圆的内接四边形最大面积以及圆和椭圆的关系

合集下载

圆内接四边形定理

圆内接四边形定理

圆内接四边形定理圆内接四边形定理概述:圆内接四边形是指一个四边形的四个顶点都在同一圆上,这种四边形具有一些特殊的性质,其中最重要的就是圆内接四边形定理。

定义:设ABCD为一个圆内接四边形,其对角线交于E点,则有以下结论:1.对角线互相平分结论:对角线AC和BD互相平分。

证明:作AE、CE、BE、DE交BD于F、G、H、I。

由于ABCD为圆内接四边形,所以∠AEB=∠CEB,∠AED=∠CED。

因此三角形AEB与三角形CEB全等,三角形AED与三角形CED全等。

所以AE=CE,DE=BE。

又因为AF+FB=BF+FC, 所以AF=FC, BG=DH。

故AF+BG=FC+DH, 即AC=BD。

因此AC和BD互相平分。

2.对角线垂直结论:对角线AC和BD垂直。

证明:连接AD、BC,并过E点作AD和BC的垂线EF和EG,则AEHF和CEIG均为矩形。

因此EH=AF, EI=DG。

又因为AE=CE, DE=BE, 所以AH=DJ, CI=BJ。

因此AH·HD=BH·HC, CI·ID=AI·IB。

又因为AH+HD=BH+HC, CI+ID=AI+IB,所以AH²-HB²=CI²-IB²。

因此AH²+CI²=BH²+IB²。

由勾股定理可知,∠ACB为直角,即对角线AC和BD垂直。

3.对角线乘积相等结论:对角线AC和BD的乘积相等。

证明:设O为圆心,则OA=OC, OB=OD。

因此OA·OC=OB·OD。

又因为AECD为一组相似的四边形,所以AE/CE=DE/BE,即AE·BE=CE·DE。

故AE·BE+CE·DE=2AE·BE。

同理,BF·FA+CD·DI=2BF·FA。

两式相加得到AC(BF+CD)=BD(AF+CE),即AC/AF=BD/CE。

面积的单位换算、公式及计算

面积的单位换算、公式及计算

面积的单位换算、公式及计算计算长方形:{长方形面积=长×宽}[1]正方形:{正方形面积=边长×边长}平行四边形:{平行四边形面积=底×高}三角形:{三角形面积=底×高÷2}梯形:{梯形面积=(上底+下底)×高÷2}圆形(正圆):{圆形(正圆)面积=圆周率×半径×半径}圆环:{圆形(外环)面积={圆周率×(外环半径^2-内环半径^2)}扇形:{圆形(扇形)面积=圆周率×半径×半径×扇形角度/360}长方体表面积:{长方体表面积=(长×宽+长×高+宽×高)×2}正方体表面积:{正方体表面积=棱长×棱长×6}球体(正球)表面积:{球体(正球)表面积=圆周率×半径×半径×4}椭圆(其中π(圆周率,a,b分别是椭圆的长半轴,短半轴的长).半圆:(半圆形的面积公式=圆周率×半径的平方÷2)面积单位换算常用的面积单位有公顷、亩、平方公里、平方米、平方厘米等。

这里所说的换算,常指面积之间单位的互换计算。

如:1亩=0.0666666公顷=666.6666平方米等。

目录1常用公式2台湾公式3国外公式1常用公式常用土地面积换算公式 1亩=60平方丈=6000平方尺,1亩=666.6平方米其实在民间还有一个更实用的口决来计算:平方米换为亩,计算口诀为“加半左移三”。

1平方米=0.0015亩,如128平方米等于多少亩?计算方法是先用128加128的一半:128+64=192,再把小数点左移3位,即得出亩数为0.192。

亩换平方米,计算口诀为“除以三加倍右移三”。

如要计算24.6亩等于多少平方米,24.6÷3=8.2,8.2加倍后为16.4,然后再将小数点右移3位,即得出平方米数为16400。

圆内接四边形的性质与判定ppt课件

圆内接四边形的性质与判定ppt课件
性质定理1
圆内接四边形的对角互补
如果一个四边形的对角互补,那么它的四个顶 点共圆.
性质定理2 圆内接边形的外角等于它的内角 的对角。
如果四边形的一个外角等于它的内角的 对角,那么它的四个顶点共圆.
性质定理的逆命题成立吗?
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
(2)如果点D在⊙O内部。 则∠B+∠E=180°
∵∠B+∠ADC=180°∴∠E=∠ADC
同样矛盾。∴点D不可能在⊙O内。
综上所述,点D只能在圆周上,四点共圆。 A D
E O
B
C
(2)
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
假设:四边形ABCD中,∠B+∠D=180°
求证:A,B,C,D在同一圆周上(简称四点共圆).
A
E
D
证明:(1)如果点D在⊙O外部。 则∠AEC+∠B=180°因∠B+∠D=180° B
得∠ D=∠AEC与“三角形外角大于任意
O
C
(1)
不相邻的内角”矛盾。故点D不可能在圆外。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
o 圆 1与
圆o2都经过A,B两点。经过点A
的直线CD与圆o1交于点C,与圆o2交与点经过点B
的直线EF与圆o1交于点E,与圆o2交与点F.
求证:CE//DF. 证明:连接AB

圆内接四边形的面积公式

圆内接四边形的面积公式

圆内接四边形的面积公式在讨论了三角形的面积之后,我们将讨论一些求解四边形面积的公式。

由于任何四边形都可以看作是两个三角形被一条对角线分割的组合,所以我们给出的近百个三角形面积公式都可以用来求解四边形的面积,但是四边形也有自己的特点。

本文的目的是找出其特征,并推导出求面积的特殊公式。

注:本文讨论的四边形都是凸四边形。

就像三角形一样,在讨论之前,我们先给出四边形基本元素的记法。

如下图所示的四边形ABCD:我们记AB=a,BC=b,CD=c,DA=d,A,B,C,D为四个顶点所在的角度,对角线AC=m,BD=n,它们的夹角取锐角,记为\theta ,交点记为O,四边形的面积记为S。

由于四边形与三角形不同,即便是给出了四边形的四条线段的长度,也无法确定一个四边形,即给出四条指定长度的线段,由它们围成的四边形不止一个(至于有几个,不在本文的探讨范围之内),但是如果知道了四边形的两条对角线的长度以及它们的夹角却可以求解面积,若要确定四边形的形状,则只需要再知道它们的交点位置即可,所以第一个四边形的面积就出现了,如下推导:S=S_{\triangle ABC} + S_{\triangle ADC}=\frac{1}{2}AC\cdot BO\cdot sin\theta +\frac{1}{2}AC\cdot DO\cdot sin\theta=\frac{1}{2}AC\cdot (BO+DO)\cdot sin\theta=\frac{1}{2}AC\cdot BD\cdot sin\theta=\frac{1}{2}mnsin\theta我们记为四边形的面积公式一。

与我们在《三角形的面积公式七》中所讲述一样。

公式一是用两条对角线的长度及其夹角来求解四边形的面积,但是在通常的计算和问题中,我们总是会遇到知道四条边长,而不知道对角线长的情况,所以我们还是得要寻求以边长来求解面积的公式,可是前面说了,只知道四条边的长度没法确定一个四边形,那么面积也就不确定,为此,我们还需要一个量来确定形状,结合公式一,我们可以想到保留\theta 角,而用四条边长来替代对角线,而能够用长度和角度来求解长度的就是余弦定理。

初中圆内接四边形知识点

初中圆内接四边形知识点

初中圆内接四边形知识点圆内接四边形是初中数学中的一个重要概念,它涉及到了圆和四边形的关系。

本文将通过逐步思考的方式,详细介绍初中圆内接四边形的相关知识点。

第一步:理解内接四边形的概念首先,我们需要明确什么是内接四边形。

一个四边形被称为内接四边形,当且仅当四个顶点都位于同一个圆上。

第二步:认识内接四边形的性质接下来,我们来了解一些内接四边形的性质。

1.性质一:对角线互相垂直对于任意一个内接四边形,其对角线互相垂直。

这是因为对角线是圆的直径,而直径与圆上的任意一条弦垂直。

2.性质二:对角线相互平分内接四边形的对角线相互平分。

也就是说,对角线的交点是对角线的中点。

3.性质三:内角之和为360度内接四边形的四个内角之和等于360度。

这是因为四边形可以看作是两个三角形的组合,而一个三角形的内角之和是180度。

4.性质四:内接四边形是等边四边形的特例如果一个内接四边形的四个边相等,那么这个内接四边形就是等边四边形。

第三步:推导内接四边形的相关定理在初中数学中,我们还可以通过一些定理来推导内接四边形的性质。

1.定理一:圆内接四边形的内角和定理对于任意一个圆内接四边形,其内角和等于180度。

这个定理的证明可以通过将圆内接四边形分成两个三角形来完成。

2.定理二:内接四边形的对角线定理对于一个内接四边形,其对角线互相垂直且相互平分。

这个定理可以通过圆的性质以及对角线互相垂直的性质进行证明。

第四步:解题思路和应用最后,我们可以通过解题来巩固对圆内接四边形的理解。

在解题时,我们可以首先根据题目中给出的条件,判断是否为内接四边形。

然后,可以利用内接四边形的性质和相关定理,进行推导和计算。

例如,我们可以通过已知内接四边形的一个角的度数,计算其他角的度数。

或者,通过已知内接四边形的一个边的长度,计算其他边的长度。

总结初中圆内接四边形是数学中一个重要的概念,它涉及到了圆和四边形的关系。

通过逐步思考,我们可以了解到内接四边形的性质和相关定理,并且可以通过解题来巩固和应用这些知识点。

圆学复习圆内接四边形的性质与定理

圆学复习圆内接四边形的性质与定理

圆学复习圆内接四边形的性质与定理圆内接四边形的性质与定理圆内接四边形是指一个四边形的四个顶点都位于同一个圆上的情况。

在数学几何中,圆内接四边形具有一些特殊的性质与定理,本文将对这些内容进行详细的讨论。

一、圆内接四边形的定义与性质圆内接四边形的定义很简单,它是指一个四边形的四个顶点都位于同一个圆上。

这意味着四边形的每条边都是圆的切线。

在圆内接四边形中,我们可以发现以下性质:1. 对角线互相垂直:在圆内接四边形中,对角线是互相垂直的。

这是因为相对的两个顶点位于圆的直径上,而直径是圆的性质之一,因此对角线互相垂直。

2. 对角线相互平分:在圆内接四边形中,对角线互相平分。

这是因为相对的两个顶点与圆心连线的中点即为对角线的交点,而圆心连线是圆的半径,因此对角线互相平分。

3. 两组对角的和相等:在圆内接四边形中,两组对角的和相等。

也就是说,相邻的两个角和等于另外两个角和。

这一性质可以通过角的对立角相等来证明。

二、圆内接四边形的定理在圆内接四边形中,还存在一些重要的定理。

接下来,我们将逐一介绍这些定理。

1. 圆内接四边形的内角和等于360度:这是圆内接四边形最基本的定理之一。

由于圆的内角和为360度,所以圆内接四边形的内角和也等于360度。

2. 等腰圆内接四边形的对角线互相垂直:对于一个等腰圆内接四边形,也就是两组对边相等的圆内接四边形,其对角线互相垂直。

3. 对角线垂直且互相平分的四边形是矩形:若一个四边形的对角线互相垂直且互相平分,那么这个四边形是一个矩形。

4. 正方形是圆内接四边形:一个正方形的四个顶点位于同一个圆上,因此它是一个圆内接四边形。

5. 圆内接梯形的两个对角线相等:圆内接梯形是指一个梯形的两条腰都位于同一个圆上。

在圆内接梯形中,两个对角线相等。

这些定理的证明可以通过运用几何学中的基本原理与性质进行推导,读者可以根据需要自行探索。

三、应用与扩展圆内接四边形的性质与定理在数学中有广泛的应用。

例如,在计算几何学中,我们常常需要考虑到四边形的性质来解决一些问题,圆内接四边形就是其中之一。

圆内接四边形的性质及其应用

圆内接四边形的性质及其应用

03 圆内接四边形的面积和周 长
面积的计算
面积公式
圆内接四边形的面积可以通过公 式计算,公式为$S = frac{1}{2} times d times p$,其中$d$是 圆的直径,$p$是圆内接四边形
的周长。
面积与半径的关系
圆内接四边形的面积与半径成正 比,当半径增大时,面积也相应
增大。
面积与角度的关系
04 圆内接四边形的实际应用
在几何作图中的应用
性质利用
圆内接四边形的对角互补性质在几何作 图中常被用来确定点或线的位置。例如 ,通过已知的两个相对角的度数,可以 确定一个圆的圆心和半径。
VS
作图工具
圆内接四边形可以作为作图工具,帮助确 定复杂图形的角和边的长度。例如,在绘 制椭圆或更复杂的几何图形时,可以利用 圆内接四边形的性质来辅助作图。
,证明相对的两个内角互补。
弦切角定理的证明
总结词
弦切角定理表明,在圆内接四边形中,切线与弦之间 的夹角等于该弦所对的圆周角。
详细描述
要证明弦切角定理,可以首先在圆内接四边形中作一 条切线,并连接该切线与弦的端点。然后,利用圆的 切线性质和圆周角定理(圆周角等于同弧所对的圆心 角的一半),证明弦切角定理成立。
切线长定理
总结词
切线长定理表明在圆内接四边形中,两条相对的切线长度相等,且两条切线的交点到两切点的距离也 相等。
详细描述
在圆内接四边形ABCD中,如果AB和CD是切线,那么线段AC等于线段BD,即AC = BD。这是因为切线 与半径垂直,而两条切线的交点到两切点的距离相等。这个定理可以用来判断一个四边形是否为圆内接四 边形。
圆内接四边形的面积还与其相对 的两个角度有关,相对角度越大,

圆内接四边形课件

圆内接四边形课件

与矩形的关系
特殊的圆内接四边形是矩 形,即对角线相等的平行 四边形。
与菱形的关系
特殊的圆内接四边形是菱 形,即四边相等的平行四 边形。
与正方形的关联
正方形是特殊的矩形和菱 形的结合体,因此也是特 殊的圆内接四边形。
圆内接四边形的历史与发展
古代起源
01
古希腊数学家开始研究圆内接四边形,发现了其与圆的性质之
详细描述
圆内接四边形的定义是四个顶点 都在同一个圆周上的四边形。这 个圆被称为四边形的外接圆。
性质
总结词
圆内接四边形具有一些特殊的性质,包括对角互补、外角等 于内对角等。
详细描述
圆内接四边形的性质包括对角互补,即相对的两个内角之和 为180度;外角等于内对角,即外角等于另一个内角所对的 弧上的圆周角。此外,圆内接四边形的对角线互相平分,且 相对的两边之积等于另外两边之积。
分类
总结词
根据圆心与四边形相对位置的不同,圆内接四边形可以分为四种类型。
详细描述
根据圆心与四边形相对位置的不同,圆内接四边形可以分为四种类型,分别是 正圆内接四边形、椭圆内接四边形、抛物线内接四边形和双曲线内接四边形。 不同类型的圆内接四边形具有不同的性质和特点。
02
圆内接四边形的判定定理
定理内容
注意作图的精度
在绘制过程中,要注意作图的精度,尽量保证四边形各边的长度相 等,角度相等,以提高作图的准确性。
05
圆内接四边形的实际应用
在几何图形中的应用
圆内接四边形是几何学中的基本图形之一,它在证明定理和 推导公式等方面具有广泛的应用。例如,利用圆内接四边形 的性质可以证明勾股定理、托勒密定理等重要的几何定理。
圆内接四边形也是解析几何和微积分中的基础概念,常用于 研究曲线的性质和函数的极值等问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.圆内接四边形的最大值
设圆内接四边形ABCD的四边是A=a,B=b,C=c,D=d,求它面积的最大值。

解:以p=1
2
(a+b+2+c+d)表示半周长,则四边形ABCD的面积可以表示为
S=S∆ABD+S∆BCD=1
2ad sin A+1
2
bc sin C○1
又∵ A+C=π∴ sin C=sin A cos A=−cos C
∵BD2=a2+d2−2adcos A=b2+c2−2bc cos C=b2+d2+2bc cos A ∴ a2+d2−b2−c2=2(ad+bc) cos A○2
○1式可化为2S=(ad+bc) sin A○3
○22
+○3
2
可得:(ad+bc)2=4S2+1
4
(a2+d2−b2−c2)2
∴4S2=(ad+bc)2-1
4
(a2+d2−b2−c2)2
16S2=(2ad+2bc)2-(a2+d2−b2−c2)2
=(2ad+2bc+a2+d2−b2−c2)(2ad+2bc-a2−d2+b2+c2)
=(a+d)2−(b−c)2(b+c)2−(a−d)2
=(a+d+b−c)( a+d−b+c)(b+c+d−a)( b+c+a−d)
∵ b+c+d−a= a+b+c+d−2a=2p−2a=2p−a
同理可得:a+c+d−b=2p−b
a+b+d−c=2p−c
a+b+c−d=2p−d
∴16S2=16p−a p−b p−c p−d
S=p−a p−b p−c p−d
又∵p−a+p−b+p−c+p−d=2p是个定值
∴S2≤1
4(p−a+p−b+p−c+p−d)
4
S≤1
4
p2
当且仅当p−a=p−b=p−c=p−d即a=b=c=d时“=”号成立,此时,圆的内接四边形为正方形,其面积的最大值为a2.
2.证明:把圆沿Y 轴均匀压缩后就变成椭圆。

证明: 任给一圆,其方程是:
X 2+Y 2=a 2
其中,M 1(x 1,y 1)是该圆上任一点,若圆上的一点M 1(x 1,y 1)沿Y 轴方向压缩后变成M (x ,y )如图所示:
则由假设可得,x =x 1,而圆与Y 轴的焦点B 1(0,a)受压缩后的点仍在Y 轴上,设其为B 0,b ,则由于压缩是均匀的,所以y
y 1=b a ,于是圆上任一点受均匀压缩后的位置变化规律是 x =x 1
y =b a y 1 即 x 1=x y 1=a b y 代入方程得:x 2
a 2+y 2
b 2=1
于是,命题得证。

小结:从以上可以看出,当a =b 时,则方程变成 x 2+y 2=a 2,这是以原点为中心,以a 为半径的圆,所以,圆是长轴与短轴相等的椭圆,是椭圆的特殊情形。

当a =b 时,椭圆的半焦距c=0,两焦点重合,离心率e=0,准线x
=±a e 变成 x =±∞,这相当于把椭圆的准线移到了无穷远处。

相关文档
最新文档