初三数学圆系列讲义八——圆的内接四边形

合集下载

北师大版数学九年级下册《圆的内接四边形》教学设计

北师大版数学九年级下册《圆的内接四边形》教学设计

北师大版数学九年级下册《圆的内接四边形》教学设计一. 教材分析北师大版数学九年级下册《圆的内接四边形》是本节课的主要内容。

通过学习,学生能够理解圆的内接四边形的性质,并能够运用这些性质解决相关问题。

本节课的内容是九年级数学的重要知识点,也是高考的考点之一。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、圆的性质等基础知识。

但圆的内接四边形的性质较为复杂,需要学生通过实例探究、推理归纳等方法来理解和掌握。

同时,学生需要具备一定的空间想象能力和逻辑思维能力。

三. 教学目标1.理解圆的内接四边形的性质。

2.能够运用圆的内接四边形的性质解决相关问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的内接四边形的性质。

2.如何运用圆的内接四边形的性质解决实际问题。

五. 教学方法1.实例探究:通过具体的图形,引导学生探究圆的内接四边形的性质。

2.推理归纳:引导学生运用已知的数学知识,推理归纳出圆的内接四边形的性质。

3.小组讨论:学生在小组内讨论如何运用圆的内接四边形的性质解决实际问题。

六. 教学准备1.教学课件:制作相关的教学课件,帮助学生直观地理解圆的内接四边形的性质。

2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)通过一个具体的图形,引导学生观察圆的内接四边形,引发学生的思考。

2.呈现(10分钟)利用教学课件,呈现圆的内接四边形的性质,引导学生直观地理解。

3.操练(10分钟)让学生通过观察、思考、推理等方法,归纳出圆的内接四边形的性质。

4.巩固(10分钟)通过一些相关的练习题,巩固学生对圆的内接四边形性质的理解。

5.拓展(10分钟)引导学生运用圆的内接四边形的性质解决实际问题,培养学生的运用能力。

6.小结(5分钟)对本节课的内容进行总结,强调圆的内接四边形的性质及其运用。

7.家庭作业(5分钟)布置一些相关的作业,让学生进一步巩固所学知识。

九年级数学圆的内接四边形

九年级数学圆的内接四边形

又一种重要的辅助线
如图,⊙O1和⊙O2都经过A、B两点,经过A点的 直线CD与⊙O1交于点C,与⊙O2交于点D,经过B 点的直线EF与⊙O1交于点E,与⊙O2交于点F。求 证:CE∥DF
•有两个圆的题目D常用 的E一种辅助A线:作公 共弦。 C•此图形O1是一个考O试2 热 门图形。 B
F
思考:若此A 题条件和D C结论不变,只是不给 出样E 图证形明O1, 吗此 ?B 题还O能2 这F
EA B
∠D+∠B=180° ∠A+∠C=180°
对角
D ∠EAB=∠BCD
O
∠FCB=∠BAD
C 外角
F
内对角
四边形ABCD为⊙O的内接四边 形,已知∠BOD=100°,求 ∠BAD和∠BCD的度数。
B
A
O D
C
如图,ABCDE是⊙O的内接五边 B 形,∠BAE的补角是哪个角?
当图中线段较多时,圆内 C 接四边形的对角找不准,
如图,四边形ABCD内接于
⊙O,点P在CD的延长线上,
A
且PA∥DB,求证:PD·BC
=AB·AD
P
D
B O
C
如图,已知半圆的直径AB=6cm,
P
CD是半圆上长为2cm的弦,当弦
CD在半圆上滑动时,AC和BD延长
C
线的夹角是否为定值?如果不是,
D
说明理由;如果是,求出这个定角
的正弦值。
A
O
B
圆的内接四边形
数一数: 图中有多少对相等的角?
找一找: 图中有没有互补的角?
想一想:
EA
D
M O
B C
A
A A B
D DDBOOODCBBC

初三数学圆系列讲义八——圆的内接四边形

初三数学圆系列讲义八——圆的内接四边形

五.圆内接四边形【考点速览】圆内接四边形对角互补,外角等于内对角。

圆内接梯形为等腰梯形,圆内接平行四边形为矩形。

判断四点共圆的方法之一:四边形对角互补即可。

【典型例题】例1 (1)已知圆内接四边形ABCD 中,∠A:∠B:∠C=2:3:4,求∠D 的度数.(2)已知圆内接四边形ABCD中,如图所示,AB 、BC 、CD 、AD 的度数之比为1:2:3:4,求∠A 、∠B 、∠C 、∠D 的度数.例2 如图所示,ABC 是等边三角形,D 是BC 上任一点.求证:DB+DC=DA .A· ABDO例3、如图7-103,在△ABC中,E,D,F分别为AB,BC,AC的中点,且AP⊥BC于P,求证:E,D,P,F四点共圆.例4、如图7-104,四边形ABCD内接于⊙O,过AB延长线上一点E作EF∥AD,且与DC延长线交于F,证明四边形BEFC为圆内接四边形.例5、如图7-105,△ABC内接于⊙O,D点在⊙O上,AD平分∠BAC,DE⊥AB于E,DF⊥AC交AC延长线于F.求证:BE=CF.例6、如图7-106,在△ABC中,AB=AC,BD是∠ABC的角平分线,△ABD的外接圆交BC于E.求证:AD=EC.例8、如图7-107,⊙O中,两弦AB∥CD,M是AB的中点,过M点作弦DE.求证:E,M,O,C四点共圆.例9、如图7-108,M,N分别是△ABC中AB,AC的中点,过M作AB的垂线交AC于D,过N作AC的垂线交AB于E.求证:B,C,D,E四点共圆.例10、如图7-109,四边形ABCD 内接于圆,AC 平分∠BAD ,延长DC 交AB 的延长线于E 点.若AC=EC ,求证:AD=EB .【考点速练】1.圆内接四边形的对角 ,并且任何一个外角都 它的内对角. 2.已知四边形ABCD 内接于⊙O ,则∠A:∠B:∠C:∠D=3:2: :7,且最大的内角为 . 3.如右图,已知四边形ABCD 内接于⊙O ,AE ⊥CD 于E ,若∠ABC=︒130,则∠DAE= .4.已知圆内接四边形ABCD 的∠A 、∠B 、∠C 的外角度数比为2:3:4,则∠A= ,∠B= .5.圆内接梯形是 梯形,圆内接平行四边形是 .6.若E 是圆内接四边形ABCD 的边BA 的延长线上一点,BD=CD ,∠EAD=︒55,则∠BDC= . 7.四边形ABCD 内接于圆,∠A 、∠C 的度数之比是5:4,∠B 比∠D 大︒30,则∠A= 。

北师大版数学九年级下册《圆的内接四边形》教学设计1

北师大版数学九年级下册《圆的内接四边形》教学设计1

北师大版数学九年级下册《圆的内接四边形》教学设计1一. 教材分析北师大版数学九年级下册《圆的内接四边形》是本节课的主要内容。

通过学习,学生能够了解圆的内接四边形的性质,并能够运用这些性质解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本性质和四边形的性质。

但对于圆的内接四边形的性质,可能较为陌生。

因此,在教学过程中,需要引导学生通过观察、思考、探究,从而发现和证明圆的内接四边形的性质。

三. 教学目标1.理解圆的内接四边形的性质。

2.能够运用圆的内接四边形的性质解决实际问题。

3.培养学生的观察能力、思考能力和探究能力。

四. 教学重难点1.圆的内接四边形的性质。

2.如何运用圆的内接四边形的性质解决实际问题。

五. 教学方法采用问题驱动法、探究法、小组合作法等教学方法,引导学生通过观察、思考、探究,发现和证明圆的内接四边形的性质。

六. 教学准备1.准备相关的教学PPT、图片、例题和练习题。

2.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过展示一些关于圆的内接四边形的图片,引导学生关注圆的内接四边形,激发学生的学习兴趣。

2.呈现(10分钟)呈现圆的内接四边形的性质,引导学生观察、思考,发现其中的规律。

在此过程中,教师引导学生进行探究,培养学生自主学习的能力。

3.操练(10分钟)通过一些例题,让学生运用圆的内接四边形的性质解决问题。

教师引导学生进行讨论,解答疑问。

4.巩固(10分钟)学生独立完成一些练习题,巩固所学知识。

教师进行个别辅导,帮助学生解决问题。

5.拓展(10分钟)引导学生思考:圆的内接四边形的性质是否只适用于圆的内接四边形?能否推广到其他类型的四边形?从而激发学生的探究欲望。

6.小结(5分钟)对本节课的主要内容进行总结,强调圆的内接四边形的性质及其运用。

7.家庭作业(5分钟)布置一些相关的练习题,让学生回家后巩固所学知识。

九年级数学圆的内接四边形

九年级数学圆的内接四边形

半圆(或直径)所对的圆周角是直角, 90°的圆周角所对的弦是直径。
内接四边形对角互补定理
圆内接四边形的对角互补,即任一外 角等于其内对角。
利用角度关系求解问题
通过已知角度求解未知角度
01
利用内接四边形对角互补定理和圆心角定理,可以通过已知角
度求解出未知角度。
通过已知边长求解角度
02
在已知内接四边形的某些边长时,可以利用正弦、余弦定理等
利用边长关系求解问题
已知边长求角度
在已知内接四边形部分边 长的情况下,通过边长比 例关系求解未知角度。
已知角度求边长
在已知内接四边形部分角 度的情况下,通过三角函 数和边长比例关系求解未 知边长。
综合应用
结合已知条件和所求问题, 综合运用边长比例关系、 三角函数和相似三角形等 知识求解问题。
拓展:相似三角形在内接四边形中应用
求解出相应的角度。
角度与弧度的转换
03
在求解与圆相关的问题时,经常需要在角度与弧度之间进行转
换。
拓展:外角、内角和公式应用
内角和公式
多边形的内角和公式为(n-2) ×180°,其中n为多边形的边数。
对于圆内接四边形,其内角和为 360°。
外角公式
多边形的外角和公式为360°,即所 有外角之和等于360°。对于圆内接 四边形,每个外角都等于相邻的内 对角。
02
若一个四边形的对角互补,则这 个四边形的四个顶点共圆,即这 个四边形是某个圆的内接四边形 。
性质定理梳理
圆内接四边形的对角互补:即对于圆 内接四边形ABCD,有∠A + ∠C = 180°,∠B + ∠D = 180°。
若在圆内接四边形中,有一个角是直 角,则其对角也是直角。

(完整版)初三数学圆的经典讲义

(完整版)初三数学圆的经典讲义

圆目录圆的定义及相关概念垂经定理及其推论圆周角与圆心角圆心角、弧、弦、弦心距关系定理圆内接四边形会用切线, 能证切线切线长定理三角形的内切圆了解弦切角与圆幂定理(选学)圆与圆的位置关系圆的有关计算一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。

经过圆心的每一条直线都是它的对称轴。

圆心是它的对称中心。

考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

直径是圆中最大的弦。

弦心距:圆心到弦的距离叫做弦心距。

弧:圆上任意两点间的部分叫做弧。

弧分为半圆,优弧、劣弧三种。

(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。

弓高:弓形中弦的中点与弧的中点的连线段。

(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。

如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。

考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。

①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。

例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。

M A B C DOEBC例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。

北师大版数学九年级下册《圆的内接四边形》说课稿

北师大版数学九年级下册《圆的内接四边形》说课稿

北师大版数学九年级下册《圆的内接四边形》说课稿一. 教材分析北师大版数学九年级下册《圆的内接四边形》这一节的内容是在学生学习了圆的性质,圆的基本公式,以及四边形的性质的基础上进行的。

本节课的主要内容是研究圆的内接四边形的性质,包括它的对角和以及它的对称性。

这部分内容在数学中占有重要的地位,因为它不仅涉及到圆的性质,也涉及到四边形的性质。

同时,这部分内容也是学生进一步学习圆的方程和圆的切线等知识的基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,他们对圆的性质和四边形的性质有一定的了解。

但是,他们对圆的内接四边形的性质可能还比较陌生,需要通过实例和证明来理解和掌握。

此外,学生的证明能力和逻辑思维能力还在发展中,需要通过教师的引导和启发来提高。

三. 说教学目标1.知识与技能目标:使学生理解圆的内接四边形的性质,能够运用这些性质解决相关的问题。

2.过程与方法目标:通过观察,操作,证明等过程,培养学生的观察能力,操作能力,证明能力和逻辑思维能力。

3.情感态度与价值观目标:使学生体验到数学的优美和严谨,培养他们对数学的兴趣和爱好。

四. 说教学重难点1.教学重点:圆的内接四边形的性质。

2.教学难点:圆的内接四边形的对称性和对角和的证明。

五. 说教学方法与手段在这一节课中,我将采用问题驱动法,引导法,讲解法,讨论法等多种教学方法。

同时,我还将利用多媒体课件和几何画板等教学手段,帮助学生直观地理解和掌握圆的内接四边形的性质。

六. 说教学过程1.导入:通过提问,引导学生回顾圆的性质和四边形的性质,为新课的学习做好铺垫。

2.探究:让学生通过观察,操作,证明等过程,探索圆的内接四边形的性质。

3.讲解:讲解圆的内接四边形的性质,并通过举例和练习来巩固学生的理解。

4.讨论:让学生分组讨论,运用圆的内接四边形的性质解决实际问题。

5.总结:对本节课的内容进行总结,强调圆的内接四边形的性质和应用。

6.作业:布置相关的练习题,让学生巩固所学的内容。

北师大版数学九年级下册《圆的内接四边形》说课稿1

北师大版数学九年级下册《圆的内接四边形》说课稿1

北师大版数学九年级下册《圆的内接四边形》说课稿1一. 教材分析北师大版数学九年级下册《圆的内接四边形》这一节的内容,是在学生已经掌握了圆的基本性质,以及四边形的性质的基础上进行讲解的。

本节内容主要介绍了圆的内接四边形的性质,包括圆的内接四边形的对角互补,以及圆的内接四边形的不稳定性。

这部分内容在高考中经常出现,对于学生来说,既是重点,也是难点。

二. 学情分析九年级的学生,已经具备了一定的数学基础,对于圆的性质和四边形的性质都有了一定的了解。

但是,由于圆的内接四边形的性质比较抽象,学生理解和接受的难度较大。

因此,在教学过程中,需要教师耐心引导,逐步让学生理解和掌握。

三. 说教学目标1.让学生理解圆的内接四边形的性质,能够熟练运用圆的内接四边形的性质解决相关问题。

2.培养学生的逻辑思维能力,提高学生解决问题的能力。

3.通过对圆的内接四边形的性质的学习,激发学生对数学的兴趣,提高学生的学习积极性。

四. 说教学重难点1.教学重点:圆的内接四边形的性质,以及如何运用圆的内接四边形的性质解决实际问题。

2.教学难点:圆的内接四边形的性质的理解和运用。

五. 说教学方法与手段在教学过程中,我会采用讲授法、问答法、小组合作探究法等多种教学方法。

同时,利用多媒体课件,直观展示圆的内接四边形的性质,帮助学生理解和掌握。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考圆的内接四边形的性质。

2.讲解:详细讲解圆的内接四边形的性质,引导学生进行思考和讨论。

3.练习:让学生通过练习,巩固对圆的内接四边形的性质的理解。

4.拓展:引导学生思考圆的内接四边形的性质在其他领域的应用。

七. 说板书设计板书设计简洁明了,主要包括圆的内接四边形的性质,以及如何运用圆的内接四边形的性质解决实际问题。

八. 说教学评价教学评价主要通过学生的课堂表现,练习题的完成情况,以及学生的学习反馈来进行。

对于掌握较好的学生,可以适当给予表扬和鼓励,提高学生的学习积极性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五.圆内接四边形
【考点速览】
圆内接四边形对角互补,外角等于内对角。

圆内接梯形为等腰梯形,圆内接平行四边形为矩形。

判断四点共圆的方法之一:四边形对角互补即可。

【典型例题】
例1 (1)已知圆内接四边形ABCD中,∠A:∠B:∠C=2:3:4,求∠D的度数.
(2)已知圆内接四边形ABCD中,如图所示,AB、BC、CD、AD的度数之比为1:2:3:4,求∠A、
∠B、∠C、∠D的度数.
A B
·
O
D
例2 如图所示,ABC 是等边三角形,D 是BC 上任一点.求证:DB+DC=DA .
例3、如图7-103,在△ABC 中,E ,D ,F 分别为AB ,BC ,AC 的中点,且AP ⊥BC 于P ,
求证:E ,D ,P ,F 四点共圆.
例4、如图7-104,四边形ABCD 内接于⊙O ,过AB 延长线上一点E 作EF ∥AD ,且与DC 延长线交于F ,证明四边形BEFC 为圆内接四边形.
A
·
B
C
D
O
例5、如图7-105,△ABC内接于⊙O,D点在⊙O上,AD平分∠BAC,DE⊥AB于E,DF ⊥AC交AC延长线于F.求证:BE=CF.
例6、如图7-106,在△ABC中,AB=AC,BD是∠ABC的角平分线,△ABD的外接圆交BC 于E.求证:AD=EC.
例8、如图7-107,⊙O中,两弦AB∥CD,M是AB的中点,过M点作弦DE.求证:E,M,O,C四点共圆.
例9、如图7-108,M ,N 分别是△ABC 中AB ,AC 的中点,过M 作AB 的垂线交AC 于D ,过N 作AC 的垂线交AB 于E .求证:B ,C ,D ,E 四点共圆.
例10、如图7-109,四边形ABCD 内接于圆,AC 平分∠BAD ,延长DC 交AB 的延长线于E 点.若AC=EC ,求证:AD=EB .
【考点速练】
1.圆内接四边形的对角 ,并且任何一个外角都 它的内对角. 2.已知四边形ABCD 内接于⊙O ,则∠A:∠B:∠C:∠D=3:2: :7,且最大的内角为 . 3.如右图,已知四边形ABCD 内接于⊙O ,AE ⊥CD 于E ,若∠ABC=︒130,则∠DAE= .
4.已知圆内接四边形ABCD 的∠A 、∠B 、∠C 的外角度数比为2:3:4,
则∠A= ,∠B= .
5.圆内接梯形是 梯形,圆内接平行四边形是 .
6.若E 是圆内接四边形ABCD 的边BA 的延长线上一点,BD=CD ,∠EAD=︒55,则∠BDC= . 7.四边形ABCD 内接于圆,∠A 、∠C 的度数之比是5:4,∠B 比∠D 大︒30,则∠A= 。

∠D= .
· A
B
C E
D O
8.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2:3:6,则∠D 的度数是( ) A 、︒5.67
B 、︒135
C 、︒5.112
D 、︒110
9.如图1所示,圆的内接四边形ABCD ,DA 、CB 延长线交于P ,AC 和BD 交于Q ,则图中相似三角形有( ) A 、1对
B 、2对
C 、3对
D 、4对
10.如果圆的半径是15,那么它的内接正方形的边长等于( ) A 、215
B 、315
C 、
2
3
15 D 、
2
2
15 11.下列四边形中,有外接圆的四边形是( ) A 、有一个角为︒60的平行四边形 B 、菱形 C 、矩形
D 、直角梯形
12.如图2,四边形ABCD 是圆的内接四边形,如果BCD 的度数为︒240,那么∠C 等于( ) A 、︒120
B 、︒80
C 、︒60
D 、︒40
13.若四边形ABCD 内接于圆,且∠A:∠B:∠C:∠D=5:m:4:n ,则( ) A 、5m=4n B 、4m=5n C 、m+n=9
D 、m=n=︒180
14.如图,已知⊙O 的半径为2,弦AB 的长为32,点C 与点D 分别是劣弧AB 与优弧ADB 上任一点(点C 、D 均不与A 、B 重合). (1)求ACB ∠;
(2)求三角形ABD 的最大面积.
15.如图所示,已知△ABC 内接于⊙O ,AB=AC ,点D 为劣弧BC 上一动点(不与B 、A 、C 重合),直线AD 与BC 交于E 点,连结BD 、DC. (1)求证:BD ·DC=DE ·DA ;
(2)若将D 改为优弧BAC 上一动点(不与B 、A 、C 重合),其他条件均不改变,则
A
D
C
B
P
Q
图1
A
D
B C
· O
图2 A
B C
O D
(1)中的结论还成立吗?请画图并证明你的结论.
【作业】日期 姓名 完成时间 成绩
1.过四边形ABCD 顶点A 、B 、C 作一个圆,若∠B+∠D ︒>180,则D 点在( ) A 、圆上
B 、圆内
C 、圆外
D 、不能确定
2.如图1,若AC=AD ,那么圆中相等的圆周角所有的对数共有( ) A 、5对
B 、6对
C 、7对
D 、8对
3.如图2,已知ABC ∆的外角∠BCD 的平分线CE 交ABC ∆的外接圆于E ,则ABE ∆是( ) A 、锐角三角形 B 、直角三角形
C 、钝角三角形
D 、等腰三角形
4.如图3,四边形
ABCD 是⊙O 的内接四边形,AE 是⊙O 的弦,且AE ⊥CD ,若∠B=︒120,则∠
DAE 为( ) A 、︒60
B 、︒30
C 、︒50
D 、︒70
5.已知:如图所示,四边形ABCD 内接于⊙O ,BD 是⊙O 直径,若∠DAC=︒60,BC=33
7
,AD=5.求AC 的长.
A B
C
D
图1
A · B
C
D
E O
图3
A
B C D
E
图2
· A
B
D
C
O
A
A。

相关文档
最新文档