北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)
中考数学总复习 九年级下册 第三章 圆(知识归纳+考点攻略+方法技巧)课件 北师大版

最新北师大版初中数学精品
数学·新课标(BS)
下册第三章复习(二)┃ 知识归类
[注意] (1)两圆内含时,若 d 为 0,则两圆为同心圆. (2)由两圆构成的图形都是轴对称图形,其对称轴是两圆的圆 心所在的直线. 12.弧长及扇形的面积公式 (1)弧长公式
nπR 半径为 R 的圆中,n°的圆心角所对的弧长 l= 180 . (2)扇形的面积公式 半径为 R,圆心角是 n°的扇形面积是 S 扇形=3n60πR2;
方法技巧 (1)垂径定理是根据圆的对称性推导出来的,该定理及其推论是 证明线段相等、垂直关系、弧相等的重要依据.利用垂径定理常作 “垂直于弦的直径”辅助线(往往又只是作圆心到弦的垂线段,如本 例);(2)垂径定理常与勾股定理结合在一起,进行有关圆的半径、圆 心到弦的距离、弦长等数量的计算.这些量之间的关系是 r2=d2+a2 2(其中 r 为圆半径,d 为圆心到弦的距离,a 为弦长).
数学·新课标(BS)
下册第三章复习(二)┃ 考点攻略
图X3-7
[解析] D 连接AO,因为OC⊥AB,所以AD=BD=3 cm,因 为OD=4 cm,在直角三角形ADO中,由勾股定理可以得到AO=5 cm,所以OC=5 cm,所以DC=1 cm.
最新北师大版初中数学精品
数学·新课标(BS)
下册第三章复习(二)┃ 考点攻略
数学·新课标(BS)
下册第三章复习(二)┃ 知识归类
┃知识归纳┃
1.确定圆的要素
圆心确定其位置,半径确定其大小.只有圆心没有半径, 虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没 有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确 定;只有圆心和半径都固定,圆才被唯一确定.
(完整版)北师大版数学初中九年级下册第三章圆的知识点归纳

《圆》章节知识点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系<⇒点C在圆内;1、点在圆内⇒d r=⇒点B在圆上;2、点在圆上⇒d r>⇒点A在圆外;3、点在圆外⇒d r三、直线与圆的位置关系>⇒无交点;1、直线与圆相离⇒d r=⇒有一个交点;2、直线与圆相切⇒d r<⇒有两个交点;3、直线与圆相交⇒d r四、圆与圆的位置关系>+;外离(图1)⇒无交点⇒d R r=+;外切(图2)⇒有一个交点⇒d R r-<<+;相交(图3)⇒有两个交点⇒R r d R r=-;内切(图4)⇒有一个交点⇒d R r<-;内含(图5)⇒无交点⇒d R r五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
北师大版数学初中九年级下册第三章圆的知识点归纳(20200814075904)

圆》章节知识点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
三、直线与圆的位置关系1、直线与圆相离d r 无交点;1、 点在圆内 d r2、 点在圆上 d r 点C 在圆 点B 在圆 内; 上;3、点在圆外 d r 点A 在圆外;2、直线与圆相切d r 有一个交点; 3、直线与圆相交 d r 有两个交点;外离(图1)无交点 d R r ;d R r ;外切(图2)有一个交点相交(图3)有两个交点R r d R r ;内切(图4)有一个交点 d R r ;内含(图5)无交点 d R r ;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1: (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中, 只要知道其中2个即可推出其它3个结论,即:①AB是直径② AB CD ③ CE DE ④弧BC弧BD ⑤弧AC 弧AD中任意2个条件推出其他3个结论推论2:圆的两条平行弦所夹的弧相等。
即:在O O 中,T AB // CD• ••弧AC 弧BD六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
北师大版 九年级数学下册 第三章 圆 专题课讲义 圆心角与圆周角的关系(解析版)

圆心角与圆周角的关系课前测试【题目】课前测试如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2).【答案】(1)M为BD的中点;(2).【解析】证明:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC,∠DCN=∠DBA.又∵∠DAN=∠BAM,∠BCM=∠DCN,∴∠BAM=∠MBC,∠ABM=∠BCM.∴△BAM∽△CBM,∴,即BM2=AM•CM.①又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB,∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM,∴△DAM∽△CDM,则,即DM2=AM•CM.②由式①、②得BM=DM,即M为BD的中点.(2)如图,延长AM交圆于点P,连接CP.∴∠BCP=∠PAB=∠DAC=∠DBC.∵PC∥BD,∴.③又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB,∴∠ABC=∠MCP.而∠ABC=∠APC,则∠APC=∠MCP,有MP=CM.④由式③、④得.总结:本题考查了相似三角形的性质,圆周角的性质,是一道较难的题目.【难度】4【题目】课前测试如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【答案】等边三角形;CP=BP+AP;当点P为的中点时,四边形APBC的面积最大,S四边形APBC=.【解析】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.∵S△APB=AB•PE,S△ABC=AB•CF,∴S四边形APBC=AB•(PE+CF),当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,∴S四边形APBC=×2×=.总结:本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB ≌△ADC 是关键.【难度】4知识定位适用范围:北师大版 ,初三年级,成绩中等以及中等以下知识点概述:圆心角与圆周角的关系是九年级下册第三章的内容,主要讲解了圆周角定理及其三条推论,它是引入圆心角之后又学习的另一个与圆有关的重要的角,该部分内容学习的重点是掌握同弧所对的圆周角与圆心角的关系,难点是应用圆周角定理解决简单问题。
北师大版九年级数学下册第三章《圆》小结与复习课件

考点五 切线的性质与判定
例5 如图,以△ABC的边AB为直径的⊙O交边AC于点D, 且过点D的切线DE平分边BC. 问:BC与⊙O是否相切?
解:BC与⊙O相切. 理由:连接OD,BD, ∵DE切⊙O于D,AB为直径, ∴∠EDO=∠ADB=90°. 又DE平分CB,∴DE=2(1)BC=BE. ∴∠EDB=∠EBD. 又∠ODB=∠OBD,∠ODB+ ∠EDB=90°,∴∠OBD+∠DBE=90°, 即∠ABC=90°. ∴BC与⊙O相切.
A
CO=24-8=16cm,
∴S扇形OCD=
2.切线长及切线长定理
切线长: 从圆外一点引圆的切线,这个点与切点间的线段的长称
为切线长.
切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等.这
一点和圆心的连线平分这两条切线的夹角.
八、三角形的内切圆及内心
1.与三角形各边都相切的圆叫做三角形的内切圆. 2.三角形内切圆的圆心叫做三角形的内心. 3.这个三角形叫做圆的外切三角形. 4.三角形的内心就是三角形的三个内角角平分线的交点.
每一条边所 对的圆心角
正多边 形的中心 正多边形的半径 正多边形的中心角
边心距
正多边形的边心距
2.计算公式
圆内接正多边 形的有 关概念及性质
①正多边形的内角
和=
(n 2) 180
n 360
②中心角= n
十、弧长及扇形的面积
(1)弧长公式: l n R 180
(2)扇形面积公式: S n R2 1 lR
A
D
F
I
┐ E
三角形的内心到三角形的三边的距离相等.
北师大版 九年级数学下册 第三章 圆 专题课讲义 正多边形与圆的相关计算(解析版)

正多边形与圆的相关计算课前测试【题目】课前测试如图正方形ABCD内接于⊙O,E为CD任意一点,连接DE、AE.(1)求∠AED的度数.(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.【答案】∠AED=45°;DE =。
【解析】(1)如图1中,连接OA、OD.∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=∠AOD=45°.(2)如图2中,连接CF、CE、CA,作DH⊥AE于H.∵BF∥DE,AB∥CD,∴∠ABF=∠CDE,∵∠CFA=∠AEC=90°,∴∠DEC=∠AFB=135°,∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC==,∴AD=AC=,∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=HE,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴=(4﹣x)2+x2,解得x=或(舍弃),∴DE=DH=总结:本题考查正多边形与圆、全等三角形的判定和性质、勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型。
【难度】4【题目】课前测试如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°.(1)求tan∠OAB的值;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动,当S△POA=S△AOB时,求P点所经过的弧长.(不考虑点P与点B重合的情形)【答案】tan∠OAB=;S△AOB=(cm2);的长度==(cm).【解析】(1)作OC⊥AB.∵∠AOB=120°,∴∠AOC=60°.∴OC=1,AC=.∴tan∠OAB=.(2)AC=,∴AB=2.∴S△AOB=2×1÷2=(cm2).(3)如图,延长BO交⊙O于点P1,∵点O是直径BP1的中点,S△AP1O=AD×P1O,S△AOB=AD×BO,∵P1O=BO,∴S△P1OA=S△AOB,∠AOP1=60°.∴的长度为(cm).作点A关于直径BP1的对称点P2,连接AP2,OP2,AP3,易得S△P2OA=S△AOB,∠AOP2=120°.∴的长度为(cm).过点B作BP3∥OA交⊙O于点P3,则P2P3直径,易得S△P3OA=S△AOB,∴的长度==(cm).总结:本题综合考查了解直角三角形,及三角形的面积公式及弧长公式.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:正多边形与圆的相关计算是九年级下册第三章的内容,主要讲解了正多边形的相关概念、圆内接正多边形与外切正多边形定义与相关计算、弧长和扇形面积的计算公式。
北师大版数学九年级下册第三章圆章末复习课件

在RtBOF中,OB=1 AB=1 ,B=30,
2
OF 1 BO 1 ,BF
BO2 OF 2
3 .
2
2
2
D F
B
O
A
BC=2 3,D为BC的中点, BD 3.
DF BD BF 3 . 在RtDOF中,DO 2
∴OD=OB,点D在圆上.
O2
3 2
1.
课堂小结
《圆》的内容综合性较强,在具体 应用中,进一步完善知识体系构建.
O
A
C
B
5. 如图,过圆外一点O作⊙O′的两条切线OA、OB,A、B 是切点,且OO′是圆O′半径长两倍,则∠AOB=_6_0__°__
A O
O′ B
6. 如图,Rt△ABC内接于⊙O,∠A=30°,延长斜边AB
到D,使BD等于⊙O半径,求证:DC是⊙O切线.
证明:连OC,如图,
C
∵∠A=30°,OA=OC, ∴∠COB=60°, A
① 圆外 ② 圆上
d>r d=r
③ 圆内
d<r
(2)直线与圆的位置关系
① 相交
d<r
② 相切
d=r
③ 相离
d>r
P P
·P
O
r
A
r
O· l l l
6. 圆的切线的性质 圆的切线 垂直于 过切点的半径.
·O
A
l
∵l是⊙O的切线,切点为A,OA是⊙O的直径, ∴OA⊥l.
7. 圆的切线的判定
经过__半__径____的外端,并且_垂__直__于___ 这条__半__径____的直线是圆的切线. ∵OA是⊙O的半径, l⊥OA于A, ∴ l是⊙O的切线.
北师大版九年级数学下册第三章圆复习课件

C.点A在⊙O外部 D.点A不在⊙O上
2、M是⊙O内一点,过点M的⊙O最长的弦为10 cm,
最短的弦长为8 cm,那么OM= _____3cm.
得到右端,也 可以从右端得
dp
点P在⊙O内
d<到左r 端。 r
点P在⊙O上 点P在⊙O外
d=r
d
r
p
d>r P d
r
探究与实践
1、平面上有一点A,经过A点的圆有几个? 圆心在哪里?
●
●O
● ●A O O
●O
●
O
无数个,圆心为点A以外任意一点,半径为这 点与点A的距离
探究与实践
2、平面上有两点A、B,经过点A、B的圆 有几个?它们的圆心分布有什么特点?
平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 弦,并且平分弦所对的另一条弧.
平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
垂径定理的推论
❖ 如图,在以下五个条件中:
① CD是直径, ② CD⊥AB, ③ AM=BM, ④A⌒C=B⌒C,
⑤A⌒D=B⌒D. 只要具备其中两个条件,就可推出其余三个结论.
AB的垂直平分线上. 经过A,B,C三点的圆的圆心应该这 ●B
┏ ●O
●C
两条垂直平分线的交点O的位置.
归纳结论:
不在同一条直线上的三个点确定一个圆。
1、⊙O的半径为R,圆心到点A的距离为d,且R、d分
别是方程x -2 6x+8=0的两根,那么点A与⊙O的位置关系是
〔D〕
A.点A在⊙O内部 B.点A在⊙O上
❖ 圆是以圆心为对称中心的中心对称图形。 ❖ 圆还具有旋转不变性,即圆绕圆心旋转任
意一个角度α,都能与原来的图形重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆章节复习课前测试【题目】课前测试如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【答案】;存在,DE=;y=(0<x<).【解析】(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).总结:本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等.【难度】4【题目】课前测试如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【答案】OD=3;AE是⊙O的切线;【解析】(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.总结:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:圆是九年级下册的内容,是初中几何三大模块(三角形、四边形、圆)之一,也是中考几何必考内容,包含与园有关的圆性质、与圆有关的位置关系及与圆有关的计算三部分,相比三角形与四边形,圆部分的知识点更多,需要记忆的概念和公式也就更多,另外它还要跟三角形和四边形结合,综合考查几何知识,难度骤然提升,解题思维更要灵活。
适用对象:成绩中等以及中等以下注意事项:大部分学生试听这个内容主要想听一轮复习专题:圆重点选讲:①圆的有关性质②与圆有关的位置关系③圆的相关计算知识梳理知识梳理1:圆的有关性质1.圆的相关概念(1) 弦:连结圆上任意两点的线段叫做弦.(2) 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3) 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作AB ,读作 弧AB .(4) 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(5) 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. (6) 等圆:能够重合的两个圆叫做等圆,半径相等的两个圆是等圆;(7) 对称性:圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴;圆是中心对称图形,对称中心是圆心。
2.垂径定理推论1垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2:圆的两条平行弦所夹的弧相等。
即在⊙O 中,∵AB ∥CD , ∴弧AC =弧BD3.圆心角定理(圆心角、弧、弦、弦心距之间的关系)(1) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.(2) 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.4.圆周角定理(1) 定理:一条弧所对的圆周角等于它所对的圆心角的一半. (2) 推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径. (3) 圆内接四边形性质(四点共圆): 圆内接四边形的对角互补O EDCBAOCDAB以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.知识梳理2:与圆有关的位置关系1.点和圆的位置关系(1)设o 的半径为r ,点P 到圆心的距离OP d =,则有:点P 在圆外d r ⇔>;点P 在圆上d r ⇔=;点P 在圆内d r ⇔<(2)确定一个圆有两个基本条件:①圆心(定点),确定圆的位置;②半径(定长),确定圆的大小.只有当圆心和半径都确定时,圆才能确定. (3)不在同一条直线上的三个点确定一个圆(4)经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做三角形的外心。
(5)三角形外心的性质:➢ 外心是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; ➢ 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.➢ 锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.2.直线与圆的位置关系直线与圆相离 ⇒ d r > ⇒ 无交点; 直线与圆相切 ⇒ d r = ⇒ 有一个交点; 直线与圆相交 ⇒ d r < ⇒ 有两个交点;rd d CBAOdrd=rrd3.切线的性质与判定(1)切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.(2)切线的判定:定义法:和圆只有一个公共点的直线是圆的切线;距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.(3)切线长和切线长定理:切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.(4)与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
知识梳理3:圆的相关计算1.圆内正多边形的计算正多边形的中心:正多边形的外接圆的圆心正多边形的半径:多边形的一边到中心的距离外接圆的半径正多边形的中心角:正多边形每一遍所对的圆心角边心距:正多边形的一边到中心的距离(1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =:(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA =.2.扇形、圆柱和圆锥的相关计算公式设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,弧长公式:π180n R l = 扇形面积公式:21π3602n S R lR ==扇形 圆柱体表面积公式:22π2πS R Rh =+圆锥体表面积公式:2ππS R Rl =+(l 为母线)常见组合图形的周长、面积的几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法D C B A OE C B A D O BAO例题精讲【题目】题型1:圆的有关性质下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.4个【答案】D【解析】①和④、错误,应强调在同圆或等圆中;②、错误,应强调不是直径的弦;③、错误,应强调过圆心的直线才是它的对称轴.故选D.总结:在叙述命题时注意要强调命题成立的条件.【难度】2【题目】题型1变式练习1:圆的有关性质如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【答案】78°;∠1=∠2.【解析】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.总结:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.【难度】3【题目】题型1变式练习2:圆的有关性质如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.【答案】BE=CE;四边形BFCD是菱形;2.【解析】(1)证明:∵AD是直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∵∠AEC=∠CED,∠CAE=∠ECD,∴△AEC∽△CED,∴=,∴CE²=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.总结:本题主要考查了圆的有关性质:垂径定理、圆周角定理,三角形全等的判定与性质,菱形的判定与性质,勾股定理,三角形相似的判定与性质,熟悉圆的有关性质是解决问题的关键.【难度】4【题目】题型2:与圆有关的位置关系如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.【答案】直线PB与⊙O相切;【解析】(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;(2)解:设PO交⊙O于F,连接CF.∵OC=3,PC=4,∴PO=5,PE=8.∵⊙O与PA相切于点C,∴∠PCF=∠E.又∵∠CPF=∠EPC,∴△PCF∽△PEC,∴CF:CE=PC:PE=4:8=1:2.∵EF是直径,∴∠ECF=90°.设CF=x,则EC=2x.则x2+(2x)2=62,解得x=.则EC=2x=.总结:此题考查了切线的判定、相似三角形的性质.注意:当不知道直线与圆是否有公共点而要证明直线是圆的切线时,可通过证明圆心到直线的距离等于圆的半径,来解决问题.【难度】3【题目】题型2变式训练1:与圆有关的位置关系如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【答案】直线DE与⊙O相切,DE=4.75.【解析】(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.总结:此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.【难度】3【题目】题型2变式训练2:与圆有关的位置关系如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.(1)求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO=,求AO的长.【答案】直线BC是⊙O的切线;AO=3.【解析】(1)连接OD,∵DE∥BO,∴∠1=∠4,∠2=∠3,∵OD=OE,∴∠3=∠4,∴∠1=∠2,在△DOB与△COB中,,∴△DOB≌△COB,∴∠OCB=∠ODB,∵BD切⊙O于点D,∴∠ODB=90°,∴∠OCB=90°,∴AC⊥BC,∴直线BC是⊙O的切线;(2)∵∠DEO=∠2,∴tan∠DEO=tan∠2=,设;OC=r,BC=r,由(1)证得△DOB≌△COB,∴BD=BC=r,由切割线定理得:AD2=AE•AC=2(2+2r),∴AD=2,∵DE∥BO,∴,∴,∴r=1,∴AO=3.总结:本题考查了切线的判定和性质,全等三角形的判定与性质.切割线定理,平行线分线段成比例,掌握定理是解题的关键.【难度】3【题目】题型3:圆的相关计算如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为________.【答案】π【解析】连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.总结:本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.【难度】2【题目】题型3变式练习1:圆的相关计算如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为______(结果保留π)【答案】【解析】如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC==.故答案为:.总结:此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S扇形OBC 是解题关键.【难度】3【题目】题型3变式练习2:圆的相关计算如图,一个圆锥的高为cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求∠BAC的度数;(3)圆锥的侧面积(结果保留π).【答案】l:r=2:1;∠BAC=60°;18π(cm²).【解析】(1)设此圆锥的高为h,底面半径为r,母线长AC=l,∵2πr=πl,∴l:r=2:1;(2)∵AO⊥OC,=2,∴圆锥高与母线的夹角为30°,则∠BAC=60°;(3)由图可知l²=h²+r²,h=3cm,∴(2r)²=(3)²+r²,即4r²=27+r²,解得r=3cm,∴l=2r=6cm,∴圆锥的侧面积为=18π(cm²).总结:本题主要考查圆锥的特点和圆锥侧面面积的计算.易错易混点:学生由于空间想象能力不够,找不到圆锥的底面半径,或者对圆锥的侧面面积公式运用不熟练,从而造成错误.【难度】3【题目】兴趣篇1蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A.4个B.6个C.8个D.10个【答案】D.【解析】如图,AB是直角边时,点C共有6个位置,即,有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,△ABC是直角三角形的个数有6+4=10个.故选:D.总结:本题考查了正多边形和圆,难点在于分AB是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.【难度】2【题目】兴趣篇2课堂上,师生一起探究知,可以用已知半径的球去测量圆柱形管子的内径.小明回家后把半径为5cm的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助小明计算出保温杯的内径.【答案】8cm.【解析】连OD.∵EG=20﹣12=8,∴OG=8﹣5=3,∴GD=4,∴AD=2GD=8cm.答:保温杯的内径为8cm.总结:在圆内利用垂直于弦的直径构造直角三角形是常用的辅助线方法.【难度】2【题目】备选试题1如图,水平放置的一个油管的截面半径为13cm,其中有油部分油面宽AB为24cm,求截面上有油部分油面高CD(单位:cm).【答案】8cm.【解析】如图;连接OA;根据垂径定理,得AC=BC=12cm;Rt△OAC中,OA=13cm,AC=12cm;根据勾股定理,得:OC==5cm;∴CD=OD﹣OC=8cm;∴油面高为8cm.总结:此题主要考查的是垂径定理及勾股定理的应用.解题的关键是正确的构造直角三角形.【难度】2【题目】备选试题2如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣弧DE的2倍;⑤AE=BC.其中正确结论的序号是__________【答案】①②④.【解析】连接AD,AB是⊙O的直径,则∠AEB=∠ADB=90°,∵AB=AC,∠BAC=45°,∴∠ABE=45°,∠C=∠ABC==67.5°,AD平分∠BAC,∴AE=BE,∠EBC=90°﹣67.5°=22.5°,DB=CD,故②正确,∵∠ABE=45°,∠EBC=22.5°,故①正确,∵AE=BE,∴=,又AD平分∠BAC,所以,即劣弧AE是劣弧DE的2倍,④正确.∵∠EBC=22.5°,BE⊥CE,∴BE>2EC,∴AE>2EC,故③错误.∵∠BEC=90°,∴BC>BE,又∵AE=BE,∴BC>AE故⑤错误.故答案为:①②④.总结:本题利用了:①等腰三角形的性质;②圆周角定理;③三角形内角和定理.【难度】3【题目】备选试题3如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.【答案】C(0,), P(3,); BE=2OE.【解析】(1)解:连接PB,∵PA是圆M的直径,∴∠PBA=90°∴AO=OB=3又∵MO⊥AB,∴PB∥MO.∴PB=2OM=∴P点坐标为(3,)在直角三角形ABP中,AB=6,PB=2,根据勾股定理得:AP=4,所以圆的半径MC=2,又OM=,所以OC=MC﹣OM=,则C(0,)(2)证明:连接AC.∵AM=MC=2,AO=3,OC=,∴AM=MC=AC=2,∴△AMC为等边三角形又∵AP为圆M的直径得∠ACP=90°得∠OCE=30°∴OE=1,BE=2∴BE=2OE.总结:本题综合考查了圆周角定理、等边三角形的判定与性质以及坐标与图形性质.解答该题时通过作辅助线AC、BP构建直径所对的圆周角∠ACP、∠ABP,然后利用圆周角定理来解决问题.【难度】3【题目】备选试题4如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=_________【答案】50°【解析】连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.方法二:连接OF,易知OF⊥EF,OH⊥EH,又∠AOF=2∠ACF=130°,故∠E=180°﹣130°=50°总结:本题考查了切线的性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.【难度】3【题目】备选试题5如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).【答案】BC与⊙O相切; ﹣.【解析】(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)²=x²+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,∴S扇形DOF==,则阴影部分的面积为S△ODB﹣S扇形DOF=×2×2﹣=2﹣.故阴影部分的面积为2﹣.总结:本题考查了切线的判定,扇形面积,以及勾股定理,熟练掌握切线的判定是解本题的关键.【难度】4。