝⎭处的切线斜率201k x =-,切线方程为()020011y x x x x -=--,令0y =,得02x x =,令0x =,得02y x =,则面积0012222S x x =⋅=为定值,故题设命题成立.2013年山东省专升本统一考试高等数学真题试卷一、单选题(在每个小题的四个备选答案中选出一个正确答案,并将该答案的序号填入题后的括号内。

相关文档
最新文档