中考数学-圆讲义及练习
初中数学专题讲义-圆(含答案)

初中数学专题讲义-圆【考纲说明】【知识梳理】一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
(1)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧叫做半圆。
(1)劣弧:小于半圆的弧。
(2)优弧:大于半圆的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质 1、圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:➢ 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
➢ 平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、点与圆的位置关系:设⊙O 的半径为r ,OP=d 。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)8、直线与圆的位置关系。
d 表示圆心到直线的距离,r 表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;9、圆的切线判定。
(1)d=r 时,直线是圆的切线。
中考数学复习之圆的基本性质,考点过关与基础练习题

32.圆的有关性质➢ 知识过关1. 圆有相关概念(1)圆:在一个平面内,线段OA 绕它固定的一个端点O 旋转_____,另一个端点A 所于形成的图形叫做圆,圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于____r 的点的集合.(2)弧、弦、等圆、等弧①弧:圆上任意_____的部分叫做弧,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧; ①弦:连接圆上任意两点的____叫做弦,经过_____的弦叫做直径. ①等圆:能够_____的两个圆叫做等圆;①等弧:在_____或等圆中,能够互相重合的弧叫做等弧. 2. 垂径定理及其推论 (1) 对称性:①圆是中心对称图形,其对称中心是圆心 ①圆是轴对称图形,其对称轴是_______. (2) 垂径定理及其推论①垂径定理:垂直于弦的直径______这条弦,并且平分这条弦所对的______; ①推论:平分弦(非直径)的直径______于弦,并且平分这条弦所对的两条弧.➢ 考点分类考点1 圆心角、弧、弦之间的关系例1如图所示,圆O 通过五边形OABCD 的四个顶点,若D AB=150°,A=65°,D=60°,则的度数为( )A.25°B.40°C.50°D.55°考点2垂径定理及简单应用例2如图所示,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB 为0.8m,则排水管内水的深度为_______m.考点3垂径定理与其他知识的综合运用例3如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是弧CBD 上任意一点,AH =2,CH =4.(1)求⊙O 的半径r 的长度; (2)求sin ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE •HF 的值.➢ 真题演练1.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,连接AO 并延长,交⊙O 于点E ,连接BE ,DE .若DE =3DO ,AB =4√5,则△ODE 的面积为( )A .4B .3√2C .2√5D .2√62.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 的长的最小值为( )A .3B .4C .6D .83.在正方形网格中,以格点O 为圆心画圆,使该圆经过格点A ,B ,并在点A ,B 的右侧圆弧上取一点C ,连接AC ,BC ,则sin C 的值为( )A .√32B .12C .1D .√224.如图,半径为5的⊙A 与y 轴交于点B (0,2)、C (0,10),则点A 的横坐标为( )A .﹣3B .3C .4D .65.如图,在⊙O 中,直径AB =10,CD ⊥AB 于点E ,CD =8.点F 是弧BC 上动点,且与点B 、C 不重合,P 是直径AB 上的动点,设m =PC +PF ,则m 的取值范围是( )A .8<m ≤4√5B .4√5<m ≤10C .8<m ≤10D .6<m <106.在⊙O 中内接四边形ABCD ,其中A ,C 为定点,AC =8,B 在⊙O 上运动,BD ⊥AC ,过O 作AD 的垂线,垂足为E ,若⊙O 的直径为10,则OE 的最大值接近于( )A .52B .5√23C .4D .57.如图,点A ,B ,C 都在⊙O 上,B 是AC ̂的中点,∠OBC =50°,则∠AOB 等于 °.8.如图,将半径为rcm 的⊙O 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,已知弦AB 的长为4√15cm ,则r = cm .9.如图,AB是⊙O的直径,∠BOD=120°,C为弧BD的中点,AC交OD于点E,DE =1,则AE的长为.10.如图,AB为⊙O的直径,AE为⊙O的弦,C为优弧ABÊ的中点,CD⊥AB,垂足为D.若AE=8,DB=2,则⊙O的半径为.11.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.➢课后练习1.如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为BĈ上一点(点P不与点B,C重合),连接AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,CFAP−BP的值始终等于√32.则下列说法正确的是()A.①,②都对B.①对,②错C.①错,②对D.①,②都错2.如图,在半径为5的⊙O 内有两条互相垂直的弦AB 和CD ,AB =8,CD =8,垂足为E .则tan ∠OEA 的值是( )A .1B .√63C .√156D .2√1593.如图,四边形ABCD 内接于半径为5的⊙O ,AB =BC =BE ,AB ⊥BE ,则AD 的长为( )A .5B .5√2C .5√3D .104.如图,点A ,B ,C 在⊙O 上,∠AOC =90°,AB =√2,BC =1,则⊙O 的半径为( )A .√3B .√52C .√102D .√2+125.下列说法正确的是( )A .同弧或等弧所对的圆心角相等B .所对圆心角相等的弧是等弧C .弧长相等的弧一定是等弧D .平分弦的直径必垂直于弦6.如图,A ,B 为圆O 上的点,且D 为弧AB 的中点,∠ACB =120°,DE ⊥BC 于E ,若AC =√3DE ,则BE CE的值为( )A .3B .2C .√33+1D .√3+17.如图所示,在⊙O 中,BC 是弦,AD 过圆心O ,AD ⊥BC ,E 是⊙O 上一点,F 是AE 延长线上一点,EF =AE .若AD =9,BC =6,设线段CF 长度的最小值和最大值分别为m 、n ,则mn =( )A .100B .90C .80D .708.如图,A ,B 是⊙O 上的点,∠AOB =120°,C 是AB̂的中点,若⊙O 的半径为5,则四边形ACBO 的面积为( )A .25B .25√3C .25√34D .25√329.如图,AB 是⊙O 的直径,点C 是半圆上的一个三等分点,点D 是AĈ的中点,点P 是直径AB 上一点,若⊙O 的半径为2,则PC +PD 的最小值是 .10.如图,一下水管道横截面为圆形,直径为260cm ,下雨前水面宽为100cm ,一场大雨过后,水面宽为240cm ,则水位上升 cm .11.如图,在⊙O 中,点C 在弦AB 上,连接OB ,OC .若OB =5,AC =1,BC =5,则线段OC 的长为 .12.如图,以G(0,3)为圆心,半径为6的圆与x轴交于A,B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,点E在⊙G的运动过程中,线段FG的长度的最大值为.13.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为.14.如图,射线PE平分∠CPD,O为射线PE上一点,以O为圆心作⊙O,与PD边交于点A、点B,连接OA,且OA∥PC.(1)求证:AP=AO.(2)若⊙O的半径为10,tan∠OPB=12,求弦AB的长.15.如图,在⊙O中,直径AB与弦CD相交于点E,OF⊥CD,垂足为F.设已知BE=5,AE=12OE,OF=1,求CD的长.➢冲击A+在Rt①ABC中,①BAC=90°,(1)如图1,D、E分别在BC、BA的延长线上,①ADE=2①CAD,求证:DA=DE;(2)如图2,在(1)的条件下,点F在BD上,①AFB=①EFD,求证:①FAD=①FED(3)如图3,若AB=AC,过点C作CN||AB,连接AN,在AN上取一点G,使GA=AC,连接BG交AC于点H,连接CG,试探究CN、CH、GN之间满足的数量关系式,并给出证明;。
中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)【专题分析】圆在中考中的常见考点有圆的性质及定理,圆周角定理及其推论,圆心角、圆周角、弧、弦之间的“等推”关系;切线的判定,切线的性质,切线长定理,弧长及扇形面积的计算,求阴影部分的面积等.对圆的考查在中考中以客观题为主,考查题型多样,关于圆的基本性质一般以选择题或填空题的形式进行考查,切线的判定等综合性强的问题一般以解答题的形式进行考查;圆在中考中的比重约为10%~15%.【解题方法】解决圆的有关问题常用的数学思想就是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法,设参数法等.【知识结构】【典例精选】如图,⊙O的半径是3,点P是弦AB延长线上的一点,连结OP,若OP =4,∠APO=30°,则弦AB的长为( )A.2 5 B. 5C.213 D. 13【思路点拨】先过点O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,进而得出AB的值.【解析】如图,过点O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=4×sin 30°=2.∵OB=3,∴BC=OB2-OC2=32-22=5,∴AB=2 5.故选A.答案:A规律方法:利用垂径定理进行证明或计算,通常是在半径、圆心距和弦的一半所组成的直角三角形中,利用勾股定理构建方程求出未知线段的长.如图,从一块直径是8 m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )A.4 2 m B.5 m C. 30 m D.215 m【思路点拨】首先连结AO,求出AB,然后求出扇形的弧长BC,进而求出扇形围成的圆锥的底面半径,最后应用勾股定理求出圆锥的高即可.【解析】如图,连结AO,∵AB=AC,点O是BC的中点,∴AO⊥BC.又∵∠BAC=90°,∴∠ABO=∠ACO=45°,∴AB=2OB=2×(8÷2)=42(m).∴l BC=90π×42180=22π(m).∴将剪下的扇形围成的圆锥形的半径是22π÷2π=2(m).∴圆锥的高是422-22=30(m).故选C.答案:C规律方法:解决圆锥的相关问题,可以利用圆的周长等于扇形的弧长建立方程,利用方程解决问题.如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心、ED 为半径作半圆,交A,B所在的直线于M,N两点,分别以MD,ND为直径作半圆,则阴影部分的面积为( )A.9 5 B.18 5 C.36 5 D.72 5【思路点拨】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN 的面积-大半圆的面积,MN为半圆的直径,从而可知∠MDN=90°,在Rt△MDN 中,由勾股定理可知MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AED中,ED=AD2+AE2=62+32=35,所以MN=65,然后利用三角形的面积公式求解即可.【解析】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积.∵MN为大半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积和=大半圆的面积.∴阴影部分的面积=△DMN 的面积.在Rt△AED中,ED=AD2+AE2=62+32=35,∴阴影部分的面积=△DMN的面积=12MN·AD=12×65×6=18 5.故选B.答案:B规律方法:求阴影部分的面积,一般是将所求阴影部分进行分割组合,转化为规则图形的和或差.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连结CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【思路点拨】(1)根据圆周角定理可得∠ADC=90°,根据直角三角形的性质可得∠A+∠ACD=90°,再由∠DCB+∠ACD=90°,可得∠A=∠BCD;(2)当点M是BC的中点时,直线DM与⊙O相切.连结DO,证明∠ODM =90°,进而证得直线DM与⊙O相切.【自主解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解:当点M是BC的中点时,直线DM与⊙O相切.理由如下:如图,连结DO,∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.规律方法:在判定一条直线是圆的切线时,如果这条直线和圆有公共点,常作出经过公共点的半径,证明这条直线与经过公共点的半径垂直,概括为“连半径,证垂直,得切线”.【能力评估检测】一、选择题1.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( B )A.40° B.50° C.60° D.20°2.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( C )A. 3 B.3 C.2 3 D.43.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( A )A.25° B.50° C.60° D.30°4.如图,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP 的度数为( B )A.15° B.30° C.60° D.90°5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心、AB长为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( D )A.6 B.7 C.8 D.96.如图,已知AB为⊙O的直径,AD切⊙O于点A,EC=CB.则下列结论中不一定正确的是( D )A.BA⊥DA B.OC∥AEC.∠COE=2∠CAE D.OD⊥AC7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B为圆心的弧与AD,DC相切,则阴影部分的面积是( D )A.23-33π B.43-33πC.43-π D.23-π8.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( B )A .13π cmB .14π cmC .15π cmD .16π cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D .2 5 解:如图,连接OE ,OF ,ON ,OG .∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°.∴四边形AFOE ,FBGO 都是正方形.∴AF =BF =AE =BG =2.∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG . ∴CM =5-2-MN =3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=(3-MN )2+42.∴NM =43.∴DM =3+43=133.故选A. 答案:A二、填空题10.在平面直角坐标系中,O 为坐标原点,则直线y =x +2与以O 点为圆心,1为半径的圆的位置关系为 相切.11.如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =40° .12.如图,正三角形ABC 的边长为2,点A ,B 在半径为2的圆上,点C 在圆内,将正三角形ABC 绕点A 逆时针旋转,当点C 第一次落在圆上时,点C 运动的路线长为 .【解析】设点C 落在圆上的点为C ′,连结OA ,OB ,OC ′,则OA =OB = 2.又∵AB =2,∴OA 2+OB 2=AB 2,∴∠AOB =90°,∴∠OAB =45°,同理∠OAC ′=45°,∴∠BAC ′=90°.∵△ABC 为等边三角形,∴∠CAB =60°,∴∠CAC ′=30°,∴点C 运动的路线长为30π×2180=π3.故答案为π3. 答案:π3 13.如图,在△ABC 中,∠BAC =90°,AB =5 cm ,AC =2 cm ,将△ABC 绕顶点C按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中的阴影部分)的面积为 cm 2.【解析】在Rt△ABC 中,BC =AC 2+AB 2=29(cm),S 扇形BCB 1=45π×292360=29π8(cm 2),S △CB 1A 1=12×5×2=5(cm 2),S 扇形CAA 1=45π×22360=π2(cm 2),故S 阴影部分=S 扇形BCB 1+S △CB 1A 1-S △ABC -S 扇形CAA 1=29π8+5-5-π2=25π8(cm 2). 答案:25π8三、解答题14.如图,AB 是⊙O 的直径,BC 切⊙O于点B ,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .求证:(1)PE =PD ;(2)AC ·PD =AP ·BC .证明:(1)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴EP BC =AE AB .又∵AD ∥OC ,∴∠DAE =∠COB ,∴△AED ∽△OBC ,∴ED BC =AE OB =AE 12AB =2AE AB .∴ED =2EP ,∴PE =PD . (2)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴AP AC =PE BC .∵PE =PD ,∴AP AC =PD BC,∴AC ·PD =AP ·BC . 15.如图,在△OAB 中,OA =OB =10,∠AOB =80°,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′,求证:AP =BP ′;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.(1)证明:如图,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′.又∵OA=OB,OP=OP′,∴△AOP≌△BOP′.∴AP=BP′.(2)解:如图,连结OT,过点T作TH⊥OA于点H.∵AT与MN相切,∴∠ATO=90°.∴AT=OA2-OT2=102-62=8.∵12OA·TH=12AT·OT,即12×10×TH=12×8×6,∴TH=245,即点T到OA的距离为245.(3)10°,170°.16.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).解:(1)直线BC与⊙O相切.理由如下:如图,连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.∴直线BC与⊙O相切.(2)①设OA=OD=r,∵在Rt△BDO中,∠B=30°,∴OB=2r,∴在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②∵在Rt△ODB中,∠B=30°,∴∠BOD=60°,∴S扇形ODE=60π×22360=23π,∴阴影部分面积为S△BOD-S扇形ODE=23-23π.11。
2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)

2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)知识点总结1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
2.垂径定理的推论:推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。
3.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
4.圆周角定理:5.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
6.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
7.三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆。
圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。
8.切线的性质:①圆的切线垂直于经过切点的半径。
②经过圆心且垂直于切线的直线必经过切点。
③经过切点且垂直于切线的直线必经过圆心。
运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。
9. 切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。
九年级数学中考一轮复习 微专题二讲义:圆的基本性质

微专题二:圆的基本性质【知识点扫描】1. 圆上各点到圆心的距离都等于.2. 圆是轴对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.3. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.6. 半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是.7.圆内接四边形的对角.8.圆的周长为,1°的圆心角所对的弧长为,n°的圆心角所对的弧长为,弧长公式为 .9.圆的面积为,1°的圆心角所在的扇形面积为,n°的圆心角所在的扇形面积为S= ×πr2 = = .10.圆锥的侧面积公式:S=rlπ.(其中为的半径,为的长);圆锥的全面积:S全=S侧+S底=πrl+πr2.【难点突破】重难点1垂径定理及其应用一.选择题:1.如图,AB是⊙O的直径,弦CD⊙AB于点G,点F是CD上一点,且满足CF:FD =3:7,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=3,给出下列结论:⊙FG=2;⊙5 tanE;⊙495DEFS=;其中正确的是( )A. ⊙⊙B. ⊙⊙C. ⊙⊙D.⊙⊙⊙二、填空题:1.在半径为1的⊙O中,两条弦AB,AC的长分别为3和2,则弧BC的长度为.三、解答题:1.已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊙CD,E为垂足,AE=CD=8,F是CD延长线上一点,连接AF交圆O于G,连接AD、DG.(1)求圆O的半径;(2)求证:⊙ADG⊙⊙AFD;(3)当点G是弧AD的中点时,求⊙ADG得面积与⊙AFD的面积比.重难点2圆周角定理及其推论一、选择题1. 如图,抛物线与x轴交于A、B两点,以线段AB为直径的半圆与抛物线在第二象限的交点为C,与y轴交于D点,设⊙BCD=α,则的值为()A.sin2α B.cos2α C.tan2α D.tan﹣2α2.如图,点C为⊙ABD外接圆上的一点(点C不在上,且不与点B,D重合),且⊙ACB=⊙ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5B.5C.4D.二、填空题1.如图,⊙O是⊙AB C的外接圆,AD⊙B C于D,CE⊙AB于E,AD交CE于H点,交⊙O于N,OM⊙B C于M,BF为⊙O的直径,下列结论:⊙四边形AH CF为平行四边形;⊙AH=2OM,⊙BF=2F C;⊙DN=DH;其中正确的有______(第1题) (第2题)2.如图,在平面直角坐标系中,已知点A (0,2)、B(0,2+m)、C(0,2-m)(m>0),点P 在以D(4,6)为圆心,1 为半径的圆上运动,且始终满足⊙BPC=90°,则m的最大值是3.如图,AB,BC是⊙O的弦,⊙B=60°,点O在⊙B内,点D为上的动点,点M,N,P 分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是三.解答题1.请完成以下问题:(1)如图1,=,弦AC与半径OD平行,求证:AB是⊙O的直径;(2)如图2,AB是⊙O的直径,弦AC与半径OD平行.已知圆的半径为r,AC=y,CD=x,求y与x的函数关系式.2.如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是⊙ABP 的外接圆⊙O 的直径.(1)求证:⊙APE 是等腰直角三角形; (2)若⊙O 的直径为2,求PC 2+PB 2的值.3.如图1,已知四边形ABCD 内接于圆0,AD=BC ,延长AB 到E ,使BE=AB ,连接EC ,F 是EC 的中点,连接BF(1)若圆0的半径为3,⊙DAB=120°,求劣弧BD 的长; (2)如图2,连接BD ,求证:BF=21BD ; (3)如图3,G 是BD 的中点,过B 作AE 的垂线交圆0于点P ,连接PG ,PF ,求证:PG=PF图1 图2 图34.如图1,圆O的两条弦AC、BD交于点E,两条弦所成的锐角或者直角记为⊙α(1)点点同学通过画图和测量得到以下近似数据:的度数30.2°40.4°50.0°61.6°的度数55.7°60.4°80.2°100.3°⊙α的度数43.0°50.2°65.0°81.0°猜想:、、⊙α的度数之间的等量关系,并说明理由﹒(2)如图2,若⊙α=60°,AB=2,CD=1,将以圆心为中心顺时针旋转,直至点A与点D 重合,同时B落在圆O上的点,连接CG﹒⊙求弦CG的长;⊙求圆O的半径.重难点3 三角形的外接圆及圆内接四边形 一、选择题1.如图,点A 的坐标为A (8,0),点B 在y 轴正半轴上,且AB=10,点P 是⊙AOB 外接圆上一点,且⊙BOP=45°,则点P 的坐标为( )A .(7,7)B .(7,7)C .(5,5)D .(5,5)2.如图所示,四边形ABCD 中,DC⊙AB ,BC=2,AB=AC=AD=3.则BD 的长为( ) A.13 B.5 C.23 D.243.如图,⊙ABC 内接于圆O ,延长AO 交BC 于点P ,交圆O 于点D ,连结OB ,OC ,BD ,DC ( )A .若AB=AC ,则BC 平分ODB .若OCBD ,则CD :AB=:3C .若⊙ABO=30°,则OC BDD .若BC 平分OD ,则AB=AC二.填空题1.在⊙ABC 中,45AB =5AC =,11BC =,则⊙ABC 的外接圆半径为____________2、如图,⊙ABC内接于⊙O,其外角平分线AD交⊙O于D,DM⊙AC于M,下列结论中正确的是.⊙DB=DC;⊙AC+AB=2CM;⊙AC﹣AB=2AM;⊙S⊙ABD=S⊙ABC.重难点4弧长及扇形面积的有关计算一.选择题1.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1B.2π﹣1C.2π﹣2D.π﹣2二.填空题1、如图,一根长为a的竹竿AB斜靠在墙上,竹竿AB的倾斜角为α,当竹竿的顶端A下滑到点A'时,竹竿的另一端B向右滑到了点B',此时倾斜角为β.(1)线段AA'的长为.(2)当竹竿AB滑到A'B'位置时,AB的中点P滑到了P',位置,则点P所经过的路线长为(两小题均用含a,α,β的代数式表示)2、如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为_ __3、如图,AB为半圆O的直径,C为AO的中点,CD⊙AB交半圆与点D,以C为圆心,CD为半径画弧DE交AB于E点,若AB=4cm,则图中阴影部分面积为cm2.三、简答题1、在⊙O中,己知弦BC所对的圆周角⊙BAC与圆心角⊙BOC互补.(1)求⊙BOC的度数.(2)若⊙O的半径为4,求弦BC和劣弧BC组成的弓形面积.。
中考数学专题13 圆(讲练解析)

专题13 圆复习考点攻略考点一圆的有关概念1.与圆有关的概念和性质(1)圆的定义:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.【注意】(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.【例1】把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长()A.102cm B.104cm C.106cm D.108cm【答案】A【解析】设地球半径为:rcm,则地球的周长为:2πrcm,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,故此时钢丝围成的圆形的周长变为:2π(r+16)cm,∴钢丝大约需要加长:2π(r+16)﹣2πr≈100(cm)=102(cm).故选A.考点二垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.【例2】在O 中,直径AB =15,弦DE ⊥AB 于点C .若OC :OB =3 :5,则DE 的长为() A .6B .9C .12D .15【答案】C【解析】解:如图所示:∵直径AB =15,∴BO =7.5,∵OC :OB =3:5,∴CO =4.5, ∵DE ⊥AB ,∴DC==6,∴DE =2DC =12.故选:C .考点三 圆心角、弧、弦的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【例3】如图,在⊙O 中∠O =50°,则∠A 的度数为A .50°B .20°C .30°D .25°【答案】D 【解析】∠A=BOC =×50°=25°. 故选D .考点四 圆周角定理及其推论1.定理:一条弧所对的圆周角等于它所对的圆心角的一半. 2.推论:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等. (2)直径所对的圆周角是直角.12∠12【注意】圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.【例4】如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C 重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则( )A.3α+β=180° B.2α+β=180° C.3α﹣β=90° D.2α﹣β=90°【答案】D【解析】解:∵OA⊥BC,∴∠AOB=∠AOC=90°,∴∠DBC=90°﹣∠BEO=90°﹣∠AED=90°﹣α,∴∠COD=2∠DBC=180°﹣2α,∵∠AOD+∠COD=90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D.考点五与圆有关的位置关系1.点与圆的位置关系:设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.【注意】判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r 【注意】由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.【例5】如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线向下平移__________cm时与⊙O相切.【答案】2【解析】连接OA.∵直线和圆相切时,OH=5,又∵在直角三角形OHA中,HA=AB÷2=4,OA=5,∴OH=3.∴需要平移5–3=2(cm).故答案为:2.考点六切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.【注意】利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.3. 切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.【例6】如图1,在四边形ABCD中,AD//BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AE上一点,AD=1,BC=2.求tan∠APE的值.【答案】(1)见解析;(2)√22【解析】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°, ∴∠OBC =180°−∠DAB =90°, ∴∠OEC =∠OBC , ∵CO 平分∠BCD , ∴∠OCE =∠OCB ,在△OCE 和△OCB 中,∠OEC =∠OBC∠OCE =∠OCB OC =OC ,∴△OCE≌△OCB(AAS), ∴OE =OB , 又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示: 则四边形ABFD 是矩形, ∴AB =DF ,BF =AD =1, ∴CF =BC−BF =2−1=1, ∵AD//BC ,∠DAB =90°, ∴AD ⊥AB ,BC ⊥AB , ∴AD 、BC 是⊙O 的切线, 由(1)得:CD 是⊙O 的切线, ∴ED =AD =1,EC =BC =2, ∴CD =ED +EC =3,∴DF =CD 2−CF 2=32−12=22, ∴AB =DF =22,∴OB=2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =22.考点七与圆有关的计算公式1.弧长和扇形面积的计算扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为S圆锥侧=12ππ2l r rl⋅=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.【例7】如图,正方形ABCD的边长为4,以点A为圆心,AD为半径画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A B.1 C D.1 2【答案】D【解析】∵正方形ABCD 的边长为4∴4AD AE == ∵AC 是正方形ABCD 的对角线∴45EAD ∠=︒∴ 454=180DE l ππ︒⨯⨯=︒∴圆锥底面周长为2C r ππ==,解得12r =∴该圆锥的底面圆的半径是12,故选:D .考点八 三角形与圆1.三角形的外接圆相关概念(1)经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.(2)外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等. 2.三角形的内切圆(1)与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.(2)内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.【例8】如图,Rt △ABC 中,∠C =90°,AB =5,AC =3,点E 在中线AD 上,以E 为圆心的⊙E 分别与AB 、BC 相切,则⊙E 的半径为A .78 B .67C .56D .1【答案】B【解析】作EH ⊥AC 于H ,EF ⊥BC 于F ,EG ⊥AB 于G ,连接EB ,EC ,设⊙E 的半径为r ,如图,∵∠C =90°,AB =5,AC =3,∴BC =4,而AD 为中线,∴DC =2,∵以E 为圆心的⊙E 分别与AB 、BC 相切,∴EG =EF =r ,∴HC =r ,AH =3–r ,∵EH ∥BC ,∴△AEH ∽△ADC ,∴EH ∶CD =AH ∶AC ,即EH ∵S △ABE +S △BCE +S △ACE =S △ABC ,B .考点九 正多边形的有关概念正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心. 正多边形半径:正多边形外接圆的半径叫做正多边形半径.正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距. 【例9】如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A .4πB .4π+C .8πD .4π【答案】A【解析】解:正六边形的面积为:1462⨯⨯=,六个小半圆的面积为:22312ππ⋅⨯=,中间大圆的面积为:2416ππ⋅=,所以阴影部分的面积为:12164πππ+-=-,故选:A .第一部分 选择题一、选择题(本题有10小题,每题4分,共40分)1. 如图,已知⊙O 的周长等于8π cm ,则圆内接正六边形ABCDEF 的边心距OM 的长为( )A .2 cmB .cm C .4 cmD.cm【答案】B【解析】如图,连接OC ,OD ,∵正六边形ABCDEF 是圆的内接多边形,∴∠COD =60°,∵OC =OD ,OM ⊥CD ,∴∠COM =30°,∵⊙O 的周长等于8π cm ,∴OC =4 cm , ∴OM cm ),故选B .2.如图,AB 是⊙O 的直径,△ACD 内接于⊙O ,延长AB ,CD 相交于点E ,若∠CAD =35°,∠CDA =40°,则∠E 的度数是()A .20°B .25°C .30°D .35°【答案】B【解析】如图,连接BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,由三角形内角和定理得,∠ACD =180°﹣∠CAD ﹣∠CDA =105°, ∴∠ABD =180°﹣∠ACD =75°, ∴∠BAD =90°﹣∠ABD =15°,∴∠E =∠CDA ﹣∠DAB =25°,故选B .3.如图,在中,为直径,,点D 为弦的中点,点E 为上任意一点,则的大小可能是( )A .B .C .D .【答案】C【解析】连接OD 、OE ,先求出∠COD=40°,∠BOC=100°,设∠BOE=x ,则∠COE=100°-x ,∠DOE=100°-x+40°;然后运用等腰三角形的性质分别求得∠OED 和∠COE ,最后根据线段的和差即可解答.4. 如图,⊙O 以AB 为直径,PB 切⊙O 于B ,近接AP ,交⊙O 于C ,若∠PBC =50°,∠ABC =()A .30°B .40°C .50°D .60°【答案】B【解析】∵⊙O 以AB 为直径,PB 切⊙O 于B , ∴∠PBA =90°, ∵∠PBC =50°, ∴∠ABC =40°. 故选B .5. 如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是()O AB 80AOC ︒∠=AC BCCED∠10︒20︒30︒40︒A .44°B .22°C .46°D .36°【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B .6. 如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于()ABC .8D .67. 如图,AB 是圆锥的母线,BC 为底面半径,已知BC =6 cm ,圆锥的侧面积为15π cm 2,则sin ∠ABC 的值为()A .B .C .D .【答案】C【解析】设圆锥的母线长为R ,由题意得15π=π×3×R ,解得R =5, ∴圆锥的高为4,∴sin ∠ABC =.故选C . 8. 如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为A .B34354553452m 22m π2mC .D .【答案】A【解析】连接AC .∵从一块直径为2m 的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC =90°,∴AC 为直径,即AC =2m ,AB =BC .∵AB 2+BC 2=22,∴AB =BCm ,∴阴影部分的面积是=(m2).故选A .9. 如图所示,矩形纸片ABCD 中,AD =6cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm【答案】B【解析】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.设AB =xcm ,则DE =(6﹣x )cm ,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可. 根据题意,得=π(6﹣x ),解得x =4.10. 如图,AB 为⊙O 的直径,BC 、CD 是⊙O 的切线,切点分别为点B 、D ,点E 为线段OB 上的一个动点,连接OD ,CE ,DE ,已知AB =25,BC =2,当CE +DE 的值最小时,则CEDE 的值为( )2m π22m π12πA. 910B. 23C. 53D. 255【答案】A【解析】解:延长CB 到F 使得BC =CF ,则C 与F 关于OB 对称,连接DF 与OB 相交于点E ,此时CE +DE =DF 值最小,连接OC ,BD ,两线相交于点G ,过D 作DH ⊥OB 于H ,则OC ⊥BD ,OC =OB 2+BC 2=5+4=3, ∵CB ⊥OB ,∠COB =∠BOG ΔCOB ∽ΔBOG ∴OB OC =BG BC∴OB ⋅BC =OC ⋅BG ,∴BG =235,∴BD =2BG =435,∵OD 2−OH 2=DH 2=BD 2−BH 2,∴5−(5−BH )2=(435)2−BH 2,∴BH =895,∴DH =BD 2−BH 2=209, ∵DH//BF , ∴EF ED =BFDH =2209=910, ∴CE DE=910, 故选:A .第二部分 填空题二、填空题(本题有6小题,每题4分,共24分)11.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 12. 如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.【解析】∵OD ⊥AC ,∠DEF =60°,∴∠D =30°,∵OD=OB , ∴∠ABD=∠D =30°, ∴tan ∠ABD , . 13. 如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为__________(结果保留根号和π).- 【解析】正六边形的中心为点O ,如图,连接OD 、OE ,作OH ⊥DE 于H ,π3∴∠DOE==60°,∴OD =OE =DE =1,∴OH , ∴正六边形ABCDEF 的面积=,∠A ==120°, ∴扇形ABF 的面积=,∴图中阴影部分的面积-,故答案为-. 14. 如图,为半圆的直径,且,将半圆绕点顺时针旋转,点旋转到点的位置,则图中阴影部分的面积为__________.【答案】 【解析】由图可得,图中阴影部分的面积为:,故答案为:. 15.如图,在平面直角坐标系中,已知C(3,4),以点C 为圆心的圆与y 轴相切.点A 、B 在x轴上,且OA =OB.点P 为⊙C 上的动点,∠APB =90°,则AB 长度的最大值为______.【答案】163606︒12(62)1806-⨯︒2120π13π603⨯=π3π3AB 6AB =A 60︒B C 6π22260π6π(62)π(62)6π36022⨯⨯⨯÷⨯÷+-=6π【解析】解:连接OC 并延长,交⊙C 上一点P ,以O 为圆心,以OP 为半径作⊙O ,交x 轴于A 、B ,此时AB 的长度最大, ∵C(3,4),∴OC =32+42=5,∵以点C 为圆心的圆与y 轴相切. ∴⊙C 的半径为3, ∴OP =OA =OB =8, ∵∠APB =90°, ∴AB 是直径,∴AB 长度的最大值为16, 故答案为16.16.如图,在⊙O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60∘,点C 为BD 的中点,则AC 的长是 .【答案】833【解析】解:如图,过点C 分别作CE ⊥AB 交AB 的延长线于点E ,CF ⊥AD 于点F ,则∠E =∠CFD =∠CFA =90∘,∵点C 为BD 的中点,∴BC =CD ,则∠BAC =∠DAC , ∵∠BAC =∠DAC ,∠E =∠AFC =90∘,AC =AC ,∴△AEC≌△AFC ,∴CE =CF .∵A ,B ,C ,D 四点共圆, ∴∠D =∠CBE . 在△CBE 和△CDF 中,∵∠CBE =∠D,∠E =∠CFD,CE =CF,∴△CBE≌△CDF ,∴BE =DF . 在△AEC 和△AFC 中,∵∠E =∠AFC,∠EAC =∠FAC,AC =AC,∴△AEC≌△AFC ,∴AE =AF ,设BE =DF =x ,∵AB =3,∴AE =AF =x +3,又AD =5, ∴5=x +3+x ,解得x =1,则AE =4. ∵∠BAD =60∘,∴∠EAC =30∘, ∴AC =2CE ,又AC 2=CE 2+AE 2, ∴AC =833.第三部分 解答题三、解答题(本题有7小题,共56分)17. 如图,正方形ABCD 的外接圆为⊙O ,点P 在劣弧CD 上(不与C 点重合). (1)求∠BPC 的度数;(2)若⊙O 的半径为8,求正方形ABCD 的边长.【答案】(1)45° ;(2)8√2 【解析】(1)连接OB ,OC ,∵四边形ABCD 为正方形,∴∠BOC =90°, ∴∠P=∠BOC =45°; (2)过点O 作OE ⊥BC 于点E ,12∵OB =OC ,∠BOC =90°,∴∠OBE =45°,∴OE =BE , ∵OE 2+BE 2=OB 2,∴BE, ∴BC =2BE =2×.18. 如图,四边形ABCD 内接于⊙O ,AB =AC ,AC ⊥BD ,垂足为E ,点F在BD 的延长线上,且DF =DC ,连接AF 、CF.(1)求证:∠BAC =2∠CAD ;(2)若AF =10,BC =tan ∠BAD的值.【答案】(1)见解析 ;(2)112【解析】(1)∵AB =AC ,∴,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD ⊥AC ,∴∠ADB =90°-∠CAD , ∴∠BAC =∠CAD , ∴∠BAC =2∠CAD . (2)∵DF =DC , ∴∠DFC =∠DCF , ∴∠BDC =2∠DFC , ∴∠BFC =∠BDC =∠BAC =∠FBC , ∴CB =CF , 又BD ⊥AC ,∴AC 是线段BF 的中垂线,AB =AF =10,AC =10. 又BC = 设AE =x ,CE =10-x ,由AB 2-AE 2=BC 2-CE 2,得100-x 2=80-(10-x )2,=== AB AC =121212解得x =6,∴AE =6,BE =8,CE =4, ∴DE ==3, ∴BD =BE +DE=3+8=11, 如图,作DH ⊥AB ,垂足为H ,∵AB ·DH =BD ·AE , ∴DH =,∴BH , ∴AH =AB -BH =10-, ∴tan ∠BAD =. 19. 如图,在△ABC中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D作DF ⊥AC ,垂足为点F .(1)求证:直线DF 是⊙O 的切线; (2)求证:BC 2=4CF ·AC ;(3)若⊙O 的半径为4,∠CDF =15°,求阴影部分的面积.【答案】(1)见解析 ;(2)见解析;(3)4√3 【解析】(1)如图所示,连接OD ,648AE CE BE ⋅⨯=121211633105BD AE AB ⋅⨯==445=44655=331162DH AH==∵AB =AC ,∴∠ABC =∠C ,而OB =OD ,∴∠ODB =∠ABC =∠C , ∵DF ⊥AC ,∴∠CDF +∠C =90°,∴∠CDF +∠ODB =90°, ∴∠ODF =90°,∴直线DF 是⊙O 的切线. (2)连接AD ,则AD ⊥BC ,则AB =AC , 则DB =DC=, ∵∠CDF +∠C =90°,∠C +∠DAC =90°,∴∠CDF =∠DCA , 而∠DFC =∠ADC =90°,∴△CFD ∽△CDA , ∴CD2=CF ·AC ,即BC 2=4CF ·AC . (3)连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA , ∴∠AOE =120°, S △OAE =AE ·OE ·sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =, S 阴影部分=S 扇形OAE -S △OAE =×π×42-=- 20.如图,AE 为的直径,D 是弧BC 的中点BC 与AD ,OD 分别交于点E ,F . (1)求证:; (2)求证:; (3)若,求的值.【答案】见解析。
初中数学《圆》全章讲义有例题

初中数学《圆》全章讲义有例题(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《圆》内容简介:1、圆的相关概念;2、垂径定理;3、圆心角、圆周角定理;4、与圆有关的位置关系;5、切线及切线长定理;6、弧长及扇形面积。
【知识要点1】圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
例1 已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB上的点,且AC=BD.求证:AD=BC.例2 如图,在⊙O中,AB,CD为⊙O的两条直径,AE=BF,求证四边形CEDF是平行四边形.【知识要点2】点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;【知识要点3】直线与圆的位置关系>⇒无交点;1、直线与圆相离⇒d r=⇒有一个交点;2、直线与圆相切⇒d r<⇒有两个交点;3、直线与圆相交⇒d rdrd=rrd【知识要点4】圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;rRd图3rR d【知识要点5】垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
中考数学专题复习圆

第六章圆第二十三讲圆的有关概念及性质【基础知识回顾】一、圆的定义及性质:1、圆的定义:⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合2、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类3、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径;3、圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】二、垂径定理及推论:1、垂径定理:垂直于弦的直径,并且平分弦所对的。
2、推论:平分弦()的直径,并且平分弦所对的。
【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其余三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线(即弦心距)。
3、垂径定理常用作计算,在半径r、弦a、弦心d和弓高h中已知其中两个量可求另外两个量。
】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是,900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,是类,它们的关系是,2、作直径所对的圆周角是圆中常作的辅助线】五、圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲圆知识点1 圆周角定理1. 圆的有关概念(1)圆的定义:在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
以点O 为圆心的圆记作“⊙O”,读作“圆O”.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;圆是以圆心为对称中心的中心对称图形.(2)弦:连接圆上任意两点的线段叫做弦.(3)直径:经过圆心的弦叫做直径.(4)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(5)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”.大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示).2. 圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”.3. 圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.典例剖析例(1)如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°(例(1)图)(例(2)图)(2)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.跟踪训练1.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.50°C.40°D.30°(第1题图)(第2题图)(第3题图)2.如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=.3.如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.过关精练1.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A.140°B.130°C.120°D.110°(第1题图)(第2题图)(第3题图)(第4题图)2.如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60°B.50°C.40°D.30°3.如图,AB是⊙O的直径,点C在⊙O上,则∠ACB的度数为()A.30°B.45°C.60°D.90°4.如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°5.AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°(第5题图)(第6题图)(第7题图)(第8题图)6.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°7.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.如图,AB为⊙O的直径,点C、D在⊙O上,若∠CBA=70°,则∠D的度数是.9.如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为.(第9题图)(第10题图)10.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.知识点2 垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.典例剖析例(1)如图⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2(例(1)图)(例(2)图)(2)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.跟踪训练1.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1(第1题图)(第2题图)2.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.3.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.1.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm(第1题图)(第2题图)(第3题图)2.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.83.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD =20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.4(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在直径为10cm的⊙O中,BC是弦,半径OA⊥BC于点D,AD=2cm,则BC的长为cm.6.如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=.7.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.知识点3 切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线性质的运用见切点,连半径,见垂直.例(1)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°(例(1)图)(例(2)图)(2)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2B.C.D.跟踪训练1.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°(第1题图)(第2题图)2.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B 作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则P A的长为()A.4B.2C.3D.2.5过关精练1.如图AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A.60°B.50°C.40°D.30°(第1题图)(第2题图)2.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB 的度数为()A.40°B.50°C.65°D.75°(第3题图)(第4题图)(第5题图)4.如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°5.如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6.如图,P是⊙O外一点,P A是⊙O的切线,PO=26cm,P A=24cm,则⊙O的周长为()A.18πcm B.16πcm C.20πcm D.24πcm(第6题图)(第7题图)7.如图,AB是⊙O的直径,P A切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5D.8.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.(第8题图)(第9题图)9.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.410.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.(第10题图)(第11题图)(第12题图)11.如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=.12.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.13.如图,P A、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC =.(第13题图)(第14题图)(第15题图)14.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=度.15.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠B=26°,则∠OCA=度.16.如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC=.(第16题图)(第17题图)17.已知:如图,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=10,则AB=.知识点4 扇形面积的计算(1)圆面积公式:S=πr2(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长)(4)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.例(1)如图,四边形ABCD是矩形,AB=4,AD=2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是.(2)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).跟踪训练1.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.(第1题图)(第2题图)(第3题图)2.如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为()A.B.(2﹣)πC.πD.π3.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).1.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π(第1题图)(第2题图)(第3题图)2.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.B.C.D.+3.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣B.π+C.π+2D.2π﹣24.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A.π﹣1B.4﹣πC.D.2(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣6.如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π7.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4B.C.π﹣2D.8.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣4(第8题图)(第8 题图)(第10题图)9.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣10.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)11.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).(第11题图)(第12题图)(第13题图)12.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB 于点E,图中阴影部分的面积是(结果保留π).13.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).14.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为第 11 页 共 12 页半径作弧,交AB 于点D ,则图中阴影部分的面积是 .(结果保留π)15.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为 .(结果保留π)(第14题图) (第15题图)16.如图,一个圆心角为90°的扇形,半径OA =2,那么图中阴影部分的面积为 (结果保留π).(第16题图) (第17题图) (第18题图)17.如图在正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点,若圆的半径等于1,则图中阴影部分的面积为 .18.如图,在扇形OAB 中,∠AOB =90°.D ,E 分别是半径OA ,OB 上的点,以OD ,OE 为邻边的▱ODCE 的顶点C 在上.若OD =8,OE =6,则阴影部分图形的面积是 (结果保留π).19.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为 .(第19题图) (第20题图)20.如图,在矩形ABCD 中,CD =2,以点C 为圆心,CD 长为半径画弧,交AB 边于点E ,且E 为AB 中点,则图中阴影部分的面积为 .21.如图,在▱ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).22.如图,在直角三角形ABC中,∠ABC=90°,AC=2,BC=,以点A为圆心,AB.为半径画弧,交AC于点D,则阴影部分的面积是第12 页共12 页。