dynaform回弹分析详细教程

合集下载

上课Dynaform回弹07

上课Dynaform回弹07

U 型梁回弹模拟导入文件保存数据库选择菜单File/Save as,在指定的工作目录里输入文件名“springback.df”后,单击Save 保存并退出对话框。

自动设置在进入自动设置界面之前,我们只需要对工具进行网格剖分,其它的以前操作都可以在自动设置中来完成,包括单元的物理偏置(PHYSICAL OFFSET)、或者使用接触偏置(CONTACT OFFSET)的选择等。

用户可以单击SETUP 菜单下面的AUTOSETUP 选项进入自动设置。

新建一个自动设置1.选择模拟类型Sheet forming;2.选择工艺模板为Springback;3.输入板料的厚度为1.00;4.单击确定按钮确认并进入自动设置的主对话框中。

基本参数设置进入General 页面后,用户只需要将标题(Title)改成Springback即可,其他参数基本上不需要修改,采用软件推荐使用的缺省值。

板料定义1. 将页面切换到Blank 页面。

单击自动设置页面上面红色的Blank 标签,系统会进入到板料定义页面。

2. 在板料定义页面单击Geometry 下面的红色定义几何模型…按钮。

3. 系统弹出定义板料部件对话框,单击添加零件层…按钮,在弹出的对话框中选择BLANK 层,选择完成后,单击确定(OK )按钮退出零件层的选取。

系统返回板料定义对话框。

4. 单击退出(EXIT )按钮退出板料零件层定义对话框。

系统返回板料定义主界面。

这时关于板料的基本参数都已经定义好,板料页面的标签由红色变为黑色,如图所示。

板料材料及其属性定义1. 单击BLANKMAT 按钮出现如图所示的材料对话框。

这里我们单击Material Library…按钮。

板料材料及其属性定义2. 选择美国材料数据库,在材料库中选择零件的材料模型及材料。

这里我们选择T36 低碳钢DQSK。

选择完成后返回Blank 设置页面。

3. 定义属性。

单击ELFORM=2 按钮,系统弹出图6.10 所示的属性对话框。

dynaform回弹补偿流程

dynaform回弹补偿流程

Dynaform回弹补偿流程详解DynaForm软件从5.7版本开始增加了回弹补偿模块(SCP),用户可以在重力、拉延、修边和翻边、回弹等一系列工艺过程CAE仿真之后,通过回弹补偿模块将回弹计算出的数值直接按照一定的系数补偿回模具上,减少实际的模具试模次数,缩短产品的开发周期并降低成本。

DynaForm中回弹补偿的基本流程如下图所示(此图片引用于DynaForm 软件帮助文件)。

图1 DynaForm中回弹补偿的基本流程从上图可以看出,要进行补偿,需要首先进行拉延和回弹计算,也就是说必须有一次拉延分析,并得到一个合理的回弹结果;软件第一次进行回弹补偿需要2个Dynain文件(一个是回弹前一步的,可能为拉延也可能为修边,第二个是回弹本身的)。

在DynaForm软件本身的Manual手册的Application手册中的第三个案例是关于回弹补偿的,但是案例本身说的比较简略,也没有详细的描写多次补偿需要注意的事项,还有就是DynaForm软件个版本本身的不稳定性,导致计算回弹补偿非常困难,本文从拉延开始,详细诉述多次回弹补偿(案例补偿2次,第2次之后和第2次分析方法一致)方法;此次分析使用的模型如下:材质:DP800,厚度2mm分析软件:DynaForm5.9.2.1操作系统:Windows 7 X64图2 分析使用的模型工艺说明:如上图所示的零件,V型零件,使用一步成型,肯定会有回弹,通过补偿可以适当补偿,冲压模具如下:图3 冲压模具1.第一次成型分析及回弹具体成型分析及回弹分析设置步骤在此不一一详述,第一次成型分析结果如下:图4 第一次成型分析结果回弹的距离大约是0.6mm,此零件公差要求在0.1mm以内,所以需要进行回弹补偿;回弹补偿的方式有2种,一种是在3D软件中,根据CAE的分析结果,手动的处理模型,对于复杂的零件,这种处理过程很繁琐,第二种就是用本文的方法,使用DynaForm软件的回弹补偿功能进行自动的补偿并映射曲面用于实际的模具设计或模具加工;2.第一次回弹补偿在进行补偿计算前,一定要确认第一次的分析正常终止,并有Dynain文件存在方可,回弹补偿的具体步骤如下:2.1 新建一个回弹补偿的前处理文件将第一步分析使用的前处理文件另存为一个新的前处理文件,在此我们命名为1_SCP.df,将模具各层定位于第一步冲压结束时的位置(一般为闭模状态)。

dynaform回弹分析详细教程

dynaform回弹分析详细教程

基于Dynaform的JL70右连接板零件成形工艺及模具设计李君才(重庆工商大学 机械设计制造及其自动化专业 05机制2班 )摘要: 实践表明,采用有限元数值仿真技术对零件成形过程进行模拟,并根据仿真结果进行冲压工艺规划和模具的设计,以改良传统冲模设计与制造过程中耗时长、成本高等缺陷,把制造过程中可能出现的问题集中在设计阶段解决,以便快速经济地制造模具,提高零件质量。

本设计是基于有限元分析软件DYNAFORM 的成形过程的仿真分析与模具设计。

首先进行前处理设置,将仿真需要的各种参数输入进去,然后进行仿真的后处理分析。

通过对仿真的后处理分析,了解各种参数对成形的影响,进一步提出改进措施,重新输入参数进行分析。

然后在基于仿真分析的基础设计模具,这样保证了模具结构的合理性。

关键词:模拟仿真、DYNAFORM、模具设计、工艺参数优化Base on Dynaform JL70 right Junction panel Ban parts forming process and die designLi Juncai(Chongqing Technology and Business University ,mechanical design automation and manufacturing professionals ,05 mechanism classes two)Abstract: Practice shows that the use of finite element simulation technology to partsforming process modeling, and simulation results are in accordance with the planning process and tamping die design, to improve the design and manufacture of traditional die in the time-consuming process of a long, the cost of higher defects in the manufacturing process problems that may arise in the design phase concentrated solution for rapid economic and die manufacturing, improve the quality of parts.The design is based on finite element analysis software DYNAFORM the process of forming simulation analysis and die design. First set up to deal with before, the simulation will need to enter into the various parameters, and then to simulate the post-processing analysis. Through the simulation of the post-processing analysis, an understanding of various parameters on forming the impact of further improvement measures, re-enter the parameters for analysis. Then based on the analysis of the simulation based design mold, such a guarantee die structure is reasonable. Keywords: simulation、DYNAFORM、mold design、Technological parameter optimization目录目录1.绪论 (4)1.1 引言 (4)1.2 板料冲压成形的主要特点 (5)1.3 板料成形仿真技术的国内外应用现状 (5)1.4板料冲压仿真技术的发展趋势 (8)1.5本课题的主要设计内容和基本思路 (11)2.冲压成形有限元理论及软件简介 (13)2.1 有限元方程及其求解步骤 (13)2.2 有限元求解格式 (15)2.3 Dynaform软件与有限元模拟计算步骤 (15)3.JL70右连接板零件建模与冲压工艺规程设计 (19)3.1 零件结构特点与冲压工艺顺序安排 (19)3.2 零件的模型构建 (19)3.3 零件中性层曲面的创建 (20)3.4冲压方向确定 (23)3.5 零件毛坯的反求 (25)4.JL70右连接板零件成形工艺设计与数值模拟 (28)4.1快速成形评估 (28)4.2 模面设计 (30)4.3 成形工艺有限元模型的建立 (32)4.3.1 有限元网格的划分 (32)4.3.2上、下模及压边圈的生成 (33)4.3.3 有关主要工艺参数的初定值 (36)5.仿真结果分析与工艺参数的优化调整 (41)5.1 仿真结果分析 (41)5.1.1 FLD图分析 (41)5.1.2 厚度变化图的分析 (42)5.1.3 冲压力、压边力曲线及分析 (42)5.1.4 零件尺寸、形状的测量与分析 (43)5.2 工艺参数的优化调整方案 (43)5.3 优化后的仿真结果的对比分析 (44)5.4零件的回弹分析 (50)6.JL70右连接板零件的成形模具设计 (54)6.1 模具结构方案的设计 (54)6.2 模具结构设计工作图 (60)7.结论 (61)致谢 (62)参考文献 (63)1.1.绪论绪论绪论1.11.1 引言引言当前,板料成形仿真领域的研究集中在几个方面:揭示零件几何形状、模具几何形状及结构、材料类型及性能参数等各种因素对成形结果及成形性能的影响;通过引入知识工程等技术,进一步提高成形模拟精度及仿真计算效率;板料冲压加工作为一个标准化生产过程,在汽车、轻工、航空、国防等领域应用非常广泛,在现代工业生产中占有举足轻重的地位。

基于Dynaform的高强钢板冲压回弹补偿分析

基于Dynaform的高强钢板冲压回弹补偿分析

基于Dynaform的高强钢板冲压回弹补偿分析1. 引言- Dynaform的介绍和背景- 研究现状和研究目的- 研究内容和方法2. 高强钢板的冲压及回弹特性分析- 高强钢板的特点和应用- 冲压过程中的应力、应变和变形特性- 回弹的成因和特征- 高强钢板回弹率的实验测量和分析3. 基于Dynaform的模拟分析- Dynaform的原理和模拟方法- 模拟时的材料参数和边界条件的设定- 模拟结果的分析和比较,包括不同参数对回弹率的影响4. 回弹补偿技术的研究和应用- 回弹补偿技术的发展历程和现状- 常用的回弹补偿方法及其优缺点分析- 基于Dynaform的回弹补偿技术及其应用研究5. 结论与展望- 对研究结果的总结和评价- 对未来高强钢板冲压回弹补偿研究的展望和建议- 研究的局限性和不足之处的反思和改进建议第一章:引言1.1 Dynaform的介绍和背景Dynaform是一种用于模拟金属成型过程的软件,广泛应用于冲压、锻造、粉末冶金等领域。

Dynaform可以帮助制造业企业加快产品研发和生产效率,提高产品质量和成型精度。

1.2 研究现状和研究目的随着现代制造业对产品质量和成型精度的要求越来越高,回弹问题成为了成型过程中不可避免的问题。

传统的回弹补偿方法依赖于经验和试错,效率低、成本高,并且无法保证补偿效果。

近年来,随着计算机仿真技术的不断发展,基于Dynaform的回弹补偿技术得到了广泛的研究和应用。

本研究旨在利用Dynaform模拟高强钢板的冲压过程并分析其回弹特性,研究基于Dynaform的回弹补偿技术的可行性和有效性。

1.3 研究内容和方法本研究主要分为对高强钢板的冲压及回弹特性进行分析、基于Dynaform的模拟分析以及回弹补偿技术的研究和应用三个部分。

通过实验和模拟分析,探究高强钢板的回弹率与冲压参数的关系以及回弹的成因。

并以Dynaform软件为工具,建立高强钢板的成型模型并进行模拟分析,分析不同冲压参数对回弹率的影响。

U型弯曲件dynaform回弹分析

U型弯曲件dynaform回弹分析

1.模型建立与导入利用solidworks建立模型,并将模型导出为igs格式;将igs文件依次导入到dynaform中,并编辑修改各零件层的名称,将毛坯层命名为BLANK,将上模命名为punch,下模为die,单击OK按钮确定。

2网格化分上下模网格化分选择turn on只显示punch,并且使当前零件层为punch,利用surface中的修剪工具将上模多余的面剪掉,然后进行面网格化分,圆角部分设置min size为,平面部分设置min size为2,网格化分完成后检查法向方向是否一致。

坯料网格化分利用surface菜单中的中性面工具,生成坯料的中性面,删除坯料零件层,在确保当前零件层为中性面的前提下,选择Tools/Blank Generator 菜单进行网格化分,选择minsize为3.主要参数设定定义工具选择Tools/Define Tools菜单项,在Define Tools对话框中分别选择Die、Punch 进行定义。

将建好的零件层添加到系统规定的层中,让系统能够识别。

定义毛坯选择Tools/Define Blank 菜单项,在Define Blank 对话框中,首先点击Add添加毛坯零件层,接着单击Material 选项的None 按钮设置毛坯材料的属性,根据使用的材料对材料属性进行更改;然后单击Property 选项的None 按钮,在Property 对话框中,设定毛坯厚度(UNIFORM THICKNESS)为1mm,其它参数采用缺省值。

Q235属性:密度:屈服强度:235MP抗拉强度:380-500MP伸长率:》26%泊松比:弹性模量:200-210 GPa定位工具选择Tools 命令下的Position tools/ move tool 菜单项,设置punch与blank 的接触间隙为,blank与die的接触间隙为。

定义punch 运动在define tools/tool name选择所要设定运动曲线的工具PUNCH,单击Define Contact 按钮,弹出Tools Contact 对话框,对PUNCH 的接触参数进行设定,此处采用系统的默认值。

DYNAFORM分析过程步骤介绍

DYNAFORM分析过程步骤介绍

DYNAFORM分析过程步骤介绍DYANFORM分析过程介绍一、导入几何或网格模型FILE----IMPORT二、修改零件名称PARTS----EDIT三、划分曲面网格对于坯料:TOOLS----BLANK GENERATOR对于工具:PREPROCESS----ELEMENT四、检查网格PREPROCESS----MODEL CHECK五、创建不见及偏置凹模(凸模)创建凸模(凹模)和压边圈创建部件:PARTS----CREAT偏置单元:PREPROCESS----ELEMENT----COPY六、分离压料面和凸模(凹模)PARTS----ADD TO PART/SEPARATE七、定义坯料材料及属性TOOLS----DEFINE BLANK八、定义工具TOOLS----DEFINE TOOLS九、定义等效拉延筋创建拉延筋线:PREPROCESS----LINE/POINT----FE BOUNDARY LINE/OFFSET 创建拉延筋:TOOLS----DRAW BEAD十、工具自动定位分析设置:TOOLS----ANAL YSIS SETUP自动定位:TOOLS----POSITION----AUTO POSITION十一、定义工具运动曲线测量工具间距离:TOOLS----POSITION----MIN DISTANCE定义工具运动速度/力曲线:TOOLS----DEFINE TOOLS----DEFINE LOAD CURVE 十二、检查工具运动情况TOOLS----ANIMATE十三、定义成形参数和控制参数ANAL YSIS----ANAL YSIS十四、提交工作到求解器进行计算ANAL YSIS----FULL RUN DYNA十五、后处理分析POSTPROCESS十六、分析报告DFE模面设计过程一、导入零件几何模型DFE----PREPARATION----IMPORT二、划分网格1、创建新零件DIEPART----CREAT2、划分网格DFE----PREPARATION----MESH TOOL 三、检查并修补网格DFE----MODEL CHECK/REPAIR四、冲压方向调整DFE----TIPPING/UNDERCUT五、内部填充DFE----PREPARATION----INNER FILL 六、外部光顺DFE----PREPARATION---OUTER SMOOTH 七、创建压料面DFE----BINDER八、创建过渡面(工艺补充面)DFE----ADDENDUM九、切割压料面DFE----MODIFICATION----BINDER TRIMBSE坯料估算过程一、导入零件模型BSE----PREPARATION----IMPORT二、划分网格BSE----PART MESH三、检查和修补网格BSE----MESH CHECK/REPAIR四、坯料尺寸估算BSE----BLANK SIZE ESTIMATE----MSTEP五、坯料网格划分BSE----DEVELOPMENT----BLANK GENERATOR六、外部光顺BSE----OUTER SMOOTH七、生成新的坯料轮廓线和网格PREPROCESS----LINE/POINT----FE BOUNDARY LINE BSE----DEVELOPMENT----BLANK GENERATOR八、坯料排样BSE----NESTING九、输出排样报告和报价。

dynaform回弹分析教程

dynaform回弹分析教程

*CONTROL_IMPLICIT_STABILIZATION
可以通过scale参数控制不同回弹步回弹量的大小, 如零件刚度较大,scale取较大值(如1.0);如零 件刚度较小,scale取较小值(如0.1, 0.01或 0.001)。 较小的scale使分析的前几步有较多回 弹,若前几步计算收敛困难将scale放大,若前几步 收敛容易而最后一步收敛困难,减小scale值。
• 方法2: dynain法
– 成形分析完成后输出dynain文件,用dynain文件进行回弹分析
无缝转换法(Seamless Method)
• 先用显式方法进行成形仿真,当成形完成后,求解器 自动地转为隐式方法继续进行回弹分析 • 进行回弹分析时,只有板料保留,其它模具都不起作 用。模具与板料间的摩擦也不起作用 • 在板料上预先定义节点的约束,以消除模具移去后板 料的刚性位移
• 在成形阶段为了得到精确的结果需要很密的网格 (*control_adaptive),这样在成形结束时会产生大量的 单元。使回弹分析所需的内存和CPU时间大大增加, 同时也增加了平衡迭代不收敛的可能性。 • 在回弹分析之前进行网格粗化可以有效解决这一矛 盾:
– 网格粗化对回弹结果的影响很小 – 提高收敛性 – 减少所需的内存与CPU时间
应该谨慎使用mass scaling,并注意成形速度 不要太高,以尽可能减少动态惯性效应!
回弹分析方法
• 成形分析采用显式(explicit)方法,而回弹分析采用隐式 (implicit)方法 • 方法1: 无缝转换法(Seamless Method)
– 成形分析完成后,自动转换为隐式方法进行回弹分析
多步回弹
• 对于回弹量较大的复杂问题,前面介绍的单步回弹分 析法往往不能收敛。 • 可以让零件分几步完成回弹,在每一步中完成部分回 弹,当计算完成时所有的回弹都完成。 • 一般多步回弹可分4步进行,如果时间步长 dt0=0.001(*control_implicit_general),分析终止时间 即为term=0.004(*control_termination) • 多步回弹分析需要启动*control_implicit_stabilization (详见下页)

dynaform回弹补偿流程

dynaform回弹补偿流程

Dynaform回弹补偿流程详解DynaForm软件从5.7版本开始增加了回弹补偿模块(SCP),用户可以在重力、拉延、修边和翻边、回弹等一系列工艺过程CAE仿真之后,通过回弹补偿模块将回弹计算出的数值直接按照一定的系数补偿回模具上,减少实际的模具试模次数,缩短产品的开发周期并降低成本。

DynaForm中回弹补偿的基本流程如下图所示(此图片引用于DynaForm软件帮助文件)。

图1 DynaForm中回弹补偿的基本流程从上图可以看出,要进行补偿,需要首先进行拉延和回弹计算,也就是说必须有一次拉延分析,并得到一个合理的回弹结果;软件第一次进行回弹补偿需要2个Dynain文件(一个是回弹前一步的,可能为拉延也可能为修边,第二个是回弹本身的)。

在DynaForm软件本身的Manual手册的Application手册中的第三个案例是关于回弹补偿的,但是案例本身说的比较简略,也没有详细的描写多次补偿需要注意的事项,还有就是DynaForm软件个版本本身的不稳定性,导致计算回弹补偿非常困难,本文从拉延开始,详细诉述多次回弹补偿(案例补偿2次,第2次之后和第2次分析方法一致)方法;此次分析使用的模型如下:材质:DP800,厚度2mm分析软件:DynaForm5.9.2.1操作系统:Windows 7 X64图2 分析使用的模型工艺说明:如上图所示的零件,V型零件,使用一步成型,肯定会有回弹,通过补偿可以适当补偿,冲压模具如下:1.第一次成型分析及回弹具体成型分析及回弹分析设置步骤在此不一一详述,第一次成型分析结果如下:图4 第一次成型分析结果回弹的距离大约是0.6mm,此零件公差要求在0.1mm以内,所以需要进行回弹补偿;回弹补偿的方式有2种,一种是在3D软件中,根据CAE的分析结果,手动的处理模型,对于复杂的零件,这种处理过程很繁琐,第二种就是用本文的方法,使用DynaForm软件的回弹补偿功能进行自动的补偿并映射曲面用于实际的模具设计或模具加工;2.第一次回弹补偿在进行补偿计算前,一定要确认第一次的分析正常终止,并有Dynain文件存在方可,回弹补偿的具体步骤如下:2.1 新建一个回弹补偿的前处理文件将第一步分析使用的前处理文件另存为一个新的前处理文件,在此我们命名为1_SCP.df,将模具各层定位于第一步冲压结束时的位置(一般为闭模状态)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Dynaform的JL70右连接板零件成形工艺及模具设计李君才(重庆工商大学 机械设计制造及其自动化专业 05机制2班 )摘要: 实践表明,采用有限元数值仿真技术对零件成形过程进行模拟,并根据仿真结果进行冲压工艺规划和模具的设计,以改良传统冲模设计与制造过程中耗时长、成本高等缺陷,把制造过程中可能出现的问题集中在设计阶段解决,以便快速经济地制造模具,提高零件质量。

本设计是基于有限元分析软件DYNAFORM 的成形过程的仿真分析与模具设计。

首先进行前处理设置,将仿真需要的各种参数输入进去,然后进行仿真的后处理分析。

通过对仿真的后处理分析,了解各种参数对成形的影响,进一步提出改进措施,重新输入参数进行分析。

然后在基于仿真分析的基础设计模具,这样保证了模具结构的合理性。

关键词:模拟仿真、DYNAFORM、模具设计、工艺参数优化Base on Dynaform JL70 right Junction panel Ban parts forming process and die designLi Juncai(Chongqing Technology and Business University ,mechanical design automation and manufacturing professionals ,05 mechanism classes two)Abstract: Practice shows that the use of finite element simulation technology to partsforming process modeling, and simulation results are in accordance with the planning process and tamping die design, to improve the design and manufacture of traditional die in the time-consuming process of a long, the cost of higher defects in the manufacturing process problems that may arise in the design phase concentrated solution for rapid economic and die manufacturing, improve the quality of parts.The design is based on finite element analysis software DYNAFORM the process of forming simulation analysis and die design. First set up to deal with before, the simulation will need to enter into the various parameters, and then to simulate the post-processing analysis. Through the simulation of the post-processing analysis, an understanding of various parameters on forming the impact of further improvement measures, re-enter the parameters for analysis. Then based on the analysis of the simulation based design mold, such a guarantee die structure is reasonable. Keywords: simulation、DYNAFORM、mold design、Technological parameter optimization目录目录1.绪论 (4)1.1 引言 (4)1.2 板料冲压成形的主要特点 (5)1.3 板料成形仿真技术的国内外应用现状 (5)1.4板料冲压仿真技术的发展趋势 (8)1.5本课题的主要设计内容和基本思路 (11)2.冲压成形有限元理论及软件简介 (13)2.1 有限元方程及其求解步骤 (13)2.2 有限元求解格式 (15)2.3 Dynaform软件与有限元模拟计算步骤 (15)3.JL70右连接板零件建模与冲压工艺规程设计 (19)3.1 零件结构特点与冲压工艺顺序安排 (19)3.2 零件的模型构建 (19)3.3 零件中性层曲面的创建 (20)3.4冲压方向确定 (23)3.5 零件毛坯的反求 (25)4.JL70右连接板零件成形工艺设计与数值模拟 (28)4.1快速成形评估 (28)4.2 模面设计 (30)4.3 成形工艺有限元模型的建立 (32)4.3.1 有限元网格的划分 (32)4.3.2上、下模及压边圈的生成 (33)4.3.3 有关主要工艺参数的初定值 (36)5.仿真结果分析与工艺参数的优化调整 (41)5.1 仿真结果分析 (41)5.1.1 FLD图分析 (41)5.1.2 厚度变化图的分析 (42)5.1.3 冲压力、压边力曲线及分析 (42)5.1.4 零件尺寸、形状的测量与分析 (43)5.2 工艺参数的优化调整方案 (43)5.3 优化后的仿真结果的对比分析 (44)5.4零件的回弹分析 (50)6.JL70右连接板零件的成形模具设计 (54)6.1 模具结构方案的设计 (54)6.2 模具结构设计工作图 (60)7.结论 (61)致谢 (62)参考文献 (63)1.1.绪论绪论绪论1.11.1 引言引言当前,板料成形仿真领域的研究集中在几个方面:揭示零件几何形状、模具几何形状及结构、材料类型及性能参数等各种因素对成形结果及成形性能的影响;通过引入知识工程等技术,进一步提高成形模拟精度及仿真计算效率;板料冲压加工作为一个标准化生产过程,在汽车、轻工、航空、国防等领域应用非常广泛,在现代工业生产中占有举足轻重的地位。

传统的板料冲压加工所具有特点决定了板料冲压工艺及模具的设计主要依靠设计师的经验,缺乏准确、可靠的定量分析与计算,使得设计制造的模具必须经过反复试压修改,甚至需要修改原产品的设计或报废、重制模具后,才能冲出合格的制件 ,这一“试模”过程,导致了各种资源及时间的巨大浪费。

另外,随着冲压零件多样性、复杂性和对成形精度要求的日益提高,传统板料加工方法不仅难以保证加工质量,在加工成本方面也毫无优势可言,而且模具开发周期长,难以满足市场对产品提出的低成本、低生产周期、高质量的要求,使企业失去应有的市场竞争力。

板料冲压成形仿真技术正式在此环境下提出并发展起来的。

其主要任务是帮助确定毛坯几何形状尺寸、预测零件成形过程中的破裂、起皱及回弹等成形缺陷、分析零件的冲压成形性能、对工艺方案和工艺参数进行优化等。

板料冲压成形计算机仿真涉及数学、力学、材料科学、冲压工艺学、计算机科学、计算机图形学等多门学科的综合应用 ,需要综合多学科知识进行研究;其理论性很强、应用性很广。

要开发出一个计算效率高、适应性强、稳定可靠、功能齐全的板料成形过程计算机仿真软件,必须将冲压工艺CAE 与模具CAD 进行集成化,即一方面采用CAD 系统为数值分析建立几何模型,另一方面采用数值分析对CAD 设计结果进行评价,优化工艺参数和优化模具结构。

在工程实际中应用板料冲压成形计算机仿真技术,是从根本上改进现行模具设计模式的一个有力手段,是促进模具工业技术进步的关键因素之一,对于实现工业生产现代化具有重要意义。

1.2 1.2 板料冲压成形的主要特点板料冲压成形的主要特点板料冲压成形的主要特点板料冲压成形计算机仿真涉及数学、力学、材料科学、冲压工艺学、计算机科学、计算机图形学等多门学科的综合应用,需要综合多学科知识进行研究;其理论性很强、应用性很广。

要开发出一个计算效率高、适应性强、稳定可靠、功能齐全的板料成形过程计算机仿真软件,必须将冲压工艺CAE 与模具CAD 进行集成化,即一方面采用CAD 系统为数值分析建立几何模型,另一方面采用数值分析对CAD 设计结果进行评价,优化工艺参数和优化模具结构。

在工程实际中应用板料冲压成形计算机仿真技术,是从根本上改进现行模具设计模式的一个有力手段,是促进模具工业技术进步的关键因素之一,对于实现工业生产现代化具有重要意义。

主要表现在以下几个方面:①增加产品和工程的可靠性;②在产品的设计阶段发现潜在的问题;③经过分析计算,采用优化设计方案,降低原材料成本;④缩短产品投向市场的时间 模拟试验方案,减少试验次数,从而减少试验经费。

1.1.3 3 3 板料成形仿真技术的国内外应用现状板料成形仿真技术的国内外应用现状板料成形仿真技术的国内外应用现状国际上早在60年代初就开始投入大量的人力和物力开发有限元分析程序,但真正的CAE软件是诞生于70年代初期,而近15年则是CAE软件商品化的发展阶段,CAE 开发商为满足市场需求和适应计算机硬、软件技术的迅速发展,在大力推销其软件产品的同时,对软件的功能、性能,用户界面和前、后处理能力,都进行了大幅度的改进与扩充。

这就使得目前市场上知名的CAE软件,在功能、性能、易用性、可靠性以及对运行环境的适应性方面,基本上满足了用户的当前需求, 从而帮助用户解决了成千上万个工程实际问题,同时也为科学技术的发展和工程应用做出了不可磨灭的贡献。

目前流行的CAE 分析软件主要有NASTRAN 、 ADINA 、ANSYS 、ABAQUS 、MARC 、MAGSOFT 、COSMOS 等。

MSC-NASTRAN软件因为和NASA 的特殊关系,在航空航天领域有着很高 的地位,它以最早期的主要用于航空航天方面的线性有限元分析系统为基础,兼并了PDA公司的PATRAN ,又在以冲击、接触为特长的DYNA3D 的基础上 组织开发了DYTRAN 。

近来又兼并了非线性分析软件MARC,成为目前世界上规模最大的有限元分析系统。

ANSYS软件致力于耦合场的分析计算,能够进 行结构、流体、热、电磁四种场的计算,已博得了世界上数千家用户的钟爱。

ADINA 非线性有限元分析软件由著名的有限元专家、麻省理工学院的 K.J.Bathe教授领导开发,其单一系统即可进行结构、流体、热的耦合计算。

并同时具有隐式和显式两种时间积分算法。

相关文档
最新文档